

Three SN rebrightenings in GRB afterglow light curves in the context of the full GRB-SN sample

Felipe Olivares E.

Physics Department Universidad Andres Bello, Chile

GRB Conference Kyoto, November 11, 2013

Kyoto on bike! Know more in less time.

- If you don't want to travel underground
- Bike 4 Rent shop: ROJI YA Close to Nijojo-mae station
 500 Yen per day ; cheapest fare in Kyoto!

GRB fireball model

3

The SN collapsar model

Ante

H He C, O, N Si Mg, Ne Fe

The multi-wavelength imager GROND

@ the 2.2 m MPG teslescope in La Silla

The multi-wavelength imager GROND

The multi-wavelength imager GROND

The Fantastic 3

GRB	SN	Z	<i>ບ</i> [km/s]	k	Ε_{γ,iso} [10 ⁵¹ erg]	E_{peak} [keV]
081007	2008hw	0.530		0.8	1.28	40
091127	2009nz	0.490	17 000	1.15	14.93	36
101219B	2010ma	0.552		1.78	5.60	70

SN bumps in GRB AG light curves

SED for GRB 081007

10

JHK Bolometric correction

Bolometric Light Curves of GRB-SNe

Corrected for : - host extinction (afterglow SED) - UV & NIR contributions

Bolometric Light Curves of GRB-SNe

Bolometric Light Curves of GRB-SNe

14

The full sample of GRB-SNe

GRB and SN parameters for:

- 4 GRB-SNe analysed (addition of 10bh, Olivares E.+12)
- 25 objects from the literature (Olivares E.+14, in prep)

Optical Light Curve Parameters

med(kopt) = 0.95 ± 0.71 med(Mv) = -19.27 ± 0.81 kopt KS P-value = 0.97

< sopt $> = 0.96 \pm 0.24$

sopt KS P-value = 0.62

Only 2 objects (7%) are significantly brighter than SN 98bw

Masses of the SN explosion

 $< M_{Ni} > = 0.41 \pm 0.15 M_{\odot} \mod(M_{ej}) = 3.5 \pm 4.0 M_{\odot}$ Compared to "normal" type Ic SNe (Drout+11): M_{Ni} KS P-value = 0.03 M_{ej} KS P-value = 0.43

Properties of SN-associated GRBs

To Be Done & Conclusions

- NIR correction
- Arnett modelling for all GRB-SNe
- Explore correlations between GRB and SN
- Only 7% of GRB-associated SNe are brighter than SN 1998bw
- But the median luminosity of GRB-SNe is about that of SN 1998bw

• Short Quiz:

1 How do you pronounce ("su") in Japanese?
2 Which city is more expensive, Tokyo or Kyoto?
3 Remember the location of the bike4rent shop.
4 What Japanese city has been the capital the longest?

 Question: Does anyone have a micro-SD to SD adapter that I can borrow?

Spectroscopic GRB-SN associations

GRB	SN	Z	<i>ບ</i> [km/s]	k	Ε _{γ,iso} [10 ⁵¹ erg]	E_{peak} [keV]
980425	1998bw	0.009	14 000	1	0.001	148
030329	2003dh	0.169	17 000	1.5	5.34	68
031203	2003lw	0.106	24 000	1.28	0.003	5.3
060218	2006aj	0.033	18 000	0.67	0.003	41
100316D	2010bh	0.059	28 000	0.65	0.142	19.6

All type Ic SNe

Spectroscopic GRB-SN associations

Ε_{γ,iso} 0 ⁵¹ erg]	E_{peak} [keV]
0.001	148
5.34	68
0.003	5.3
0.003	41
0.142	19.6
All type	Ic SNe

GRB neutrinos

$$p^+ + \gamma \rightarrow \Delta^+ \rightarrow n + \pi^+$$

SN neutrinos

 $p^+ + e^- \rightarrow n + v_e$

Bolometric Light-Curve Modelling

Optically thick regime:

Fo

$$L_{\rm ph} = M_{\rm Ni} e^{-x} \left[\left(\epsilon_{\rm Ni} - \epsilon_{\rm Co} \right) \int_0^x A(z) dz + \epsilon_{\rm Co} \int_0^x B(z) dz \right]$$

with $A(z) = 2z e^{-2zy+z^2}$ and $B(z) = 2z e^{-2zy+2zs+z^2}$
where $x \equiv t/\tau_m, s \equiv \tau_m (\tau_{\rm Co} - \tau_{\rm Ni})/(2\tau_{\rm Co}\tau_{\rm Ni})$
c homogeneous density $\tau_m = \left(\frac{\kappa_{\rm opt}}{\beta c} \right)^{1/2} \left| \frac{10 M_{\rm ej}^3}{3E_{\rm k}} \right|^{1/4}$ and $v_{\rm ph}^2 = \frac{6 E_{\rm k}}{5 M_{\rm ej}}$

Optically thin (nebular) regime:

 $L_{\text{neb}} = [\text{Ni decay}] + [\text{Co Decay}] + [e^+ \text{ Annihilation}] + [e^+ \text{ Kinetic Energy}]$ $L_{\text{neb}} \propto M_{\text{Ni}}$

Arnett82, Maeda+03, Tautenberger+06, Valenti+08, Olivares+12

The M_{Ni}-M_{ei} plane

Group 1: high mass loss at the end of their lives only, allowing the core growth at earlier stages, which translates into a larger Ni

Group 2: higher mass loss at early stages inhibited the core growth, hence less Ni is synthesised

GRB-SN energy anti-correlations

Moderate M_{Ni} - E_{peak} correlation: z-statisics gives $R^2 = 0.97$ after excluding SNe 2010bh and 2006aj due to their peculiar high energy emission.

GRB-SN energy anti-correlations

Moderate $E_k - E_{\gamma,iso}$ correlation: z-statisics gives $R^2 = 0.93$ after excluding SN 2006aj due to their peculiar high energy emission.

