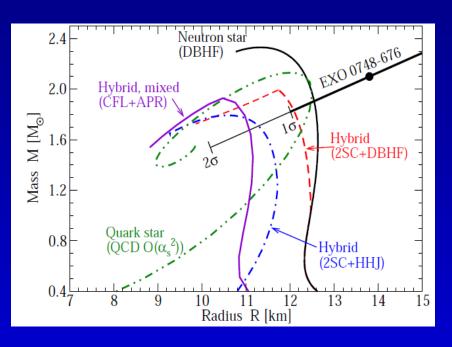
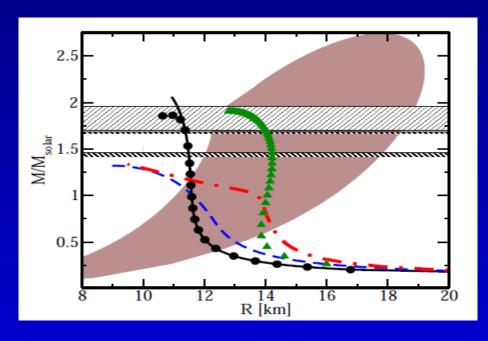
Birth of quark stars


Giuseppe Pagliara
Dipartimento di Fisica e Scienze
della Terra, Universita' di
Ferrara & INFN Ferrara, Italy



Supernovae & Gamma-ray-bursts in Kyoto 2013

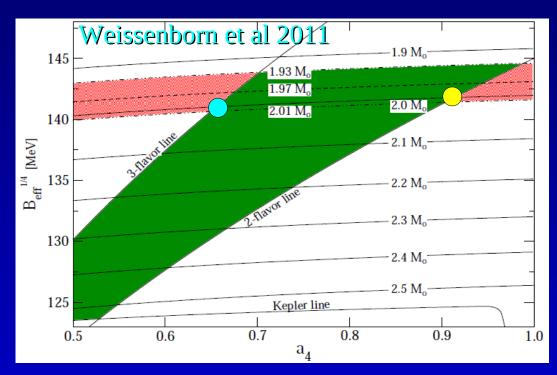
Are quark stars massive enough?

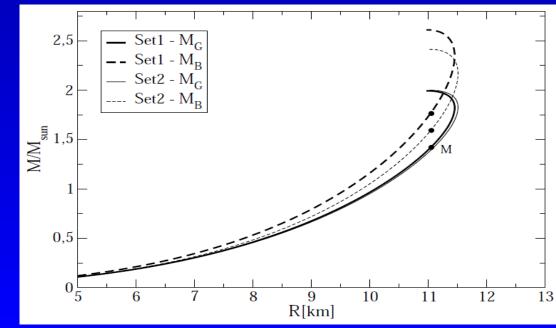
Alford et al Nature 2006

Kurkela et al 2010

Before the discoveries of the two 2M_{sun} stars!!

Within a simple parametrization:


$$\Omega_{QM} = \sum_{i=u,d,s,e} \Omega_i + \frac{3\mu^4}{4\pi^2} (1 - a_4) + B_{eff}$$


Two EoSs which provide a maximum mass of 2M_{sun}

- E/A=860 MeV(set1)
- E/A=930 MeV(set2)

Different OSs bind

Different QSs binding energy M_B-M_G

Conversion of a neutron star into a quark star

Importance of turbulence & hydrodynamical instabilities

- -) Horvath et al 1988
- -) Lugones et al 1994, Cho et al 1994
- -) Tokareva et al 2006
- -) **Drago et al 2007**

The process is similar to the thermonuclear burning inside a white dwarf during a Type Ia supernova, need for multidimensional numerical simulations

Herzog, Roepke 2011, use of the 3+1D hydrocode for SNIa to simulate the conversion of a neutron star and study the different possible combustion modes

Hydro simulations

Input from microphysics:

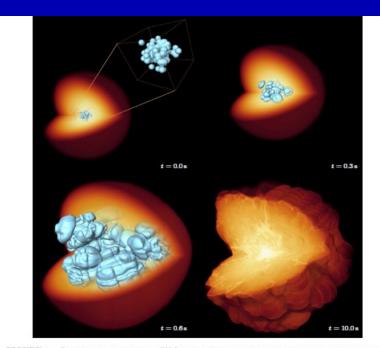
- 1) EoS of hadronic matter & quark matter at finite temperature: at the moment both beta-stable, lepton number not conserved :-(
- 2) Detonation or deflagration & laminar burning velocity: at the moment only deflagration has been tested based on the results of Drago et al 2007 where a strong deflagration has been found in all the cases.

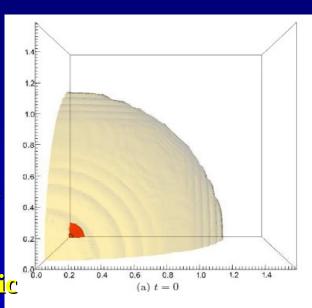
Condition for exothermic combustion

$$e_h(P,X) > e_q(P,X)$$

$$X = (e+P)/n_B^2$$

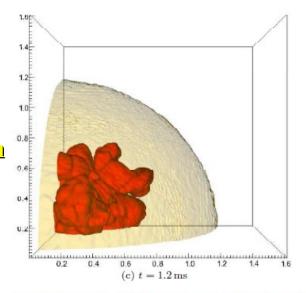
3+1D code developped by Hillebrandt and collaborators for the study of SNIa adapted, by use of an effective relativistic potential, for handling the large compactness of NSs, (see Roepke et al A&A2005) Best resolution 10m.




FIGURE 1. Snapshots from a full-star SN Ia simulation starting from a multi-spot ignition scenario. The logarithm of the density is volume rendered indicating the extend of the WD star and the isosurface corresponds to the thermonuclear flame. The last snapshot marks the end of the simulation and is not on scale with the earlier snapshots.

Conversion of a 1.4 M_{sun} star

- -) Rayleigh-Taylor instabilities develop and the conversion occurs on time scales of ms.
- -) The burning stops
 before the whole hadronic
 matter has converted (the
 process is no more
 exothermic, about 0.5
 M_{sum} of unburned


material)

-) A succesfull conversion need a small E/A, no conversion is possible with set2 (the one with a larger E/A=smaller binding energy)

Herzog, Roepke 2011, G.P. Herzog, Roepke 2013

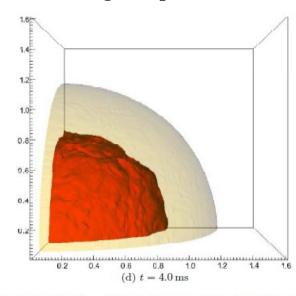
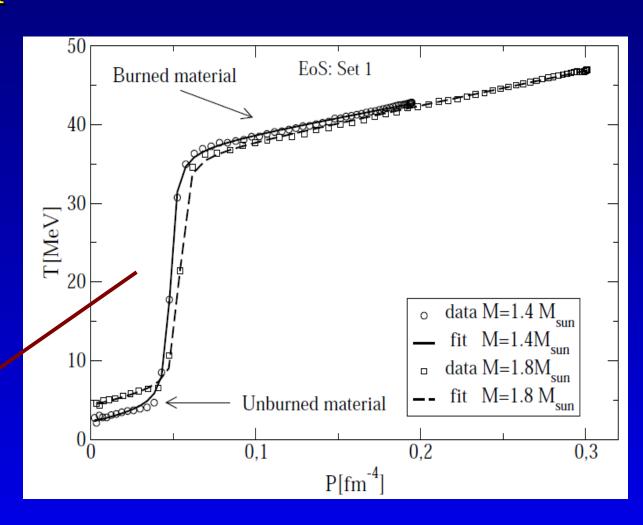



FIG. 1: (color online) Model: Set 1, $M=1.4M_{\odot}$. Conversion front (red) and surface of the neutron star (yellow) at different times t. Spatial units 10^6 cm.

Temperature profiles after the combustion

The huge energy released in the burning leads to a significant heating of the star, few tens of MeV in the center.

Steep gradient of the temperature

Since the burning occurs on time scales of the order of ms, it is decoupled from the cooling (typical time scales of the order of seconds)

Temperature profiles as initial conditions for the cooling diffusion equation

Assumption: quark matter is formed already in beta equilibrium, no lepton number conservation imposed in the burning simulation, no lepton number diffusion

Diffusion is dominated by scattering of non-degenenerate neutrinos off degenerate quarks

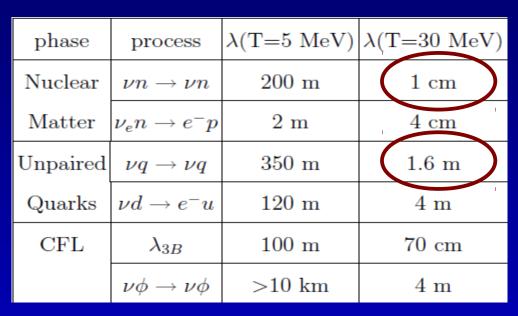
Heat transport equation due to neutrino diffusion

$$\frac{\mathrm{d}}{\mathrm{dt}} \frac{\epsilon_{tot}}{n_b} + P \frac{\mathrm{d}}{\mathrm{dt}} \frac{1}{n_b} = -\frac{\Gamma}{n_b r^2 \mathrm{e}^{\Phi}} \frac{\partial}{\partial r} \left(\mathrm{e}^{2\Phi} r^2 \left(F_{\epsilon, \nu_e} + F_{\epsilon, \nu_{\mu}} \right) \right) + F_{\epsilon, \nu_{\mu}} \right)$$

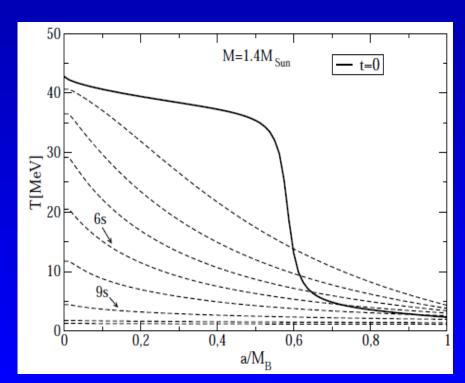
$$\frac{dP}{dr} = -(P + \epsilon_{tot}) \frac{m + 4\pi r^3 P}{r^2 - 2mr}$$

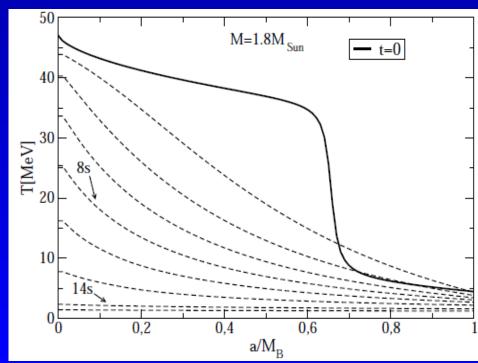
$$\frac{dm}{dr} = 4\pi r^2 \epsilon_{tot}$$

$$\frac{da}{dr} = \frac{4\pi r^2 n_b}{\sqrt{1 - 2m/r}}$$

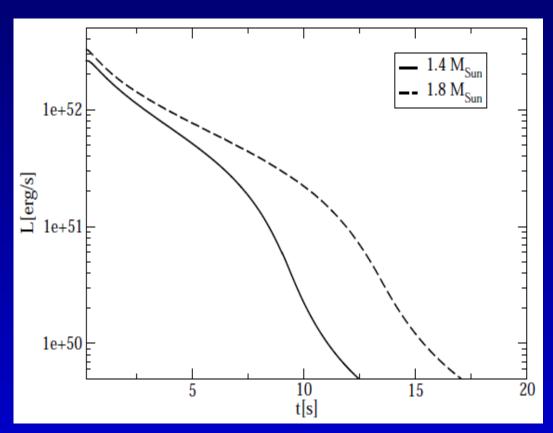

$$\frac{d\Phi}{dr} = \frac{m + 4\pi r^3 P}{r^2 - 2mr}$$

$$F_{\epsilon,\nu_e} = -\frac{\lambda_{\epsilon,\nu_e}}{3} \frac{\partial \epsilon_{\nu_e}}{\partial r}$$
$$F_{\epsilon,\nu_{\mu}} = -\frac{\lambda_{\epsilon,\nu_{\mu}}}{3} \frac{\partial \epsilon_{\nu_{\mu}}}{\partial r}$$


$$\frac{\sigma_S}{V} = \frac{G_F^2 E_{\nu}^3 \mu_i^2}{5\pi^3}$$


Steiner et al 2001

Expected smaller cooling times with respect to hot neutron stars


Reddy et al 2003

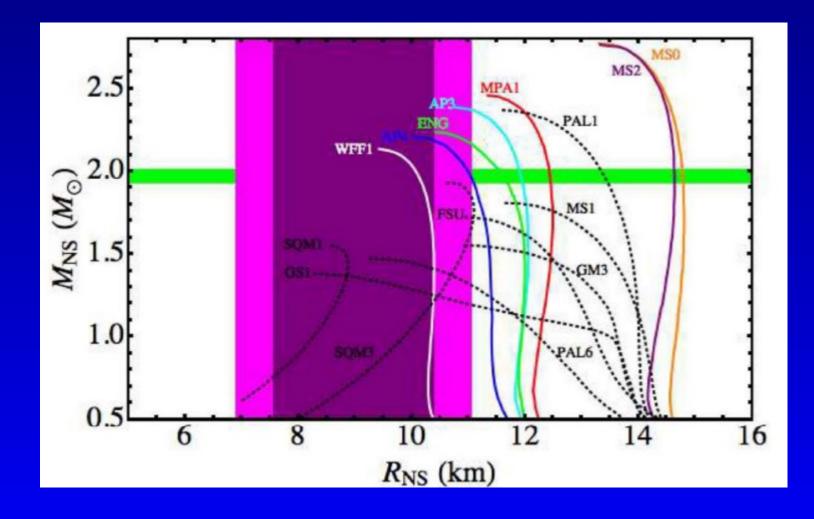
Luminosity
curves similar to
the protoneutron
stars neutrino
luminosities.
Possible
corrections due to
lepton number
conservation...

Phenomenology I: such a neutrino signal could be detected for events occurring in our galaxy (possible strong neutrino signal lacking the optical counterpart if the conversion is delayed wrt the SN)

Phenomenology II: connection with double GRBs within the protomagnetar model

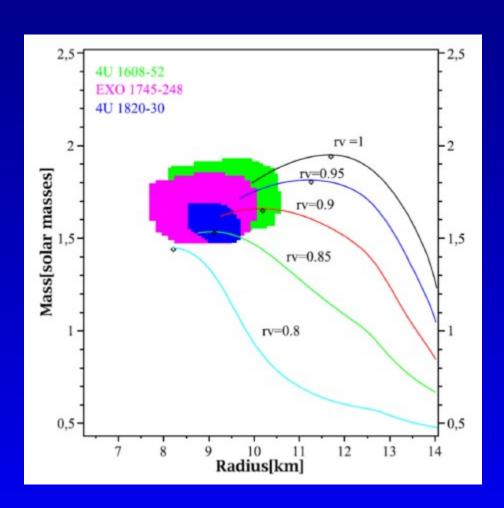
UNUSUAL CENTRAL ENGINE ACTIVITY IN THE DOUBLE BURST GRB 110709B

Bin-Bin Zhang¹, David N. Burrows¹, Bing Zhang², Peter Mészáros^{1,3}, Xiang-Yu Wang^{4,5}, Giulia Stratta^{6,7}, Valerio D'Elia^{6,7}, Dmitry Frederiks⁸, Sergey Golenetskii⁸, Jay R. Cummings^{9,10}, Jay P. Norris¹¹, Abraham D. Falcone¹, Scott D. Barthelmy¹², Neil Gehrels¹²

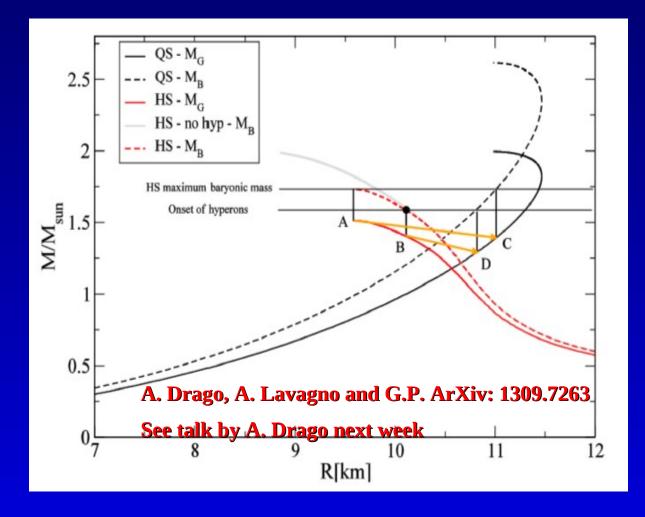

Draft version January 17, 2012

ABSTRACT

The double burst, GRB 110709B, triggered Swift/BAT twice at 21:32:39 UT and 21:43:45 UT, respectively, on 9 July 2011. This is the first time we observed a GRB with two BAT triggers. In this paper, we present simultaneous Swift and Konus-WIND observations of this unusual GRB and its afterglow. If the two events originated from the same physical progenitor, their different time-dependent spectral evolution suggests they must belong to different episodes of the central engine, which may be a magnetar-to-BH accretion system.


Subject headings: gamma-ray burst: general

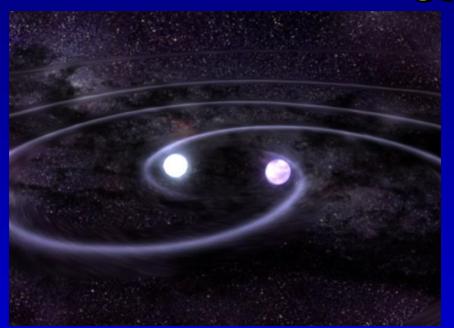
Analysis of QLMXBs Guillot et al 2013

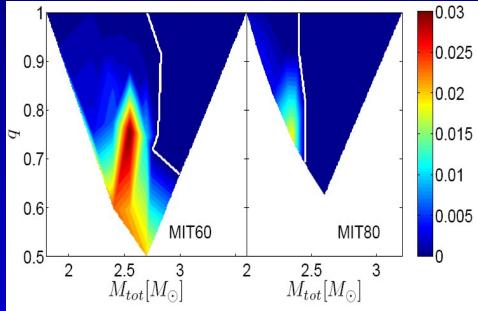


See also Lattimer-Steiner 2013 – larger radii for the same objects, above 11km

Very compact objects (<u>without</u> <u>strangeness</u> obtained via the inclusion of Delta resonances)
Shurhoff et al, APJ 2010

-)Very compact objects: hadronic stars containing **Delta and hyperons** -) Hadronic stars are metastable and decay into quark stars -) Massive stars (M>1.5Msun) would be quark stars. **Different properties** concerning cooling, crust oscillations...




Conclusion: if the existence of 2.4 Msun stars and of stars with radii smaller than 10 km are confirmed, that would strongly favor the hypothesis of two families of CSs

Appendix

Open questions: Seeding of quark matter

Are all CSs QSs ?: Merger of strange stars

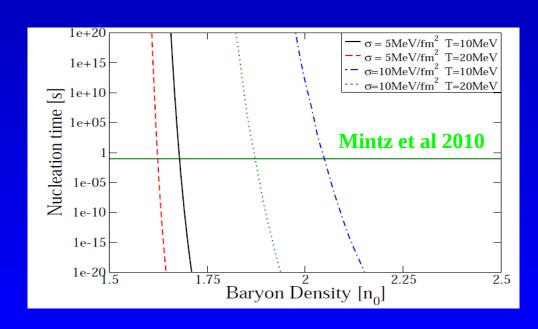
MIT60: $8\times10^5 M_{sm}$, MIT80 no ejecta. By assuming a galactic merger rate of $10^{-4(-5)}$ /year, mass ejected: $10^{-8(-9)} M_{sm}$ /year. Constraints on the strangelets flux (for AMS02)

A. Bauswein et al PRL (2009)

Nucleation

(many papers!! done by many people of this workshop!!)

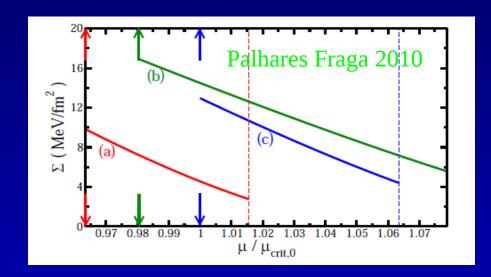
Hot stars: thermal nucleation

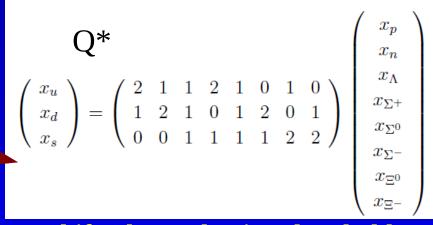

$$\Gamma = T^4 \exp\left[-\frac{16\pi}{3} \frac{\sigma^3}{(\Delta p)^2 T}\right]$$

Cold stars: quantum nucleation, WKB appr.

$$U(R) = \frac{4}{3}\pi R^3 n_q (\mu_q - \mu_h) + 4\pi\sigma R^2$$

$$A(E) = 2 \int_{R_{-}}^{R_{+}} dR \sqrt{[2M(R) + E - U(R)][U(R) - E]}$$


As expected: strong dependence on surface tension and overpressure



Recent estimates of $\sigma \sim 5-15$ MeV/fm^2 in 2 and 3 flavor quark meson models (Palhares et al 2010, Mintz et al 2013), nucleation is likely to occur. Values of 100 MeV/fm^2 of Lugones (see previous discussions)

Frozen flavor composition?

Tiny amount of hyperons already allows nucleation (statistical fluctuations of the density for a drop of 2-3 fm allow to form betastable quark matter)

It shifts the nucleation threshold to considerably higher densities

Open questions related to the burning

- 1) Deflagration or detonation (in the numerical simulations of burning this is an input)
- 2) Full GR
- 3) Lepton number conservation
- 4) Effect of magnetic field (Lugones et al 2002) asymmetric combustion
- ... and of course EoS!!!

Deflagration to detonation transition in QSs?

Lugones et al 1994 – Niebergal et al 2010

Also in SNIa this is still an open question: detonations do occur in these systems but in the simulations one forces the DDT to take place at an arbitrary chosen instant and location

10⁷ (256³) (10¹² (10¹²) (10¹² (10¹²) (10¹² (10¹²) (10¹² (10¹²) (10¹² (10¹²) (10¹²) (10¹² (10¹²) (10¹² (10¹²) (10¹²) (10¹²) (10¹² (10¹²) (

Fig. 3. (a) The probability $P[v'(\ell_{crit}) \ge 10^8 \text{ cm s}^{-1}(t) \text{ of finding velocity fluctuations higher than } 10^8 \text{ cm s}^{-1} \text{ and } (b) \text{ the size of the potential detonation area } A_{det}(t)$. For most of the time between t = 0.90 s and t = 1.07 s, $A_{det}(t) > A_{crit}$ holds. The DDT criterion is met for the first time at t = 0.92 s in both simulations (see dots at the curve of $A_{det}(t)$).

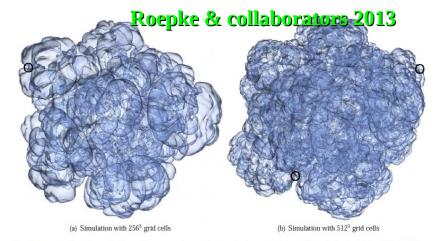


Fig. 4. Shown is the deflagration flame (transparent iso-surface) at the time of the first DDT for both simulations. The DDT spots are encircled.

- Double humped SN
- r-processes

If it works, Quark nova model of Ouyed and collaborators

Appendix2

$$(e_h + p_h)v_h\gamma_h^2 = (e_q + p_q)v_q\gamma_q^2, (e_h + p_h)v_h^2\gamma_h^2 + p_h = (e_q + p_q)v_q^2\gamma_q^2 + p_q,$$

$$\rho_B^h v_h \gamma_h = \rho_B^q v_q \gamma_q$$

$$\Delta \left(\frac{E}{A}\right) (T, \rho_B^h) \equiv \frac{e_h(u_h, \rho_B^h, T_h)}{\rho_B^h(u_h)} - \frac{e_q(u_q, \rho_B^q, T)}{\rho_B^q(u_q)} = c_V^q (T - T_h)$$

Drago et al 2007