$\nu\text{-}\mathbf{driven}$ wind in the Aftermath of Neutron Star Merger

Albino Perego

in collaboration with A. Arcones, R. Cabezon, R. Käppeli, M. Liebendörfer, S. Rosswog albino.perego@physik.tu-darmstadt.de

Technische Universität Darmstadt

Institute for Nuclear Physics, Theory

GRBs in Kyoto Conference, Kyoto, 11-15 November 2013

u-driven wind in the aftermath of NS merger, GRBs in Kyoto Conference - 11-15 November 2013 – p. 1/15

Outline of the presentation

- Introduction: ejected matter from binary neutron star merger
- The model
 - initial conditions
 - ASL neutrino treatment
- Preliminary results
- Conclusion and outlook

Matter ejecta from BNS mergers

BNS mergers are among the most promising candidates to explain short gamma-ray bursts (GRBs).

- observations: good compatibility with observed rates, redshifts and host galaxies
- modelling: intense energy deposition in a relatively baryon-free region as driving mechanism, due to matter accretion on a stellar compact object (SMNS or BH)

Possible ejecta from BNS mergers

- **J** dynamical ejecta (e.g. Rosswog 13, Bauswein et al 13, Hotokezaka et al 13)
- delayed disc evaporation (e.g. Fernandez & Metzger 2013)
- neutrino-driven ejecta (e.g. Dessart et al. 2009)

The model

Goal: extensive study the aftermath of BNSM

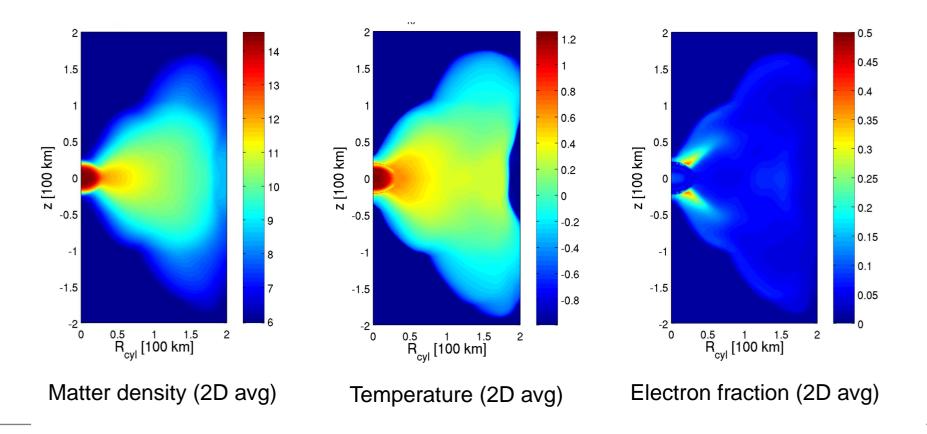
- $\checkmark \nu$ emission
- disk dynamics and ν -driven wind formation
- nucleosynthesis in the wind
- baryonic pollution and GRB engine

Model ingredients:

data from Newtonian SPH BNS merger simulations

(Price & Rosswog (2006))

- FISH 3D (M)HD Cartesian code
- TM1 nuclear EoS


(Käppeli et al. (2011))

(Hempel et al. (2012))

v treatment: Advanced Spectral Leakage (ASL) scheme (Perego et al., in preparation).

Initial conditions

- 3D SPH data mapped on 3D FISH grid
- I km resolution: SMNS treated as stationary object
- data relaxation: $\Delta t \approx 10 \text{ms}$, hydro + ν emission

disc lifetime:

$$t_{\rm visc} \sim \alpha^{-1} \left(\frac{H}{R}\right)^{-2} \Omega_K^- 1 \sim 0.31 \,\mathrm{s} \, \left(\frac{\alpha}{0.05}\right)^{-1} \left(\frac{H/R}{1/3}\right)^{-2} \left(\frac{R}{100 \,\mathrm{km}}\right)^{3/2} \left(\frac{M}{2.5 M_{\odot}}\right)^{-1/2} \,\mathrm{s}^{-1/2} \,\mathrm{s$$

- α : viscosity coefficient
- H: disc typical height
- R: radial position in the disc
- Ω_K : Keplerian angular velocity
- M: SMNS mass

• disc lifetime: $t_{\text{visc}} \sim 0.31 \,\text{s} \left(\frac{\alpha}{0.05}\right)^{-1} \left(\frac{H/R}{1/3}\right)^{-2} \left(\frac{R}{100 \,\text{km}}\right)^{3/2} \left(\frac{M}{2.5 M_{\odot}}\right)^{-1/2}$ • disc dynamical time:

$$t_{\rm dyn\,disc} \sim \frac{2\pi}{\Omega_K} \sim 0.0109 \,\mathrm{s} \,\left(\frac{R}{100\,\mathrm{km}}\right)^{3/2} \left(\frac{M}{2.5M_{\odot}}\right)^{-1/2}$$

- **Ifetime:** $t_{\rm visc} \sim 0.31 \, {\rm s} \, \left(\frac{\alpha}{0.05}\right)^{-1} \left(\frac{H/R}{1/3}\right)^{-2} \left(\frac{R}{100 \, {\rm km}}\right)^{3/2} \left(\frac{M}{2.5 M_{\odot}}\right)^{-1/2}$
- disc dynamical time: $t_{\rm dyn\,disc} \sim 0.0109 \, {\rm s} \left(\frac{R}{100 \, {\rm km}}\right)^{3/2} \left(\frac{M}{2.5 M_{\odot}}\right)^{-1/2}$
- disc cooling time:

$$t_{\rm cool} \sim \frac{\Delta E_{\rm disc,t=0}}{\sum_{\nu} L_{\nu}} \sim 0.20 \, {\rm s} \left(\frac{\Delta E_{\rm disc,t=0}}{2 \times 10^{52} {\rm erg}}\right) \left(\frac{\sum_{\nu} L_{\nu}}{10^{53} {\rm erg/s}}\right)^{-1}$$

$$\Delta E_{\rm disc,t=0} = E_{\rm int,disc,t=0} + \frac{1}{2} E_{\rm grav,disc,t=0}$$

 L_{ν} : neutrino luminosity

- disc lifetime: $t_{\rm visc} \sim 0.31 \, {\rm s} \, \left(\frac{\alpha}{0.05}\right)^{-1} \left(\frac{H/R}{1/3}\right)^{-2} \left(\frac{R}{100 \, {\rm km}}\right)^{3/2} \left(\frac{M}{2.5 M_{\odot}}\right)^{-1/2}$
- disc dynamical time: $t_{\rm dyn\,disc} \sim 0.0109 \, {\rm s} \left(\frac{R}{100 \, {\rm km}}\right)^{3/2} \left(\frac{M}{2.5 M_{\odot}}\right)^{-1/2}$
- disc cooling time: $t_{\rm cool} \sim 0.20 \, {\rm s} \left(\frac{\Delta E_{\rm disc,t=0}}{2 \times 10^{52} {\rm erg}} \right) \left(\frac{\sum_{\nu} L_{\nu}}{10^{53} {\rm erg/s}} \right)^{-1}$
- wind time:

$$t_{\rm wind} \sim \frac{e_{\rm grav}}{\dot{e}_{\rm heat}} \sim 0.10 \,\mathrm{s} \, \left(\frac{M}{2.5 M_{\odot}}\right) \left(\frac{R}{80 \,\mathrm{km}}\right) \left(\frac{E_{\nu}}{13 \,\mathrm{MeV}}\right)^{-2} \left(\frac{(L_{\nu})_{\mathrm{iso},\theta \approx \pi/4}}{4 \times 10^{52} \,\mathrm{erg/s}}\right)^{-1}$$

 $e_{\text{grav}} = G M / R$: specific gravitational energy $\dot{e}_{\text{heat}} = E_{\nu} \chi_{\text{abs}} n_{\nu} / \rho$: heating specific energy rate $(L_{\nu})_{\text{iso}}$: isotropized neutrino luminosity χ_{abs} : neutrino absorptivity

 $n_{
u}$: neutrino density

- disc lifetime: $t_{\rm visc} \sim 0.31 \, {\rm s} \, \left(\frac{\alpha}{0.05}\right)^{-1} \left(\frac{H/R}{1/3}\right)^{-2} \left(\frac{R}{100 \, {\rm km}}\right)^{3/2} \left(\frac{M}{2.5 M_{\odot}}\right)^{-1/2}$
- disc dynamical time: $t_{\rm dyn\,disc} \sim 0.0109 \, {\rm s} \left(\frac{R}{100 \, {\rm km}}\right)^{3/2} \left(\frac{M}{2.5 M_{\odot}}\right)^{-1/2}$
- disc cooling time: $t_{\rm cool} \sim 0.20 \, {\rm s} \left(\frac{\Delta E_{\rm disc,t=0}}{2 \times 10^{52} {\rm erg}} \right) \left(\frac{\sum_{\nu} L_{\nu}}{10^{53} {\rm erg/s}} \right)^{-1}$
- wind time: $t_{\text{wind}} \sim 0.10 \,\text{s} \left(\frac{M}{2.5M_{\odot}}\right) \left(\frac{R}{80 \,\text{km}}\right) \left(\frac{E_{\nu}}{13 \,\text{MeV}}\right)^{-2} \left(\frac{(L_{\nu})_{\text{iso},\theta \approx \pi/4}}{4 \times 10^{52} \,\text{erg/s}}\right)^{-1}$

 $t_{\rm dyn\,disc} < t_{\rm wind} < t_{\rm cool,disc} < t_{\rm visc}$

but there is something missing

- disc lifetime: $t_{\rm visc} \sim 0.31 \, {\rm s} \, \left(\frac{\alpha}{0.05}\right)^{-1} \left(\frac{H/R}{1/3}\right)^{-2} \left(\frac{R}{100 \, {\rm km}}\right)^{3/2} \left(\frac{M}{2.5 M_{\odot}}\right)^{-1/2}$
- disc dynamical time: $t_{\rm dyn\,disc} \sim 0.0109 \, {\rm s} \left(\frac{R}{100 \, {\rm km}}\right)^{3/2} \left(\frac{M}{2.5 M_{\odot}}\right)^{-1/2}$
- disc cooling time: $t_{\rm cool} \sim 0.20 \, {\rm s} \left(\frac{\Delta E_{\rm disc,t=0}}{2 \times 10^{52} {\rm erg}} \right) \left(\frac{\sum_{\nu} L_{\nu}}{10^{53} {\rm erg/s}} \right)^{-1}$
- wind time: $t_{\text{wind}} \sim 0.10 \,\text{s} \left(\frac{M}{2.5M_{\odot}}\right) \left(\frac{R}{80 \,\text{km}}\right) \left(\frac{E_{\nu}}{13 \,\text{MeV}}\right)^{-2} \left(\frac{(L_{\nu})_{\text{iso},\theta \approx \pi/4}}{4 \times 10^{52} \,\text{erg/s}}\right)^{-1}$

 $t_{\rm dyn\,disc} < t_{\rm wind} < t_{\rm cool,disc} < t_{\rm visc}$

but there is something missing

SMNS \rightarrow **BH time** (e.g. Bauswein's and Metzger's talk) :

 $t_{\rm BH} \sim 0.01 - 10 \, {\rm s}$

The ASL scheme

based on previous grey leakage schemes

(Ruffert et al. 1997, Rosswog & Liebendörfer 2003, Aloy's talk)

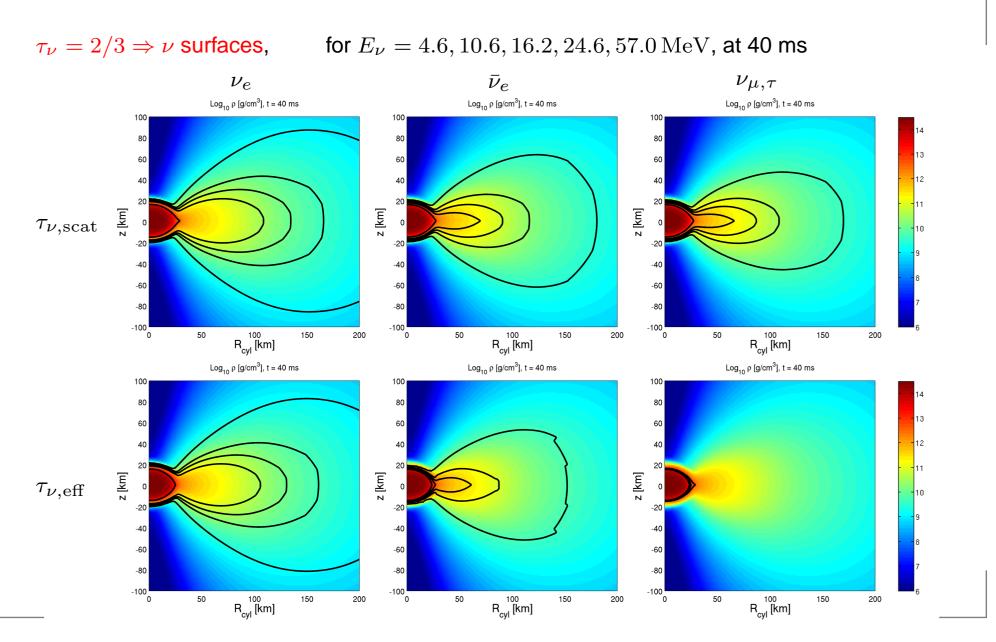
- **spectral scheme (**12 bins, 2 200 MeV**)**
- **9** 3 flavors: $\nu_e, \bar{\nu}_e, \nu_{\mu,\tau}$ ($\nu_{\mu,\tau} \equiv \nu_{\mu}, \nu_{\tau}, \bar{\nu}_{\mu}, \bar{\nu}_{\tau}$)
- ν reactions: ($\nu \equiv \nu_e, \nu_\mu, \nu_\tau, \bar{\nu}_e, \bar{\nu}_\mu, \bar{\nu}_\tau$)

$e^- + p \to n + \nu_e$	O,T,P	$(A,Z) + \nu \to (A,Z) + \nu$	0
$e^+ + n \to p + \bar{\nu}_e$	O,T,P	$e^+ + e^- \to \nu + \bar{\nu}$	T,P
$e^{-} + (A, Z) \to \nu_e + (A, Z - 1)$	T,P	$N + N \to N + N + \nu + \bar{\nu}$	T,P
$N + \nu \to N + \nu$	0		

major roles: O \rightarrow opacity, T \rightarrow thermalization, P \rightarrow production

Bruenn 1985, Mezzacappa & Bruenn 1993, Hannestad & Raffelt 1998

treatment developed and tested in Core Collapse Supernova context

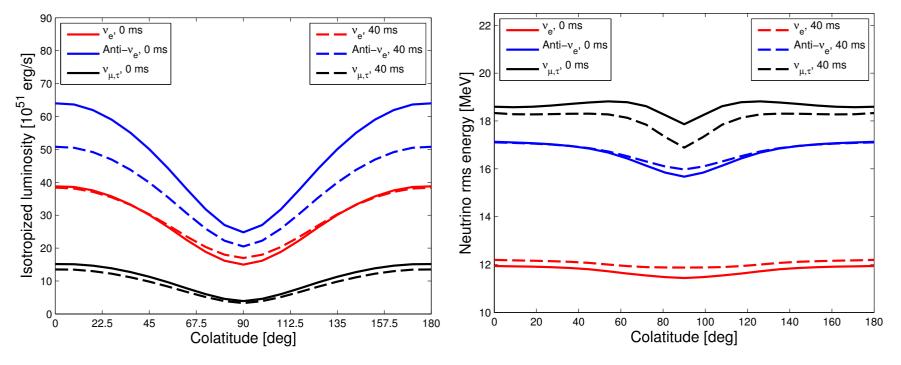

Neutrino treatment

- effective scheme: ASL mimics known solutions
- cooling part:
 - smooth interpolation between diffusion and production (spectral) rates
 - reproduction of the correct limits: diffusive ($\tau_{\nu} \gg 1$) and free streaming ($\tau_{\nu} \lesssim 1$)

($au_{
u}$ neutrino optical depth)

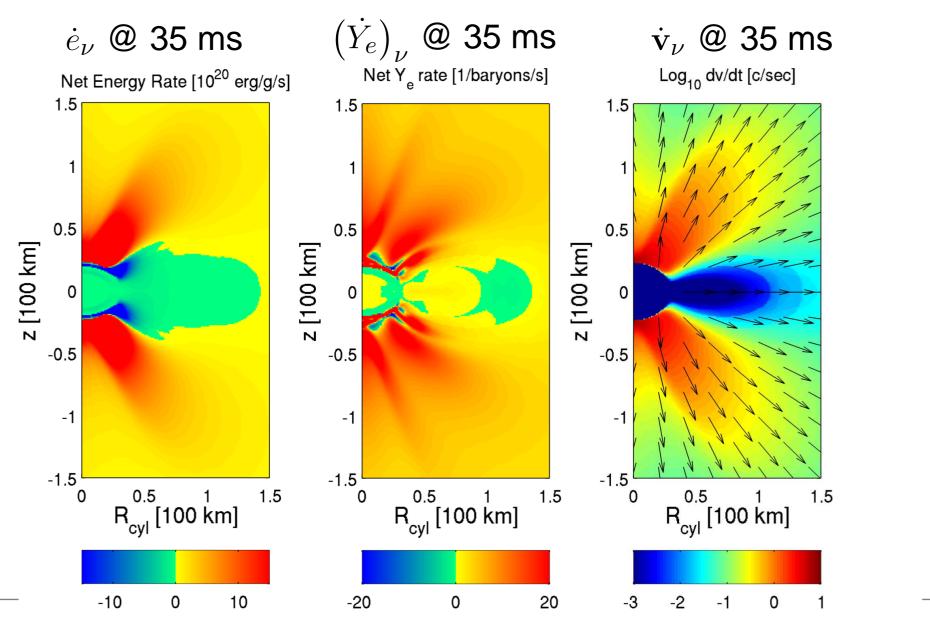
- heating part (for $\tau_{\nu} \lesssim 1$):
 - effective treatment of diffusion process in the opaque region
 - n_{ν} (neutrino density) calculated with ray-tracing from cooling rates, emitted at neutrino surfaces
 - $r_{\text{heat}} \propto \chi_{\text{ab}} \cdot n_{\nu}$ (χ_{ab} absorptivity)

Neutrino Surfaces

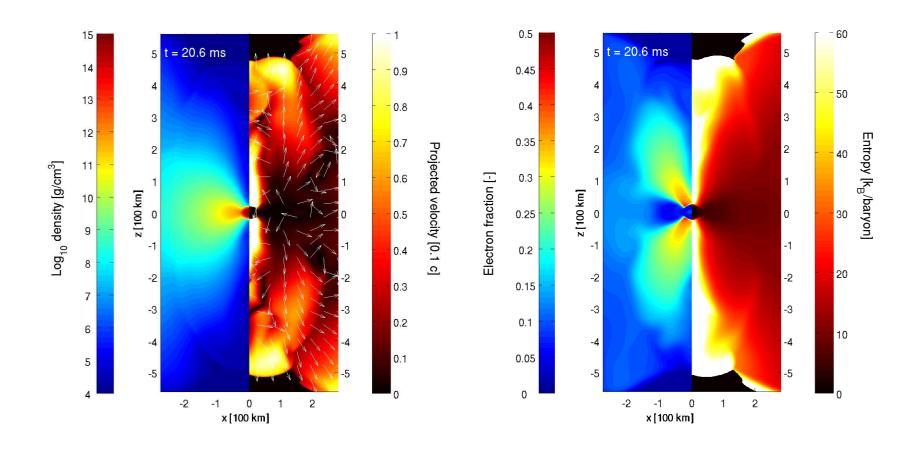


u-driven wind in the aftermath of NS merger, GRBs in Kyoto Conference - 11-15 November 2013 – p. 9/15

Neutrino luminosities


Isotropized ν luminosity emerging from ν -surfaces

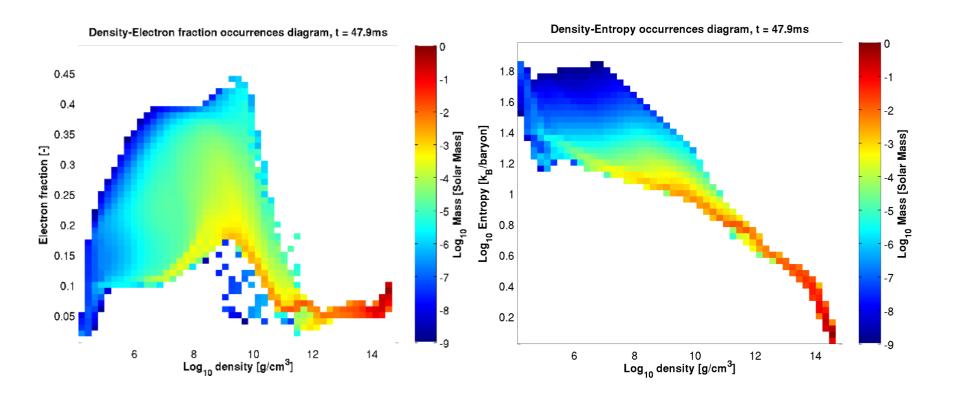
ν rms energy emerging from ν -surfaces


- θ angular dependence at $t = 0 \,\mathrm{ms}$ and $t = 40 \,\mathrm{ms}$
- Iuminosity hierarchy: $L_{\bar{\nu}_e} > L_{\nu_e} > L_{\nu_{\mu,\tau}}$
 - mean energy hierarchy: $\langle E_{\nu_{\mu,\tau}} \rangle > \langle E_{\bar{\nu}_e} \rangle > \langle E_{\nu_e} \rangle$

Neutrino net rates

u-driven wind in the aftermath of NS merger, GRBs in Kyoto Conference - 11-15 November 2013 – p. 11/15

Disc dynamics



Movie I left: matter density right: projected velocity

Movie II left: electron fraction right: entropy

Wind properties

- occurrence diagrams
- large variation for Y_e : $0.1 \leq Y_e \leq 0.35$
- small variation in entropy: $15 \lesssim s \; [k_B/bar] \lesssim 25$

Conclusions & Outlook

- FISH + ASL approximate, suitable tool to model the aftermath of BNS merger
- obtained neutrino signature compatible with expected one
- relatively quick ν -driven wind development
- wind properties:
 - low entropy: $15 \lesssim s[k_{\rm B}/{\rm baryon}] \lesssim 25$
 - mildly low Ye: $0.1 \lesssim Y_e \lesssim 0.35$

Outlook:

- \blacksquare ejecta properties? \rightarrow nucleosynthesis, macro/kilo-nova
- $\nu \bar{\nu}$ annihilation rate and baryonic pollution? \rightarrow SGRB mechanism

u-driven wind in the aftermath of NS merger, GRBs in Kyoto Conference - 11-15 November 2013 – p. 15/15