GRB 130427A: A Very Bright, Nearby, Laboratory
for Synchrotron Shocks
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« Longest-lived gamma-ray emission

(20 hours) from a GRB Fermi LAT

Localization
Plots:

» Observed simultaneously from o e iy i b
radio to gamma-ray energies in -
exceptional detail R

- Extremely bright afterglow (optical =~ =
flash is second-brightest on
record, reached mag. 7) B 510
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* Nearby - redshift 0.34, light travel
time 3.6 billion years
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Spectral Analysis

- Because the GBM data are T AARARRARS AR AR 1200
saturated throughout the main
emission episode, we looked
instead at the cleaner, first E {150
pulse. & + g
 1000F 1 !
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» The Band GRB function is fitted & " ] 1oo§
to 0.1 s intervals, using three g thy 3
datasets: GBM Nal, GBM BGO © o -
& LAT LLE. S i g {2
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 Strikingly, the peak energy : -
seems to show a very simple -
behavior. T N — S ;
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A -1 Power-law as a Function of Time!
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The Case for a Photosphere

* Ryde et al., 2006: fitted photospheric
function + PL to archival BATSE spectra

- Why does this work?

- GRB spectra with sufficient statistics
for spectral analysis (45 o) typically
allow only 4 free parameters for
fitting, as with Band GRB function

- BB + PL also has 4 free parameters

 Line of death problem replaced by
physical values. Band a values are
replaced by sum of BB +1 index and
fitted PL index

« HE PL index change is also accounted for
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GRB081224A Time Evolution
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Next Steps L
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* Motivated by Baring & Braby :S)
(2004), Burgess et al. (2011) began -
fitting spectra with numerically g
integrated synchrotron emission 3
from parametrized electron L§
distributions o - > o~
Energy (keV)
- Electron distributions are ‘life-like’: L
Fermi shock accelerated PL from '
a thermal (rel. Maxwellian) |
reservoir or fast cooling broken PL ~ 1070 | E
| ; |
g |
- Fitting is done to the electron S 1072 | E
distribution, convolved with |"Vth
synchrotron emissivity kernel - too : :
numerically intensive until recently =g | \ -
109 10! 102 103
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Burgess et al. 2013



Advantages

- Photospheric component evolution
more tightly constrained

« KT better determined

- Probe independence (or
correlation) of each component

- Same number of parameters as
Band GRB function

« Can use to model the interplay
between physical emission
mechanisms

* Need a really bright burst to test this
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Peak Energy Evolution

- Fitted Band function Epeak

10*
values (blue) for the first
2.5sof 130427AIn 0.1 s : l
time bins. Fitted with a :

single power law (slope of

—0. 96 +/- 0.02). Time has _

been offset by 0.1 s,
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« The Burgess et al. i
Synchrotron + BB
characteristic energy
values are in red. A broken
power-law fit is indicated
by the dashed line (early
time decay index is -0.37
+/- 0.23, with a break at
0.38 +/- 0.08 s., breaking
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Luminosity-Epeak Correlation

- The decay phase L- Epeak
correlation is fit with a power-

1053

law index of 1.43 +/- 0.04.
Analysis of high-latitude
curvature radiation from
relativistic, spherical blast
waves produced in shell
collisions show that the
apparent isotropic luminosity
L « Epeax® during the decay
phase of a pulse [Dermer
2004]
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- We can obtain the 3/2 PL
Index by assuming magnetic
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Derived

Photosphere Parameters

* Plot showing trends in the 10°
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derived bulk Lorentz factor
(red — left axis) and
photospheric radius (blue — }

right axis). _ :

* We obtain both values from - 1 1 [ 1] H it | -:1012
the instantaneous ratio of g l {* '
the observed blackbody
component flux to the total ¢ |
flux, following Eg. 4 & 5 in , . I
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* Really do not expect the ‘ — 1 S
bulk Lorentz factor to 10" rime [s] 10°
decrease in shock scenario.

Suggests magnetic model.

Preece et al., Science 2013



Lag Analysis

Composite light curves for the three Fermi 450
detector types (green: GBM Nal #6; blue: GBM - o Mol LLE(10-100 Mev]
BGO #1; red: LAT LLE during the first 3 s of | e o] e ookwe o leoo
GRB 130427A. Each curve has been Jl P T b ™. Gouswe
normalized so that their peak intensities 5 3 . ,?%*
match. LAT photons > 100 MeV are indicated ~ *] J § ’—*}‘ e TP
by circles = T,
' E _ . 10 _+— 3 : 3oo§
. . . 306 J ‘ - 100 10 10° 10° 0| B
(Inset Figure:) Time lag T (filled symbols) as - H o . o E [keV]) :
determined by the CCF analysis between the % 250§
LLE lightcurve and selected energy bands of §0_4 | " R &
the Nal (green) and BGO (blue) lightcurves. 1 PRELIMINAR"Y"}_: ) 200
Also displayed are fitted pulse widths as a REE 150
function of energy W(E) ~ EP (hollow symbols). i {H j]'l
The two dashed lines represent: H: H A1) M.
0.5 1.0 T5 70 {l ”:’E[;lz.‘s:ﬂ"ﬂ‘:‘a.;oo
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1) the best fit power law model for W(E),

2) the expected dependence of the time lag
T as a function of energy, assuming the

same power law index as in 1). Preece et al.. Science 2013



LAT + GBM
Afterglow

- LAT Lightcurve belongs to the afterglow:

- Except for 3 photons right at the
trigger, nearly all the LAT photons
come after 10 s.

- LAT Photon flux is a broken power law

- GBM late-time activity is also due to
afterglow:

- Swift XRT and GBM late pulse @ 100
S peaks are nearly coincident in time
and temporal decays are consistent

- GBM late-time data is at the limit of
detectability - would not be seen if
burst were less bright
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Conclusions

- The isolated initial pulse of GRB 130427A is apparently unmodified by preceding-engine activity
or nascent external shock-emission.

« QOur analysis shows:

« There is good ‘agreement between the pulse width as a function of energy and the expected
lag,

- The characteristic energy has roughly a -1 power-law decay with time during the decaying
phase,

- The temperature of the blackbody component implies a photospheric radius that is
iIncompatible with the internal shock radius,

- The apparentisotropic luminosity is related to the characteristic energy to the 3/2 power.

* It is a challenge to explain all these behaviors simultaneously.



