Gravitational waves and neutrinos from **L**GRBs

Yuichiro Sekiguchi (YITP)

Collaboration with Masaru Shibata (YITP)

GRB engine

- BH + accretion disk / magnetar formed by
 - LGRB : Stellar core collapse
 - Hypernova association
 - Talks by Della Valle, Mazzali ...
 - SGRB : NS-NS/BH merger
 - Timescale argument
 - Talks by Rosswog, Metzger, Shibata

Dynamics of stellar core collapse

Dynamics of stellar core collapse

Gravitational waves

GW Luminosity : quadrupole formula

$$L_{GW} = \frac{G}{5c^5} \left\langle \ddot{I}_{\alpha\beta} \ddot{I}^{\alpha\beta} \right\rangle \sim \frac{c^5}{G} \varepsilon^2 \left(\frac{GM}{c^2 R} \right)^2 \left(\frac{v}{c} \right)^6$$

To be a strong emitter of GWs

- Higher degree of asymmety : $\varepsilon \sim (I_{xx} I_{yy})/I_{zz}$
- General relativistic (compact)
 - Black hole (BH) : $GM/Rc^2 \sim 1$
 - Neutron star (NS) : $GM/Rc^2 \sim 0.1$
 - BH accretion disk : $GM/Rc^2 \sim 0.01 0.1$ (for $R_{\text{Disk}} \sim R_{\text{ISCO}}$)
- ▶ Special relativistic (*v*~*c*)
- How about in LGRBs

GW sources in stellar core collapse

GW from collapsar optimal @ 20Mpc

Need for more studies

- Previous studies are based on ordinary supernova simulations
 - But see Ott+. (2011); Sekiguchi+. (2011;2013); Cerda-Duran+. (2013)
- Important physics is included incompletely
 - (Pseudo-) Newtonian simulations with detailed microphysics
 - Full GR simulations with simplified microphysics
 - But see Sekiguchi (2010); Kuroda+ (2012); Muller+ (2012) Cerda-Duran+ (2013)

Full GR Radiation-Hydrodynamics

- Einstein's equations: Puncture-BSSN/Z4c formalism
- GR radiation-hydrodynamics (Sekiguchi 2010; Sekiguchi + in prep.)
 - **EOS** : any tabulated EOS with 3D smooth extended connection to Timmes EOS
 - Advection terms : Truncated (two) Moment scheme (Shibata et al. 2011)
 - Fully covariant and relativistic
 - gray or multi-energy but advection in energy is not included
 - M-1 closure
 - Source terms : two options
 - Implicit treatment : Bruenn's prescription
 - Explicit treatment : trapped/streaming v's
 - e-captures: thermal unblocking/weak magnetism; NSE rate
 - □ Iso-energy scattering : recoil, Coulomb, finite size
 - □ e±annihilation, plasmon decay, bremsstrahlung
 - □ diffusion rate (Rosswog & Liebendoerfer 2004)
 - two (beta- and non-beta) EOS method

Lepton conservation equations

Code verification by 1D stellar collapse

 Our implicit scheme qualitatively (or semi-quantitatively) reproduce results in 1D GR Boltzmann simulations !

Approx. Explicit treatment works well

0.6

0.5

0.4

Ye

- Reasonable agreements with full transfer
 - Lv calculated from neutrino flux (not from source term !)
 - Do not use Liebendorfer's simplified prescription
- Heating effects can be included

Application to BNS merger

- > Approximate solution by Thorne's Moment scheme with a closure relation
- Partial implicit treatment with an iterative time evolution / Explicit treatment
- Talk by Wanajo

Application to BNS merger

Full GR simulation of collapsar

- Based on old version of code (Sekiguchi 2010)
 - Simple Eddington closure instead of M-1 closure
 - Approximate explicit treatments for source terms
 - Heating effects are not included
- Sekiguchi & Shibata (2011)
- Sekiguchi et al. (2013)

Dilemma in LGRB progenitor model

Rapid rotation is required

- Collapsar (central engine: BH + Disk)
 - Possible energy sources
 - \Box Gravitational energy of disk \Rightarrow neutrinos
 - \Box <u>Rotational energy of BH \Rightarrow Poynting flux</u>
- Rotation is important in other models
 - E.g. magnetar model (might be more severe due to strong B fields)

Association of Type-Ic SNe

Sekiguchi & Shibata 2007

- Progenitor must have been 'lost' H and He envelopes
- Angular momentum loss at the same time of mass loss
 - ► \Rightarrow slow rotator (e.g. Yoon et al. 2005, Woosley & Heger 2006)
- How to produce energetic SNe at all when BH is formed ?

Dilemma in LGRB progenitor model

Peculiar progenitor models are necessary

- LGRBs are anomalous events: Progenitor cores may also be anomalous
 - He star merger model (Fryer & Heger 2005)
 - **Tidal spun up star model** (van den Huevel & Yoon 2007)
 - Chemically homogeneous evolution model (Woosley & Heger 2006, Yoon et al. 2006)
- These models predict formation of a core different from ordinary SN
 - Accompanied by strong mixing which tends to lead to high entropy core

Suggestion: LGRB-progenitor core may have higher entropy

- Massive (& compact) : BH formation
- Rapid Rotation : Disk formation / amplification of B-fields
- Evolution pass in density-temperature plane could be different from ordinary SN

Three Initial Models

Evolution path is characterized by central entropy (mass)

Three Initial Models

Rotational Profiles are added by hand

Collapse of 100Msolar presupernova model: Umeda & Nomoto (2008) + rigid rotation Ω = 1.2 rad/s

Sekiguchi et al. (2013)

Neutrino luminosity

Sekiguchi et al. (2013)

Ott et al. (2011) Sekiguchi et al. (2013) Cerda-Duran et al. (2013)

GWs from collapsar

Ott et al. (2011) Sekiguchi et al. (2013) Cerda-Duran et al. (2013)

GWs from collapsar

Slower (still moderate) Rotation Case: Spheroidal configuration, No time variability

Slower (still moderate) Rotation Case: Spheroidal configuration, No time variability

Comparison of Rotational Profile

- Rotational profiles of <u>Proto-Neutron Star</u> are similar
- Small difference in rotational profile of outer region results in large difference in dynamics

A higher entropy core

Rotational Profiles are added by hand

GRB without SNe ? : Collapse of Higher entropy core

Kelvin-Helmholtz instability

Neutrino luminosity

Neutrino luminosity

GW from disk convection

GW from Papaloizou-Pringle instability

- BH + massive disk formation in collapsar
- Subject to Papaloizou-Pringle instability
 - Mode amplification between disk edge and corotation point
 - ▶ 3D Full GR simulations by Kiuchi et al. (2011)
 - $\blacktriangleright\,$ GWs from D ~ 100Mpc could be detected

GW from Papaloizou-Pringle instability

- BH + massive disk formation in collapsar
- Subject to Papaloizou-Pringle instability
 - Mode amplification between disk edge and corotation point
 - ▶ 3D Full GR simulations by Kiuchi et al. (2011)
 - ▶ GWs from D ~ 100Mpc could be detected

500Msolar-PopIII (Ohkubo et al. 2006) core collapse: Outflow appears even when BH is formed directly

- Matter accumulation into the central region due to the oblique shock
- Shock wave formation in the pole region of the BH
- Efficient dissipation of kinetic energy
- Inefficient advection cooling
- Thermal energy is stored
- Outflow

Baryon

Entropy per

<u>Neutrino pair annihilation</u>

$$(\text{eff})_{\nu\bar{\nu}} \equiv \frac{\dot{E}_{\nu\bar{\nu}}}{L_{\nu,\text{tot}}} \sim 0.01 \left(\frac{\dot{M}}{M_{\odot}\,\text{s}^{-1}}\right)^{5/4} \left(\frac{M_{\text{BH}}}{10\,M_{\odot}}\right)^{-3/2}$$

- <u>Lpair ~ 10^{49-50} erg/s</u> for Umeda & Nomoto (2008) model
- <u>L_{pair} ~ 10^{52-53} erg/s</u> for higher entropy model
- Strong dependence : $dot(M)^{(9/4)} \Rightarrow early phase$

<u>BZ powered Jet</u>

$$\dot{E}_{\mathrm{BZ}} \sim 10^{52} f_{\Omega_H} q_{\mathrm{BH}}^2 \left(\frac{\dot{M}}{M_{\odot} \,\mathrm{s}^{-1}} \right) \,\mathrm{erg}/\mathrm{s}_{\mathrm{H}}$$

McKinney (2005)

- $f_{\Omega} = 3$ (a=0.8), 10 (a=0.9), 80 (a=1.0)
- ~ 10 % can be used for GRB Jet (McKinney 2005)
- <u>LBZ ~ 10^{50-51} erg/s</u> for higher entropy model
- <u>LBZ ~ 10^{51-52} erg/s</u> for higher entropy model
- Weaker dependence : $dot(M)^{(1)} \Rightarrow later phase$

Zalamea & Beloborodov (2010)

How to make SN component

- Ingredients (v-sphere + standing shock) are same, topology is different
 - 1. There are 'gain regions'.
 - > 2. SASI (Standing Accretion Shock Instability) will set in.
 - Simulations relaxing equatorial symmetry should be done
- Consequences of higher entropy
 - Smaller amount of heavy elements
 - Less severe photo-dissociation loss
 - Fe:~10⁵² erg per 1M_{solar}
 - Larger ram pressure
 - Larger energy explosion if succeeded
- How important convection is ?
 - Milosavljevic+ 2011

Summary

- The first full GR simulations, incorporating microphysics, of stellar core collapse are performed, adopting high entropy models
- PNS phase in collapsar is good source for GWs and neutrinos
 - Aloy's talk
- BH formation process is quite dynamical, accompanying oblique shock, convection, KH instability, outflows, and so on
 - The dynamics is sensitive to the rotational profile which is poorly known
- Massive accretion disk around BH is also dynamical
 - Time variability in mass accretion rate and neutrino luminosity
 - Could be a strong GW emitter
- The resulting system has preferable features for LGRBs

appendix

D

GWs from PNS g-mode

- PNS g-mode (Burrows et al. (2006); Ott et al. (2006)):
 - Can not reproduce in other groups / or very weak
- Ott (2009) : g-mode amplitude strongly depends on grid resolution and grid setting (they use a special grid)

GWs from non-axisymmetric deformation

- Strong EOS dependence (Scheidegger et al. A&A 514, A51 2010)
 - 3D Newtonian MHD simulation without deleptonisation
- Lattimer-Swesty vs Shen (T/W@bounce ~ 9%)
 - Amplitude: h_{Shen} is 3-10 times larger than h_{LS}

Basic equations for (v-)radiation field

- Boltzmann (3+3+1 dim) equation for the distribution function
 - Computationally not feasible to solve it directly
 - Some approximate treatment is necessary

$$p^{a}\frac{\partial f}{\partial x^{a}} + \frac{dp^{a}}{d\tau}\frac{\partial f}{\partial p^{a}} = (-p^{a}u_{a})S[x^{a}, p^{a}, f]$$

- **Truncated moment formalism** (Thorne 1981; Shibata et al. 2011)
 - Truncation at 2nd order,

gray (for simplicity)

$$T_{ab} = \int f(p^c, x^c) p_a p_b dV_p = En_a n_b + F_a n_b + F_b n_a + P_{ab}$$
$$\nabla_b T^{ab} = S^a$$

- Energy and flux conservation equations for radiation field
 - Closure relation : P_{ij}=P_{ij}(E,F_k)
 - essential for properties of radiation fields
 - Stiff source terms (characterized by weak interaction)
 - numerically cumbersome to treat

$$\partial_{t}E + \partial_{j}(\alpha F_{v}^{j} - \beta^{j}E) = S_{E}$$
$$\partial_{t}F_{i} + \partial_{j}(\alpha P_{i}^{j} - \beta^{j}F_{i}) = S_{E}$$

Closure relation: M-1 closure

$$P^{ij} = \frac{3\chi - 1}{2} P^{ij}_{\text{thin}} + \frac{3(1 - \chi)}{2} P^{ij}_{\text{thick}}$$

- exact in optically thin and thick limits
- can solve the so-called 'shadow test'

$$\begin{bmatrix} \chi = \frac{3+4f^2}{5+2\sqrt{4-3f^2}} & f^2 = \frac{F_{0a}F_0^a}{E_0} \\ P_{0,\text{thick}}^{ab} = \frac{1}{3}E_0(g^{ab}+u^au^b) & P_{0,\text{thin}}^{ab} = E_0\frac{F_0^aF_0^b}{|F_0|^2} \end{bmatrix}$$

Takahashi, Ohsuga, YS, Inoue, & Tomida (2013)

Approx. Explicit treatment

- A problematic issue
 - Local, weak timescale is too short in dense regions

$$t_{\text{weak}} \sim Y_e / \dot{Y}_e << t_{\text{dyn}}$$

- <u>Leak-out timescale</u> with which neutrinos leak away from the system is <u>much longer</u> $t_{\text{weak}} \ll t_{\text{leak}} (\sim R/c) \sim t_{\text{dyn}}$
- Rewrite the system of equation using this

$$\begin{array}{|c|} \nabla^{a}T_{ab}^{\text{Fluid}} = -Q_{b}^{(\text{weak})} \\ \nabla^{a}T_{ab}^{\nu} = Q_{b}^{(\text{weak})} \end{array} \end{array} ~ \begin{array}{|c|} \hline \nabla^{a}T_{ab}^{\text{Fluid}} = -Q_{b}^{(\text{leak})} \\ \nabla^{a}T_{ab}^{\nu} = Q_{b}^{(\text{leak})} \end{array}$$

We can also include the neutrino heating in this framework

$$S^{a}_{(\nu-\text{heating})} = \kappa_{(\nu)} \left[(J^{\beta-\text{eq}} - J)u^{a} - H^{a} \right]$$

Approx. Explicit treatment

Step 1. Neutrinos are divided into 'trapped' and 'streaming' parts

 $T_{ab}^{(\nu)} = T_{ab}^{(\nu,\text{trap})} + T_{ab}^{(\nu,\text{stream})}$

 Trapped : interact sufficiently frequently with matter

$$\begin{aligned} \nabla_a (T_b^{a\,(\nu,\,\mathrm{trap})} + T_b^{a\,(\nu,\,\mathrm{stream})}) &= Q_b^{(\mathrm{weak})} \\ \nabla_a T_b^{a\,(\nu,\,\mathrm{trap})} &= Q_b^{(\mathrm{weak})} - Q_b^{(\mathrm{leak})} \\ \nabla_a T_b^{a\,(\nu,\,\mathrm{stream})} &= Q_b^{(\mathrm{leak})} \end{aligned}$$

 Streaming : phenomenological flow of freely streaming neutrinos (characterized by leakage timescale)

• <u>Step2.</u> Trapped-v is combined with fluid part: T_{ab}

$$T_{ab} = T_{ab}^{(\text{fluid})} + T_{ab}^{(\nu,\text{trap})}$$

$$\nabla_a T_b^{a\,(\text{fluid})} = -Q_b^{(\text{weak})}$$
$$\nabla_a T_b^{a\,(\nu,\,\text{trap})} = Q_b^{(\text{weak})} - Q_b^{(\text{leak})}$$
$$\longrightarrow \nabla_a T_b^{a} = -Q_b^{(\text{leak})}$$

- Solve this equation using truncated (two) momentum formalism
- **Summary.** The equations to be solved is characterized by t_{leak}

See Sekiguchi et al. (2013) for further details

Importance of **Rotation** : Oblique Shock

- Torus-structured shock
- Infalling materials are accumulated into the PNS due to the oblique shock
- Thermal energy is efficiently stored near the pole of PNS
 - Ram pressure \downarrow
 - ▶ <u>⇒Outflow</u>
- Flows hit central PNS
 - NS oscillation
 - ▶ ⇒ <u>PdV work</u>, Lv ↑

Importance of **High Entropy/Rotation :** Energy balance

- Compact core / Oblique shock ⇒ high mass accretion rate
- Energy balance may not be satisfied
 - Rotation decreases |Qadv| & |Qv| (dense disk)
 - Additional 'cooling' sources required

$$\dot{Q}_{\rm acc}^{+} = \dot{Q}_{\rm adv}^{-} + \dot{Q}_{v}^{-}$$

$$\Rightarrow \dot{Q}_{\rm acc}^{+} = \dot{Q}_{\rm adv}^{-} + \dot{Q}_{v}^{-} + \dot{Q}_{\rm outflow/expansion}^{-} + \dot{Q}_{\rm convection}^{-}$$

- Strong dependence of Qv (v-cooling) on T (and p)
 ⇒ slight change of configuration leads to dynamically large change
 - > Torus is partially supported by the (thermal) pressure gradient
- ► <u>Smaller amount of heavy nuclei ⇒ more energetic SNe ?</u>
 - Dissociation of 0.1 Msolar Fe costs ~ 10⁵¹ erg
- Higher temperature : Less Pauli blocking in neutrino pair annihilation

Importance of **Rotation**: BH spin

- Energy conversion efficiency can change two orders of magnitude
- Disk properties to neutrinos strongly depend on BH spin
 - Slow rot. BH ⇒ ISCO (disk edge) located far ⇒ low density / opacity ⇒
 Efficient cooling ⇒ the local valance satisfied ⇒ weak/no time variability

Similarities to ordinary SN

- Same components: 'stalled' shock + neutrino sphere/torus
 - SASI-like activities are likely to occur
 - The gain (neutrino-heated) regions do exist
 - Only topology is different
- Smaller amount of heavy nuclei due to high entropy
 ⇒ more energetic SNe ?
 - Dissociation of 0.1 Msolar Fe costs $\sim 10^{51} \text{ erg}$

Property of the BH and the accretion disk

BH mass : 6.5 $M_{solar} \rightarrow 14 M_{solar}$

• BH spin : $0.6 \rightarrow 0.9$

- Disk mass :
 - thin disk phase ~ 0.1 Msolar
 - Rapid advection into BH
 - Thick torus phase ~ 0.8 Msolar
 - High angular momentum
 - Mass accretion rate into BH
 - Thin disk phase ~ 20-40 Msolar/s
 - Convective torus ~ 5-10 Msolar/s rapid time variability