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Introduction 
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Models for the prompt emission 

• Internal shock model 

– A standard scenario for a long time. 

– Low Radiative efficiency, line of death problem 

• Photospheric (thermal emission) model 

– Thermal emission from relativistic jets 

– (possibly) high radiative efficiency 

– Some GRBs exhibit blackbody 

 like feature (e.g., GRB090902B). 

(Ryde et al 2010) 

2013/11/5 4 Supernovae and Gamma-Ray Bursts 2013 



Thermal emission from GRB jets 

• Thermal emission from GRB jets have been investigated 
by performing hydrodynamical simulations.   
        (Lazzati+2009,  Mizuta+11,  Nagakura+11) 

• They calculated the light curves and spectra by 
superposing blackbody radiation emitted from the 
photosphere with τ =1. 

jet 
progenitor photosphere 

observer photon 
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Thermal emission from GRB jets 

However 

– The observed photons should be generated in the inner layer 
with τ ≫ 1.  (e.g., Beloborodov 13) 

– Radiation intensity can be anisotropic even in the comoving 
frame at τ～1. (Beloborodov 11, Aksenov+ 13) 

 

 

  In order to treat the thermal radiation from GRB jets properly, 
 both the radiative transfer in the jet and complex structure of 
 the jet and cocoon should be taken into account. 

We calculate the radiative transfer in the jet and cocoon. 
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Method 
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Hydrodynamical simulation 

R0 

θjet 

Ljet, fth, Γ0 

Rprog 

2D relativistic hydrodynamics (Tominaga 2009) 

Setup 

– Progenitor:  15Msun  WR star  (Rprog～2.3×1010cm) 

– Γ0=5 

– Θjet=10° 

– Ljet=5.3×1050 erg s-1 

– fth=0.9925   (eint/ρc2=80) 

– (log r, θ) = (600, 150) grids 

 from R0=109cm 
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Hydrodynamical simulation 

 

Density [g/cc] 

2013/11/5 9 Supernovae and Gamma-Ray Bursts 2013 



Supernovae and Gamma-Ray Bursts 2013 

Snapshot at 40s 

• We use a snapshot at 40s for the structures of 
the jet and cocoon. 
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The site of photon production 

• The effective optical depth τ* 

For the static medium (Rybicki & Lightman 79) 

 

For the relativistic medium 

 

 

       , 

In the non-relativistic limit,       → 

In the relativistic limit,         → 2        for Θ=0 
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Absorption processes 

 

• Free-free absorption (e + p + γ → e + p) 

  

 

• Double Compton absorption (γ + γ + e  →  γ + e) 

 

 

• We assume hν=kT  
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Photosphere 

• τ*  to a radius R* 

 

• σ’=neσT 

• α’ depends on ne, nγ, T. 

• We assume 

                                 and 

  

  We find the R* which satisfies τ* = 1 
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Photosphere 
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τ*=1 τs=1 
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Photosphere 
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τ*=1 τs=1 
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Photosphere 

• The number of photons emitted at the photosphere: 

 Nγ(Θ)=16π2Γ(3)ζ(3)(kT*/hc)3R*
2sinΘ* 
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Radiative transfer 

We use a snapshot at t=40s for 
the jet and cocoon structure. 

Numerical code 
– Monte Carlo method 

– Calculate Compton scattering 

– Photons are injected at τ*=1  

Photon injection 
– Spatial distribution:  Nγ(Θ) 

– Planck distribution with local plasma temperatures 

– Isotropic in the comoving frame 
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Results 
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Observed spectrum 

• Epeak～450keV 

• A bump like feature 
at low energies 

• At the low energy,  

 νFν∝E1.3 

 →Nν∝E-0.7 

• No high energy PL 
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Origin of the bump? 
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Comparison with the observations 
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low energy index (α) high energy index (β) peak energy (Epeak) 

Nothing 

Kaneko et al 2006 



Summary 
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Summary 

We calculate radiative transfer for the thermal radiaiton 
from GRB jet. 

 Both the jet and cocoon components constitute the 
observed spectrum. 

 The low energy index may be determined by the relative 
brightness of these two components. 
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