Determining the Equation of State of Dense Matter from Neutron Star¹ Mass and Radius Observations

Andrew W. Steiner (INT/U. Washington)

October 28, 2013

With: Edward F. Brown (MSU), Tobias Fischer (Wroclaw), Stefano Gandolfi (Los Alamos), Matthias Hempel (Basel), James M. Lattimer (Stony Brook)

Outline

- Basic neutron star questions:
 - \circ What is the (nearly) universal M-R curve?
 - \circ What is the radius of a 1.4 M_{\odot} neutron star?
- Fundamental nuclear physics questions:
 - What is the nuclear symmetry energy?
 - What is the three-neutron force?
 - What is the nature of dense matter?
- How do you make these connections?
- Model selection
- New EOSs for core-collapse and mergers

Neutron Star Masses and Radii and the EOS

- Unlike planets, neutron stars (to better than 10%) all lie on one universal mass-radius curve
- Except for "strange quark stars"
- Rotation is a <10% effect
- A strong enough magnetic field can also deform the star

- Until recently, neutron star radii constrained to 8-15 km
 Lattimer and Prakash (2007)
- Convert X-ray photons into $\mathcal{P}(R,M)$

(2010)

The Geometry of M-R curves

- Neither M(R) nor R(M) need to be functions (but $M(P_c)$ and $R(P_c)$ are) even though R(M) is continuous and differentiable
- In the language of χ^2 fitting: c.f. Deming or orthogonal regression and total least squares

no unique solution in the general case

 Minimize distance between data and the curve (instead of vertical displacement)

defining a distance is nontrivial

- Formally an underconstrained problem cannot divide chi-squared by the number of degrees of freedom
- ullet Unless one performs a parameterization, M-R or the EOS
- \bullet However: (R,M) space is difficult to translate to (ε,P) space not even a homeomorphism

Bayesian Analysis

How do we get the EOS from several $\mathcal{P}(R,M)$'s?

 Over/under-constrained subspaces (Low vs. high densities)

- Bayesian analysis proven successful Lepage et al. (2002) and Schindler and Phillips (2009)
- Why is the M-R curve so vertical?
 Why do all neutron stars in the universe have nearly the same radius?
 Causality + 2 solar mass NS + 1 QLMXB
- Many standard frequentist methods assume something about the shape of the likelihood function near the maximum
- This fails in this case: the best fit not same as "typical" M-R curve Posterior maximum mass distribution is strongly skewed
- Naive covariance analysis unrelated to typical M-R curve for high masses Just an example of how that method can fail

Radius Measurements in qLMXBs

Quiescent LMXBs

- Measure flux of photons and their energy distribution
- Know distance if in a globular cluster
- Implies radius measurement

$$F \propto T_{
m eff}^4 igg(rac{R_\infty}{D}igg)^2$$

i.e. Rutledge et al. (1999)

- Need information about the atmosphere, including composition
- Also need X-ray absorption and absolute flux calibration
- Inevitably give small radii for some low-mass stars

Lattimer and Steiner (2013)

 Rotation, anisotropy, and magnetic fields may also be important

Photospheric Radius Expansion X-ray Bursts

- X-ray bursts sufficiently strong to blow off the outer layers - radiate at the Eddington limit
- Flux peaks, then temperature reaches a maximum, "touchdown"

$$F_{TD} = rac{GMc}{\kappa D^2} \, \sqrt{1 - 2 eta(r_{ph})}$$

 Normalization during the tail of the burst:

$$rac{F_{\infty}}{\sigma T_{bb,\infty}^4} = f_c^{-4} igg(rac{R}{D}igg)^2 ig(1-2etaig)^{-1}$$

- If we have the distance, two constraints for mass and radius
- Dimensionless parameter

$$lpha \equiv rac{F_{TD} \kappa D}{\sqrt{A} \, c^3 f_c^2}$$

Ozel et al. (2010)

Photospheric Radius Expansion X-ray Bursts

- Several potential systematic uncertainties
- All the complications of qLMXBs
- plus requires assumptions about time-dependence

Steiner et al. (2010)

Minimal Nuclear Physics Models

What if we directly parameterize the M-R curve?

Linear model

Lattimer and Steiner (2013)

- Maybe the closest thing to a "model-independent" result
- ullet Consistent with a vertical M-R line at the $2~\sigma$ level

Four-line segments (8 parameters)

Lattimer and Steiner (2013)

- ullet Some of these M-R curves may be unphysical
- Observations suggest positive slope for most masses

The M-R curve and the EOS of dense matter

Now parameterize the EOS:

Steiner, Lattimer, and Brown (2013)

- Choose several different models, for every observable, find the region which encloses all ranges
- We find concordance between nuclear physics data and astronomical observations

Steiner, Lattimer, and Brown (2013)

- Can determine pressure, but not composition
- Future: novel combinations of several observations with models and careful assessment of uncertainties

The M-R curve and the EOS of dense matter

EOS	Model	Data modifications	$R_{95\%}$	$R_{68\%}$	$R_{68\%}$	$R_{95\%}$ <
				(km)		
Variations in the EOS model						
A		-	11.18	11.49	12.07	12.33
В		-	11.23	11.53	12.17	12.45
C		-	10.63	10.88	11.45	11.83
D		-	11.44	11.69	12.27	12.54
Variations in the data interpretation						
A		I	11.82	12.07	12.62	12.89
A		II	10.42	10.58	11.09	11.61
A		III	10.74	10.93	11.46	11.72
A		IV	10.87	11.19	11.81	12.13
A		V	10.94	11.25	11.88	12.22
A		VI	11.23	11.56	12.23	12.49
Global limits			10.42	10.58	12.62	12.89

Steiner, Lattimer, and Brown (2013)

- Critical component: trying different EOS parameterizations and different interpretations of the data
- Modest attempt to address systematic uncertainties

Supernova EOS and the Symmetry Energy

Steiner, Hempel, and Fischer (2013)

Based on Steiner, Hempel, and Fischer (2013)

- ullet Limited number of supernova EOSs which satisfy M-R constraints and the S-L correlation
- Current EOS uncertainties too small to explain explosion
- Many simulation properties are weakly correlated with the symmetry energy

Summary

- ullet Currently available neutron star mass and radius observations constrain the universal neutron star M-R curve
 - Neutron star radii are likely between 10.4 and 13 km
- Constrain the nucleon-nucleon interaction and QCD.
 - \circ 35 MeV < L < 80 MeV
- Must attempt to address systematic uncertainties
- New EOS tables which respect neutron star observations
- Tension between large masses, small radii, and stiff EOSs
- More observations are needed
- ...in the mean time, statistical methods can help us connect experiment and observations