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Probing Extreme Matter Through
Observations of Neutron Stars

Neutron stars, the ultra-dense cores left
.“ behind after massive stars collapse, contain

‘ the densest matter known in the Universe
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e Basic neutron

Outline

star questions:

© What is the (nearly) universal M — R curve?
o What is the radius of a 1.4 M 5 neutron star?
e Fundamental nuclear physics questions:

o Whatis t
o Whatist
o Whatist

ne nuclear symmetry energy?
ne three-neutron force?

ne nature of dense matter?

e How do you make these connections?
e Model selection
e New EQOSs for core-collapse and mergers



Neutron Star Masses and Radii and the EOS

e Unlike planets, neutron stars (to

better than 10%,) all lie on one
universal mass-radius curve

e Except for "strange quark stars"
e Rotation is a <10% effect

e A strong enough magnetic field
can also deform the star

)

Mass

Radius

e Until recently, neutron star radii

constrained to 8-15 km
Lattimer and Prakash (2007)

¢ Recent measurement of two

2 M ;5 neutron stars

Demorest et al. (2010), Antoniadis et al.
(2013)

e Convert X-ray photons into

P(R, M)
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The Geometry of M-R curves
e e Neither M(R) nor R(M)

: i P need to be functions
25 18, . (but M(P,) and R(P,) are)
L 18 even though R(M) is continuous and
! 0.7 differentiable
T Bl 1Y e In the lan fy? fitting:
~ - guage of y“ fitting:
s | 03 c.f. Deming or orthogonal
= 104 regression and total least
t 1o squares
- 5” ) no unique solution in the general case
-- N e Minimize distance between
0.5 =1 0.1 .
| | data and the curve (instead of
— ()

._
o0 =
L

l‘:-

vertical displacement)
defining a distance is nontrivial

e Formally an underconstrained problem
cannot divide chi-squared by the number of degrees of freedom

e Unless one performs a parameterization, M — R or the EOS
e However: (R, M) space is difficult to translate to (¢, P) space

not even a homeomorphism



Bayesian Analysis

How do we get the EOS from several P(R, M)'s?

¢ Bayesian analysis proven successful
Lepage et al. (2002) and Schindler and Phillips (2009)

e Why is the M-R curve so vertical?

2.5:— Jos Why do all neutron stars in the universe have
: 1B50.7 nearly the same radius?
’ 18806 Causality + 2 solar mass NS + 1 QLMXB
sk . 0.5

e Many standard frequentist methods assume
something about the shape of the likelihood
function near the maximum

05— 11 3% e This fails in this case: the best fit not same as
150 "typical" M-R curve

Posterior maximum mass distribution is strongly skewed

¢ Over/under-constrained subspaces

(Low vs. high densities) ¢ Naive covariance analysis unrelated to

typical M-R curve for high masses
Just an example of how that method can fail



Radius Measurements in qLMXBs

Quiescent LMXBs

e Measure flux of photons and
their energy distribution

e Know distance if in a globular
cluster

e Implies radius measurement

2
rars()

i.e. Rutledge et al. (1999)

e Need information about the
atmosphere, including
composition

e Also need X-ray absorption and
absolute flux calibration

e Inevitably give small radii for
some low-mass stars
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e Rotation, anisotropy, and
magnetic fields may also be
Important



Photospheric Radius Expansion
X-ray Bursts

e X-ray bursts sufficiently strong to blow off
the outer layers - radiate at the Eddington
limit

¢ Flux peaks, then temperature reaches a
maximum, "touchdown"

GMc
Frp = . \/1 — 28(r )
e Normalization during the tail of the
burst:
F R

f—d

2
ch’éb — D) (1—25)—1

e |f we have the distance, two constraints
for mass and radius

¢ Dimensionless parameter
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0
Photospheric Radius Expansmn X-ray Bursts ’
2} 0.001
e Several potential | ; 0.0008
systematic uncertainties 2o | :
e All the complications of = |
qLMXBs : 0.0004
e plus requires assumptions osk ]
about time-dependence ¥ e
O S R R R T
E (km)

Steiner et al. (2010)



Minimal Nuclear Physics Models
What if we directly parameterize the M — R curve?
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e Maybe the closest thing to a
"model-independent” result

e Consistent with a vertical
M — R line atthe 2 o level
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e Some of these M — R curves
may be unphysical
e Observations suggest positive
slope for most masses



12

The M-R curve and the EOS of dense matter

Now parameterize the EOS:
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e Choose several different models, for
every observable, find the region which
encloses all ranges

Steiner, Lattimer, and Brown (2013)
 Can determine pressure, but not
composition
e Future: novel combinations of several

observations with models and careful
assessment of uncertainties

¢ We find concordance between nuclear
physics data and astronomical
observations



The M-R curve and the EOS of dense matter

EOS Model Data modifications Rgs%~ Resn> Resne Rosop<
(km)

Variations in the EOS model

A : 11.18 11.49 12.07 12.33
B - 11.23 11.53 12.17 12.45
C - 10.63 10.88 11.45 11.83
D - 11.44 11.69 12.27 12.54
Variations in the data interpretation
A I 11.82 12.07 12.62 12.89
A I1 10.42 10.58 11.09 11.61
A 111 10.74 10.93 11.46 11.72
A IV 10.87 11.19 11.81 12.13
A V 1094 11.25 11.88 12.22
A VI 11.23 11.56 12.23 12.49
Global limits 10.42 10.58 12.62 12.89

Steiner, Lattimer, and Brown (2013)

e Critical component: trying different EOS parameterizations and different

interpretations of the data

e Modest attempt to address systematic uncertainties

13
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Supernova EOS and the Symmetry Energy
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e Limited number of supernova EOSs which satisty M — R constraints
and the S — L correlation

e Current EOS uncertainties too small to explain explosion

e Many simulation properties are weakly correlated with the symmetry
energy



Summary

e Currently available neutron star mass and radius observations constrain the universal
neutron star M — R curve

o Neutron star radii are likely between 10.4 and 13 km

¢ Constrain the nucleon-nucleon interaction and QCD.
o35 MeV < L < 80 MeV

e Must attempt to address systematic uncertainties

e New EOS tables which respect neutron star observations
e Tension between large masses, small radii, and stiff EOSs
e More observations are needed

e ...in the mean time, statistical methods can help us connect experiment and
observations
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