波天体の多様な観測による宇宙物理学の新展開

HPCI戦略プログラム分野5 「物質と宇宙の起源と構造」

Physical ingredients of corecollapse supering the super

Yudai SUWA (YITP, Kyoto University)

Collaboration with

T. Takiwaki, K. Kotake (NAOJ), M. Liebendörfer, S.C. Whitehouse (U. Basel), T. Fischer (GSI),

S. Yamada (Waseda U.), K. Sato (NINS & U. Tokyo)

クォーク・ハドロン科学国際共同研究プログラム Yukawa International Program for Quark-Hadron Sciences (YIPQS)

Core-collapse supernovae

- * One of the most energetic explosions in the universe
 - $E_{exp} \sim 10^{51} \text{ erg}$
 - E_{grav} ~10⁵³ erg (~0.1 M $_{\odot}$ c²)
 - $E_{\nu} \sim 10^{53} \text{ erg}$
- * Formation of neutron star / slack hole
- * Formation of gamma-ray bursts?
- All known interactions are important

Macrophysics	•Microphysics
▶Gravity	⊳Weak
core collapse	neutrino physics
▶Elecromagnetic	▶Strong
pulsar, magnetar,	equation of state of dense matter
magnetorotational explosion	

Explosion energy

Tanaka+ 09

Where is the upper limit of explosion energy obtainable by neutrino heating mechanism?

Systematics in supernova simulations

Our Goal: Produce Successful Explosion! of ~10⁵¹ erg

- Dimensionality of hydrodynamics
- * General relativity
- * Neutrino physics
 - Scheme to solve Boltzmann equation
 - Interaction rate
 - Collective oscillation
- Nuclear equation of state
- * Initial condition
 - progenitor structure (mixing, wind...)
 - rotation / magnetic field

Iwakami+ 08, Nordhaus+ 10, Hanke+ 11, Takiwaki+ 12, Couch 12, Ott+ 13

Liebendörfer+01, Müller+ 12, Kuroda+ 12

Ott+ 08, Shibata+ 11, Sumiyoshi & Yamada 12

Langanke+ 03, Arcones+ 08, Lentz+ 12

Raffelt & Smirnov 07, Duan+ 10, Dasgupta+ 10

Lattimer & Swesty 91, H. Shen+ 98, G. Shen+ 10, Furusawa+ 11, Hempel+ 12

Nomoto & Hashimoto 88, Woosley & Weaver 95, Woosley+ 02, Limongi & Chieffi 06, Woosley & Heger 07, Yoshida+ 12

Systematics in supernova simulations

* General relativity

- * Neutrino physics
 - Scheme to solve Boltzmann equation

Dimensionality of hydrodynamics

- Interaction rate
- Collective oscillation
- Nuclear equation of state
- * Initial condition
 - progenitor structure (mixing, wind...)
 - rotation / magnetic field

Our Goal: Produce Successful Explosion! of ~1051 erg

Iwakami+ 08, Nordhaus+ 10, Hanke+ 11, Takiwaki+ 12, Couch 12, Ott+ 13

Liebendörfer+01, Müller+ 12, Kuroda+ 12

Ott+ 08, Shibata+ 11, Sumiyoshi & Yamada 12

Langanke+ 03, Arcones+ 08, Lentz+ 12

Raffelt & Smirnov 07, Duan+ 10, Dasgupta+ 10

Lattimer & Swesty 91, H. Shen+ 98, G. Shen+ 10, Furusawa+ 11, Hempel+ 12

Nomoto & Hashimoto 88, Woosley & Weaver 95, Woosley+ 02, Limongi & Chieffi 06, Woosley & Heger 07, Yoshida+ 12

1D simulations: fail to explode

By including all available physics to simulations, we concluded that the explosion cannot be obtained in 1D!

(The exception is an 8.8 Mo star; Kitaura+06)

Oct 29th 2013

Neutrino-driven explosion in multi-D simulation

Recently, we have successful exploding models driven by neutrino heating

YS, Kotake, Takiwaki, Whitehouse, Liebendörfer, Sato, PASJ, 62, L49 (2010)

comparison between 1D and 2D

Supernovae and Gamma-Ray Bursts 2013

9000

400 450

800 ms

3000

6000

Problems of neutrino-driven explosion

(2009)

anka

Marek

* too small explosion energy (~10⁴⁹-10⁵⁰ erg)

continuous accretion $\langle = \rangle$ The remnant is NOT a NS \widehat{R}

500

400

The first 3D simulation with neutrino transfer

Takiwaki, Kotake, YS, ApJ, 749, 98 (2012) & recently submitted, arXiv:1308.5755

Supernovae and Gamma-Ray Bursts 2013

Systematics in supernova simulations

Our Goal: Produce Successful Explosion! of ~10⁵¹ erg

- * Dimensionality of hydrodynamics
- * General relativity
- * Neutrino physics
 - Scheme to solve Boltzmann equation
 - Interaction rate
 - Collective oscillation

* Nuclear equation of state

Initial condition

- progenitor structure (mixing, wind...)
- rotation / magnetic field

Iwakami+ 08, Nordhaus+ 10, Hanke+ 11, Takiwaki+ 12, Couch 12, Ott+ 13

Liebendörfer+01, Müller+ 12, Kuroda+ 12

Ott+ 08, Shibata+ 11, Sumiyoshi & Yamada 12

Langanke+ 03, Arcones+ 08, Lentz+ 12

Raffelt & Smirnov 07, Duan+ 10, Dasgupta+ 10

Lattimer & Swesty 91, H. Shen+ 98, G. Shen+ 10, Furusawa+ 11, Hempel+ 12

Nomoto & Hashimoto 88, Woosley & Weaver 95, Woosley+ 02, Limongi & Chieffi 06, Woosley & Heger 07, Yoshida+ 12

Finite temperature EOSs

* Lattimer & Swesty (LS) (1991)

- based on compressible liquid drop model
- variants with K=180, 220, and 375 MeV
- * H.Shen et al. (1998, 2011)
 - relativistic mean field theory (TM1)
 - including hyperon component (~2011)

- * Hillebrandt & Wolff (1985)
 - Hartree-Fock calculation
- * G.Shen et al. (2010, 2011)
 - relativistic mean field theory (NL3, FSUGold)
- * Hempel et al. (2012)
 - relativistic mean field theory (TM1, TMA, FSUGold)

	incompressibility	symmetry energy	slope of symmetry energy
	K [MeV]	J (S) [MeV]	L [MeV]
LS	180, 220, 375	29.3	
HShen	281	36.9	111
HW	263	32.9	
GShen	271.5 (NL3)	37.29 (NL3)	118.2 (NL3)
	230.0 (FSU)	32.59 (FSU)	60.5 (FSU)
Hempel	318 (TMA)	30.7 (TMA)	90 (TMA)
	230 (FSU)	32.6 (FSU)	60 (FSU)

$$\begin{split} E(x,\beta) = -E_0 + \frac{1}{18}Kx^2 + \frac{1}{162}K'x^3 + \dots \\ + \beta^2 \left(J + \frac{1}{3}Lx + \dots\right) + \dots \,, \end{split}$$

Numerical simulation

- * EOS: LS180, (LS220,) LS375, and Shen
- * Axisymmetric simulation (ZEUS-2D; Stone & Norman 92)
- * Hydrodynamics + Neutrino transfer

$$\frac{df}{dt} + \mu \frac{\partial f}{\partial r} + \left[\mu \left(\frac{d \ln \rho}{c d t} + \frac{3v}{c r} \right) \right] (1 - \mu^2) \frac{\partial f}{\partial \mu} + \left[\mu^2 \left(\frac{d \ln \rho}{c d t} + \frac{3v}{c r} \right) - \frac{v}{c r} \right] D \frac{\partial f}{\partial E}$$
$$= j(1 - f) - \chi f + \frac{E^2}{c(hc)^3} \left[(1 - f) \int Rf' d\mu' - f \int R(1 - f') d\mu' \right]$$

differ as well.

(Lindquist 1966; Castor 1972; Mezzacappa & Bruenn 1993)

- Isotropic Diffusion Source Approximation (Liebendörfer+ 09)
- Ray-by-Ray plus
- electron-type neutrino/antineutrino
- * progenitor: 15 Mo (Woosley & Weaver 95)

Shock radius evolution depending on EOS

Oct 29th 2013

Radius of neutron star

YS, Takiwaki, Kotake, Fischer, Liebendörfer, Sato, ApJ 764, 99 (2013)

Progenitor dependence would be more critical

When we use 11.2 M_{\odot} as an initial condition

Systematics in supernova simulations

Our Goal: Produce Successful Explosion! of ~10⁵¹ erg

- * Dimensionality of hydrodynamics
- * General relativity
- Neutrino physics
 - Scheme to solve Boltzmann equation
 - Interaction rate
 - Collective oscillation
- Nuclear equation of state
- Initial condition

progenitor structure mixing, wind...)

rotation / magnetic field

Iwakami+ 08, Nordhaus+ 10, Hanke+ 11, Takiwaki+ 12, Couch 12, Ott+ 13

Liebendörfer+01, Müller+ 12, Kuroda+ 12

Ott+ 08, Shibata+ 11, Sumiyoshi & Yamada 12

Langanke+ 03, Arcones+ 08, Lentz+ 12

Raffelt & Smirnov 07, Duan+ 10, Dasgupta+ 10

Lattimer & Swesty 91, H. Shen+ 98, G. Shen+ 10, Furusawa+ 11, Hempel+ 12

Nomoto & Hashimoto 88, Woosley & Weaver 95, Woosley+ 02, Limongi & Chieffi 06, Woosley & Heger 07, Yoshida+ 12

Progenitor dependence

NH: Nomoto & Hashimoto (1988) WW: Woosley & Weaver (1995) WHW: Woosley, Heger, & Weaver (2002)

YS, Kotake, Takiwaki, Liebendörfer, & Sato (2011)

- * Density profiles 100 ms after the bounce
- * Almost same for M<0.8M.
- * Profile for M>0.8M_☉ reflect the initial profile

Progenitor dependence

NH: Nomoto & Hashimoto (1988) WW: Woosley & Weaver (1995) WHW: Woosley, Heger, & Weaver (2002)

Oct 29th 2013

Supernovae and Gamma-Ray Bursts 2013

17/21

Progenitor dependence

NH: Nomoto & Hashimoto (1988) WW: Woosley & Weaver (1995) WHW: Woosley, Heger, & Weaver (2002)

Shock evolution in 2D simulation

2D simulation using progenitors from Woosley & Heger (2007)

- * Several progenitors lead to shock expansion
- * No monotonic trend is found
- * What determines the difference?

What makes difference?: M-L_v curve

- * Low M and high L_v are achieved for several progenitors, which produce the explosion
- * In order to unveil the relationship between the progenitor structure and trajectories in this plane, more systematic study is necessary...

Discussion

- Smaller presupernova mass seems to be better for at least neutrinodriven explosion
- * Model systematics around 15-30 are smaller compared to the other mass range and these progenitors are difficult to explode

Summary

- * For supernova modeling, there are a lot of ingredients to pin down the explosion mechanism
- * We performed multi-dimensional neutrino-radiation hydrodynamic simulations of core-collapse supernovae
- * The physical parts investigated are
 - Multi dimensionality [1D<2D>?3D] (YS+ 2010; Takiwaki, Kotake, & YS 2012, 2013)
 - Effect of neutrino oscillation [potentially strengthen the explosion] (YS+ 2011)
 - Impacts of nuclear equation of state ["softer" is better] (YS+ 2013)
 - Dependence of Progenitor structure [under investigation...] (YS+ in progress)
- * There are still a lot of tasks to do to unveil the explosion mechanism of core-collapse supernovae...