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Low-luminosity GRBs

[ less energetic and less luminous subgroup of long GRBs

@ They are found in the nearby universe. The event rate is high
e.g., 230490190 Gpc3 yr! (Soderberg+ 2006 ), 100-1800 Gpc3 yr! (Guetta&Della Valle 2007)

M They are accompanied by broad-lined Ic supernovae

M Ex.) GRB980425/SN 1998bw, GRB 060218/SN 2006aj, GRB100316D/ SN2010bh

. GRB 980425

4"
y
-
z #
E
’; -
’{' ]
o i i
v .
y;
1/ n
S
)“ n
I ’
! )"
RBE 980425 ~
f"
s
7
’ —]

# GRB 031203 J

-
GRB 030329

(—f,;(RFO30723 | “r ” GRBS
oo 4WGRB 060218

Illll A

GRBI101225A GRIB1O
10 1077 10°2 10 190%™ b

E.io/erga  Kaneko+ (2006) o ) “Levan+ (201 3)

|
10

48 49

10

1311 B14HAKREH



Low-luminosity GRBs

[ less energetic and less luminous subgroup of long GRBs

@ They are found in the nearby universe. The event rate is high

M Ex.) GRB980425/SN 1998bw, GRB 060218/SN 2006aj, GRB10031

e.g., 2307490190 Gpc3 yr! (Soderberg+ 2006 ), 100-1800 Gpc3 yr! (Guetta&Della Valle 2007)
M They are accompanied by broad-lined Ic supernovae
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from Hjorth (2011)
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Question to answer:
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What is their origin?

from Hjorth (2011)

What mechanism is responsible for X- and y- ray emission
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Connection to HNe, engine-driven SNe

@ Optical observations: kinetic energy of non-relativistic ejecta is found by light

curve modeling and spectroscopy : vph ~ 0.1¢, Exin ~ 1052-1053 erg

@ Radio observations: kinetic energy of the blast wave is found by using

synchrotron emission model : [ v =(1-2) ¢, Ekin ~ 10*° erg
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Connection to HNe, engine-driven SNe
@ Optical observations: kinetic energy of non-relativistic ejecta is found by light

curve modeling and spectroscopy : vph ~ 0.1¢, Exin ~ 1052-1053 erg

@ Radio observations: kinetic energy of the blast wave is found by using

synchrotron emission model : [ v =(1-2) ¢, Ekin ~ 10*° erg
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@ Exinfor relativistic ejecta << Exin for non-
relativistic ejecta = It is suggested that failed

jet model produce such events.

Ultra-relativistic jet: Failed jet:
Exin for rel. ejecta ~ Exin for non-rel. ejecta Exin for rel. ejecta <<Exkin for non-rel. ejecta
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Failed jet hypothesis E
[ Exinfor relativistic ejecta << Exin for non- it | [

relativistic ejecta = It is suggested that failed

Uncollimated Jet
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jet model produce such events.
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+2011)
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Failed jet hypothesis
[ Exnfor relativistic ejecta << Ekin for non-

relativistic ejecta = It is suggested that failed

jet model produce such events.
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GRB jet simulation Pext = pw(r) + prsm
4096 X512 mesh M
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Jet injection

injection radius: Rin =3X108cm

total energy: E=5X102erg

energy deposition rate: dE/dt=200, 100, 50, 20, 10, 5, 2, 0.5X 10! erg/s
half opening angle:  6;=10°

initial jet Lorentz factor: [ j=5

specific internal energy: € o/c2=20

CSM: Mdot=10" Me/yr, vw=1000km/s

Uj — BT
Fj

E 1
- 2mR2 (1 — cos®;) vi[(1 + gl

o
o
o
o
o
o
o

Po

Po = (7 = 1)P0€o-

1311 B14HAKREH



Jet models

[ ultra-relativistic jet is formed successfully (jet break time < jet injection time)
low dE/dt (=0.5x10%'erg/s)

[ left: Lorentz factor right:denéity long tinj (=50s)

| logp
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Jet models
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Jet models

[ ultra-relativistic jet is not formed (jet break time > jet injection time)
high dE/dt (=50x10°'erg/s)

[ left: Lorentz factor right: density short tinj (=0.5s)
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Jet models

[ ultra-relativistic jet is not formed (jet break time > jet injection time)
high dE/dt (=50x10°'erg/s)
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Kinetic energy distribution
[ kinetic energy distribution of the ejecta at ~200 sec after the jet injection

Ex(>TI'B) =/ (I' = 1)pdV, |

@ Models with ultra-relativistic jet show flat distributions

@ For models with nearly spherical blast waves, the distributionfallsat ' 5< a
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Nucleosynthesis

Post-process nucleosynthesis calculations

Many earlier works in the context of bipolar
explosion in SNe (e.g., Nagataki+1997,2003,2005,
Maeda+2002,Tominaga+2007)

1.5x10°
Vr [em/s]

°5Ni mass: (e.g.,Nagataki+2003,Tominaga+2007)
slow energy deposition = M(>°Ni)<<0.1M®

instantaneous energy injection = M(°°Ni)~0.TM®

>N distribution: Nagataki+ (2003)

2 R A .-
12 R | T - v—:

region with high X(°6Ni) is formed around the jet

-

Model Aa

X(*Ni) 203

and a region with unburned 0 is surrounding

Polar Axis (x10%m)

the region

= consistent with optical spectra of some HNe o e NN

Equatorial Axis (x10%m)
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Nucleosynthesis

M Post-process nucleosynthesis calculations

@ Many earlier works in the context of bipolar

explosion in SNe (e.g., Nagataki
+1997,2003,2005, Maeda+2002,Tominaga
+2007)

@ Tracer particle method is employed
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Nucleosynthesis
Distributions of elements are similar to earlier
works in the context of HNe.

Particles that contains 2°Ni have velocities <0.3c

Ni mass ~ 0.13 Me, smaller by a factor of 2-3

than observed values

1 ‘t=1 00s

® Nickel
e Silicon
- Oxygen

@: X(°5Ni) >0.1
@: X(23Si) >0.1
®:X('%0) > 0.1
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Nucleosynthesis el

Distributions of elements are similar to earlier 8 2.841e+04

works in the context of HNe.

Particles that contains °°Ni have velocities <0.3c

Ni mass ~ 0.13 Me, smaller by a factor of 2-3

than observed values
1 | ‘t=100s

: _-: : ® Nickel
-5 ¢ Silicon
g 5.y - Oxygen

@: X(°°Ni) >0.1
@: X(28Si) >0.1 e i
®:X('%0) > 0.1 1.5x10°  2x10°

Vr [em/s]
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CSM interaction

Dense circumstellar medium is expected around the progenitor star.

ejecta-CSM interaction efficiently convert the kinetic energy of the ejecta into
the internal energy and thus might give rise to bright emission in X-ray and

gamma-ray.

Some earlier works for the collision of mildly relativistic ejecta with CSM (e.g., Tan
+2001).

n Carinae ONASA
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Jet injection

injection radius: Rin =3X108cm

total energy: E=5X102erg
energy deposition rate: dE/dt=50X10>"erg/s
half opening angle:  6;=10°

initial jet Lorentz factor: [ j=5

specific internal energy: € o/c2=20

CSM . Mdot=103, 104, 10, 10, 107 M@/yr, vw=1000km/s
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Po = (7 = 1)P0€o-
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CSM interaction
@ Models with dense CSM lead to “forward shock - reverse shock” system

@ Models with dilute CSM lead to “forward shock - rarefaction wave” system
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CSM interaction
@ Theinternal energy flux F in the shocked region is of the order of 1020-102" erg/s/
cm? for models with Mdot=10-3, 104, 105 Me/yr flux: F=P/(y-1)X T 2y

@ assume the internal energy is dominated by photons and some fraction of

photons can decouple from the shocked region, 3¢ dmydt=

]

3
OIS

¢ : fraction of the energy emitted as photons
L~4 77 R2F €
~4 X 10% € erg/s
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Summary

[ Failedjetis promising to explain low-luminosity GRBs.

[ Ultra-relativistic jet is failed to be created
= kinetic energy of the relativistic ejecta is much smaller than the kinetic energy

of the non-relativistic one

@ Explosive nucleosynthesis in the failed jet model

= similar result to HNe cases

@ The interaction of the ejecta with dense CSM is investigated
= CSM interaction has a possibility in producing highly energetic emission with
Ly iso ~ 10% - 104 erg/s
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Mapping procedure
M dynamical rangeis huge

m jet~ 103" cm 2 Fe core ~ 1082 cm

@ Courant condition limits the time step At < cAx

@ The numerical domain doubles as the ejecta expand. The resolution is

halved. %
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Results

Ultra-relativistic jet

Mildly relativistic
blast wave
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