Hydrodynamical models for a successfull/failed jet from a massive star and implications to low-luminosity GRBs

Akihiro Suzuki

Center for Computational Astrophysics, NAOJ

GRB-SNe, YITP Nov. 2013

Outline

Markov Street Street Brief introduction of low-luminosity GRBs

I Jet models

M Implications to emission from low-luminosity GRBs

Summary

Low-luminosity GRBs

Iess energetic and less luminous subgroup of long GRBs

- They are found in the nearby universe. The event rate is high e.g., 230⁺⁴⁹⁰-190 Gpc⁻³ yr⁻¹ (Soderberg+ 2006), 100-1800 Gpc⁻³ yr⁻¹ (Guetta&Della Valle 2007)
- They are accompanied by broad-lined Ic supernovae

Ex.) GRB 980425/SN 1998bw, GRB 060218/SN 2006aj, GRB100316D/ SN2010bh

Low-luminosity GRBs

Iess energetic and less luminous subgroup of long GRBs

- They are found in the nearby universe. The event rate is high e.g., 230⁺⁴⁹⁰-190 Gpc⁻³ yr⁻¹ (Soderberg+ 2006), 100-1800 Gpc⁻³ yr⁻¹ (Guetta&Della Valle 2007)
- They are accompanied by broad-lined Ic supernovae

🗹 Ex.) GRB 980425/SN 1998bw, GRB 060218/SN 2006aj, GRB100316D/ SN2010bh

	Luminosity L _γ , _{iso}	Isotropic energy Eiso	Duration T ₉₀	peak energy E _p
GRB 980425 SN 1998bw	6×10 ⁴⁶ erg/s	9×10 ⁴⁷ erg	35 s	122 keV
GRB 060218 SN 2006aj	2×10 ⁴⁶ erg/s	4×10 ⁴⁹ erg	2100 s	4.7 keV
GRB 100316D SN 2010bh	5×10 ⁴⁶ erg/s	6×10 ⁴⁹ erg	1300 s	18 keV

from Hjorth (2011)

Low-luminosity GRBs

Iess energetic and less luminous subgroup of long GRBs

- They are found in the nearby universe. The event rate is high e.g., 230⁺⁴⁹⁰-190 Gpc⁻³ yr⁻¹ (Soderberg+ 2006), 100-1800 Gpc⁻³ yr⁻¹ (Guetta&Della Valle 2007)
- They are accompanied by broad-lined Ic supernovae

🗹 Ex.) GRB 980425/SN 1998bw, GRB 060218/SN 2006aj, GRB100316D/ SN2010bh

	Luminosity L _γ , _{iso}	Isotropic energy Eiso	Duration T ₉₀	peak energy E _p
GRB 980425 SN 1998bw	6×10 ⁴⁶ erg/s	9×10 ⁴⁷ erg	35 s	122 keV
GRB 060218 SN 2006aj	2×10 ⁴⁶ erg/s	4×10 ⁴⁹ erg	2100 s	4.7 keV
GRB 100316D SN 2010bh	5×10 ⁴⁶ erg/s	6×10 ⁴⁹ erg	1300 s	18 keV

from Hjorth (2011)

Question to answer: What is their origin?

What mechanism is responsible for X- and y- ray emission

Connection to HNe, engine-driven SNe

- Optical observations: kinetic energy of non-relativistic ejecta is found by light curve modeling and spectroscopy : $v_{ph} \sim 0.1c$, $E_{kin} \sim 10^{52}$ - 10^{53} erg
- Radio observations: kinetic energy of the blast wave is found by using synchrotron emission model : $\Gamma v = (1-2) c$, $E_{kin} \sim 10^{49} erg$

Connection to HNe, engine-driven SNe

- Radio observations: kinetic energy of the blast wave is found by using synchrotron emission model : $\Gamma v = (1-2) c$, $E_{kin} \sim 10^{49} erg$

Failed jet hypothesis

Ekin for relativistic ejecta << Ekin for non-
 relativistic ejecta → It is suggested that failed
 jet model produce such events.

Ultra-relativistic jet: Ekin for rel. ejecta ~ Ekin for non-rel. ejecta

Failed jet:

Ekin for rel. ejecta << Ekin for non-rel. ejecta

Failed jet hypothesis

- Ekin for relativistic ejecta << Ekin for non-
 relativistic ejecta → It is suggested that failed
 jet model produce such events.
- Many works to reveal whether or not an ultrarelativistic jet succeed in penetrating a massive star (e.g., Bromberg+2011a,b, Lazzati +2011)

Bromberg+ (2011a,b)

Failed jet hypothesis

Ekin for relativistic ejecta << Ekin for non-
 relativistic ejecta → It is suggested that failed
 jet model produce such events.

Many works to reveal whether or not an ultra-

This study

1. carry out a series simulations of jet propagation in a massive star and identify a model corresponding to low-luminosity GRBs.

2. carry out further calculations to reveal the properties of the model, including nucleosynthesis calculations and CSM interaction.

Outline

Markov Street Street Brief introduction of low-luminosity GRBs

I Jet models

M Implications to emission from low-luminosity GRBs

Summary

GRB jet simulation

- ☑ 4096×512 mesh
- ☑ Woosley&Heger(2006) 16TI model
- **W**R star
- final mass~14M
 ●
- **Madius** ~ 3×10^{10} cm

 $\rho_{\text{ext}} = \rho_{\text{w}}(r) + \rho_{\text{ISM}}$ $\rho_{\text{w}} = \frac{\dot{M}}{4\pi r^2 v_{\text{w}}}$ $\rho_{\text{ISM}} = 100m_{\text{u}} \text{ g cm}^{-3}$

Jet injection

- injection radius: $R_{in} = 3 \times 10^8 cm$
- **The set of a set of**
- energy deposition rate: dE/dt=200, 100, 50, 20, 10, 5, 2, 0.5 × 10⁵¹ erg/s
- \mathbf{M} half opening angle: $\theta_j = 10^\circ$
- initial jet Lorentz factor: $\Gamma_j = 5$
- specific internal energy: $\varepsilon_0/c^2=20$
- CSM:

Mdot=10⁻⁷ M_•/yr, v_w=1000km/s

$$v_{j} = \sqrt{1 - \frac{1}{\Gamma_{j}^{2}}},$$

$$\rho_{0} = \frac{\dot{E}}{2\pi R_{in}^{2} (1 - \cos \theta_{j})} \frac{1}{v_{j} [(1 + \gamma \epsilon_{0}) \Gamma_{j}^{2} - \Gamma_{j}]},$$

$$p_{0} = (\gamma - 1) \rho_{0} \epsilon_{0}.$$

ultra-relativistic jet is formed successfully (jet break time < jet injection time)</p>
low dE/dt (=0.5×10⁵¹erg/s)

Ieft: Lorentz factor right: density

long tinj (=50s)

ultra-relativistic jet is formed successfully (jet break time < jet injection time)</p>
low dE/dt (=0.5×10⁵¹erg/s)

Ieft: Lorentz factor right: density

long tinj (=50s)

ultra-relativistic jet is not formed (jet break time > jet injection time) high $dE/dt (=50 \times 10^{51} erg/s)$

☑ left: Lorentz factor right: density

short tinj (=0.5s)

ultra-relativistic jet is not formed (jet break time > jet injection time) high $dE/dt (=50 \times 10^{51} erg/s)$

☑ left: Lorentz factor right: density

short tinj (=0.5s)

Kinetic energy distribution

kinetic energy distribution of the ejecta at ~200 sec after the jet injection

$$E_{\rm k}(>\Gamma\beta) = \int \Gamma(\Gamma-1)\rho dV,$$

Models with ultra-relativistic jet show flat distributions

 \mathbf{V} For models with nearly spherical blast waves, the distribution falls at $\Gamma \beta < a$

Outline

Markov Street Street Brief introduction of low-luminosity GRBs

I Jet models

M Implications to emission from low-luminosity GRBs

Summary

Nucleosynthesis

Post-process nucleosynthesis calculations

- Many earlier works in the context of bipolar explosion in SNe (e.g., Nagataki+1997,2003,2005, Maeda+2002,Tominaga+2007)
- ⁵⁶Ni mass: (e.g.,Nagataki+2003,Tominaga+2007)
 slow energy deposition ⇒ M(⁵⁶Ni)<<0.1M
 instantaneous energy injection ⇒ M(⁵⁶Ni)~0.1M

⁵⁶Ni distribution:

region with high X(⁵⁶Ni) is formed around the jet and a region with unburned ¹⁶O is surrounding the region

➡ consistent with optical spectra of some HNe

Nagataki+ (2003)

Nucleosynthesis

Post-process nucleosynthesis calculations

Many earlier works in the context of bipolar explosion in SNe (e.g., Nagataki +1997,2003,2005, Maeda+2002,Tominaga +2007)

13年11月14日木曜日

Distributions of elements are similar to earlier works in the context of HNe.

Particles that contains ⁵⁶Ni have velocities <0.3c

Mi mass ~ 0.13 M_☉, smaller by a factor of 2-3

- Particles that contains ⁵⁶Ni have velocities <0.3c
- Mi mass ~ 0.13 M_☉, smaller by a factor of 2-3

than observed values

SN component resulting from failed jet are similar to how typical HNe spectra look like

CSM interaction

Dense circumstellar medium is expected around the progenitor star.

- ejecta-CSM interaction efficiently convert the kinetic energy of the ejecta into the internal energy and thus might give rise to bright emission in X-ray and gamma-ray.
- ☑ Some earlier works for the collision of mildly relativistic ejecta with CSM (e.g., Tan +2001).

Jet injection

- injection radius: $R_{in} = 3 \times 10^8 cm$
- **The set of a set of**
- energy deposition rate: $dE/dt=50 \times 10^{51}$ erg/s
- \mathbf{M} half opening angle: $\theta_j = 10^\circ$
- initial jet Lorentz factor: $\Gamma_j = 5$
- specific internal energy: $\varepsilon_0/c^2=20$
- ✓
 CSM :
 Mdot=10⁻³, 10⁻⁴, 10⁻⁵, 10⁻⁶, 10⁻⁶, 10⁻⁶ M☉/yr, vw=1000km/s

$$v_{j} = \sqrt{1 - \frac{1}{\Gamma_{j}^{2}}},$$

$$\rho_{0} = \frac{\dot{E}}{2\pi R_{in}^{2} (1 - \cos \theta_{j})} \frac{1}{v_{j} [(1 + \gamma \epsilon_{0}) \Gamma_{j}^{2} - \Gamma_{j}]},$$

$$p_{0} = (\gamma - 1) \rho_{0} \epsilon_{0}.$$

CSM interaction

Models with dense CSM lead to "forward shock - reverse shock" system

Models with dilute CSM lead to "forward shock - rarefaction wave" system

CSM interaction

- The internal energy flux F in the shocked region is of the order of $10^{20}-10^{21}$ erg/s/ cm² for models with Mdot= 10^{-3} , 10^{-4} , 10^{-5} M ·/yr flux : F = P/(γ -1)× Γ ²v_r
- Image: Second systemImage: Second

 ε : fraction of the energy emitted as photons L~4 π R²F ε ~4×10⁴⁶ ε erg/s ×(R/6×10¹²cm)²(F/10²⁰ erg s⁻¹cm⁻²)

However, thermal equilibrium between radiation and gas is not achieved!

CSM interaction has a potential to produce emission with L $\sim 10^{46-47}$ erg/s

Summary

- Failed jet is promising to explain low-luminosity GRBs.
- Ultra-relativistic jet is failed to be created

➡ kinetic energy of the relativistic ejecta is much smaller than the kinetic energy of the non-relativistic one

- Explosive nucleosynthesis in the failed jet model
 - ➡ similar result to HNe cases
- The interaction of the ejecta with dense CSM is investigated \Rightarrow CSM interaction has a possibility in producing highly energetic emission with $L_{\gamma,iso} \sim 10^{46} - 10^{47}$ erg/s

Mapping procedure

- g dynamical range is huge
 - → jet ~ 10^{13-14} cm \rightleftharpoons Fe core ~ 10^{8-9} cm
- \Box Courant condition limits the time step $\Delta t < c \Delta x$
- The numerical domain doubles as the ejecta expand. The resolution is halved.

Results

Ultra-relativistic jet

Mildly relativistic blast wave

