Modeling of SNe I b/c Shock Breakouts: from XRO080109/SN2008D to the Future Surveys

Alexey Tolstov^{*}, Shigehiro Nagataki^{*}, Sergey Blinnikov(ITEP) ^{*}Astrophysical Big Bang Laboratory, RIKEN

Supernova shock breakout (by N. Tominaga)

Supernova shock breakout (SB) observations

SN2008D, Type Ib/c, WR candidate progenitor, Swift

SNLS-04D2dc, Type II RSG progenitor, GALEX

Subaru/Hyper Supreme Camera (HSC)

	Suprime-Cam	HSC
CCD Make and Model	Hamamatsu S10892-01	Hamamatsu S10892-02
Number of CCDs	10	104 + AG 4 + AF 8
Pixel	15 micron square (0.2 arc- sec)	15 micron square (0.17 arcsec)
Field of View	34 arcmin x 27 arcmin	90 arcmin daiameter
Conversion Factor	2.5-3.7 e/ADU	3.0 e/ADU
Readout noise	~ 10 e	TBD e
Readout time	18 sec	20 sec
Full well	150,000 e	150,000 e
Number of Filters	10	6
Filter Exchange Time	300 s	600 s (900 s while commissioning)

• The detection of transients such as shock breakout of SNe is one of the most important missions of HSC

Interpretation of early light curves and spectra – explanation of the nature of exploding stars. From Swift, GALEX to Subaru/HSC, PTF, LOSS, CRTS, KWFC, Skymapper, DES, Pan-STARRS, LSST. Theoretical models are in demand!

Ibc Presupernova Model

- Evolutionary calculation of helium star M = $10M_{\odot}$ (Woosley et al., 1995)
- STELLA provides a shock velocity at breakout up to 0.5c (Blinnikov et al., 1998)
- M = 3.199 M $_{\odot}$ R = 1.41 · 10¹¹ cm Z = 0.33, Z_{Fe} = 0.013 M_{Ni} = 0.072 M $_{\odot}$

Numerical algorithms STELLA and RADA

STELLA (STatic Eddington-factor Low-velocity Limit Approximation) (Blinnikov et al., 1998)

 1D Lagrangian NR Hydro + Radiation Moments Equations, VEF closure, multigroup (100-300 groups)

 Opacity includes photoionization, free-free absorption, lines and electron scattering (Blandford, Payne 1981). Ionization – Saha's approximation

 STELLA was used in modeling of many SN light curves: SN 1987A, SN 1993J and many others (Blinnikov et al. 2006)

• STELLA shows good agreement with observations in case of SNLS-04D2dc. (Tominaga et al. 2009, 2011)

For lb/c model STELLA is not accurate!

RADA (fully Relativistic rADiative transfer Approximation) (Tolstov, Blinnikov, 2003)

- 1D Relativistic Radiative Transfer in comoving frame (McCrea & Mitra 1936, Mihalas, 1980)
- · Relativistic transformation of fluxes from the source to the observer

$$t_{\delta R} = t_{diff}$$
 :

$$\tau = \frac{\delta R}{l} \lesssim \frac{c}{D} \sim 10$$

I – photon mean free path δR - the distance from the shock to the photosphere D – shock front velocity

Comoving radiation transfer (Mihalas, 1980)

Transfer equation:

$$\begin{split} \frac{\gamma}{c} \left(1 + \beta \mu_0\right) \frac{\partial I_0(\mu_0, v_0)}{\partial t} + \gamma(\mu_0 + \beta) \frac{\partial I_0(\mu_0, v_0)}{\partial r} \\ &+ \gamma(1 - \mu_0^2) \left[\frac{\left(1 + \beta \mu_0\right)}{r} - \frac{\gamma^2}{c} \left(1 + \beta \mu_0\right) \frac{\partial \beta}{\partial t} - \gamma^2(\mu_0 + \beta) \frac{\partial \beta}{\partial r} \right] \frac{\partial I_0(\mu_0, v_0)}{\partial \mu_0} \\ &- \gamma \left[\frac{\beta(1 - \mu_0^2)}{r} + \frac{\gamma^2}{c} \mu_0(1 + \beta \mu_0) \frac{\partial \beta}{\partial t} + \gamma^2 \mu_0(\mu_0 + \beta) \frac{\partial \beta}{\partial r} \right] v_0 \frac{\partial I_0(\mu_0, v_0)}{\partial v_0} \\ &+ 3\gamma \left[\frac{\beta(1 - \mu_0^2)}{r} + \frac{\gamma^2 \mu_0}{c} \left(1 + \beta \mu_0\right) \frac{\partial \beta}{\partial t} + \gamma^2 \mu_0(\mu_0 + \beta) \frac{\partial \beta}{\partial r} \right] I_0(\mu_0, v_0) \\ &= \eta_0(v_0) - \chi_0(v_0) I_0(\mu_0, v_0) \,. \end{split}$$

Moments equation:

$$\begin{split} \frac{\gamma}{c} \left[\frac{\partial J_{0}(v_{0})}{\partial t} + \beta \frac{\partial H_{0}(v_{0})}{\partial t} \right] + \gamma \left[\frac{\partial H_{0}(v_{0})}{\partial r} + \beta \frac{\partial J_{0}(v_{0})}{\partial r} \right] \\ &- \gamma v_{0} \left\{ \frac{\beta}{r} \left[\frac{\partial J_{0}(v_{0})}{\partial v_{0}} - \frac{\partial K_{0}(v_{0})}{\partial v_{0}} \right] + \frac{\gamma^{2}}{c} \frac{\partial \beta}{\partial t} \left[\frac{\partial H_{0}(v_{0})}{\partial v_{0}} + \beta \frac{\partial K_{0}(v_{0})}{\partial v_{0}} \right] + \gamma^{2} \frac{\partial \beta}{\partial r} \left[\frac{\partial K_{0}(v_{0})}{\partial v_{0}} + \beta \frac{\partial H_{0}(v_{0})}{\partial v_{0}} \right] \right\} \\ &+ \gamma \left\{ \frac{2}{r} \left[H_{0}(v_{0}) + \beta J_{0}(v_{0}) \right] + \frac{\gamma^{2}}{c} \frac{\partial \beta}{\partial t} \left[H_{0}(v_{0}) + \beta J_{0}(v_{0}) \right] + \gamma^{2} \frac{\partial \beta}{\partial r} \left[J_{0}(v_{0}) + \beta H_{0}(v_{0}) \right] \right\} \\ &= \eta_{0}(v_{0}) - \chi_{0}(v_{0})J_{0}(v_{0}) \\ &= \eta_{0}(v_{0}) - \chi_{0}(v_{0})J_{0}(v_{0}) \\ &- \gamma v_{0} \left\{ \frac{\beta}{r} \left[\frac{\partial H_{0}(v_{0})}{\partial t} - \frac{\partial N_{0}(v_{0})}{\partial v_{0}} \right] + \frac{\gamma^{2}}{c} \frac{\partial \beta}{\partial t} \left[\frac{\partial K_{0}(v_{0})}{\partial v_{0}} + \beta \frac{\partial N_{0}(v_{0})}{\partial v_{0}} \right] + \gamma^{2} \frac{\partial \beta}{\partial r} \left[\frac{\partial N_{0}(v_{0})}{\partial v_{0}} + \beta \frac{\partial K_{0}(v_{0})}{\partial v_{0}} \right] \right\} \\ &+ \gamma \left\{ \frac{1}{r} \left[3K_{0}(v_{0}) - J_{0}(v_{0}) + \beta H_{0}(v_{0}) + \beta N_{0}(v_{0}) \right] + \frac{\gamma^{2}}{c} \frac{\partial \beta}{\partial t} \left[J_{0}(v_{0}) + \beta J_{0}(v_{0}) - \beta N_{0}(v_{0}) \right] \right\} \\ &+ \gamma^{2} \frac{\partial \beta}{\partial r} \left[2H_{0}(v_{0}) - N_{0}(v_{0}) + \beta J_{0}(v_{0}) \right] \right\} = -\chi_{0}(v_{0})H_{0}(v_{0}) \end{split}$$

SRRHD. Radiation-dominated mildly-relativistic shock wave

Semi-analytic relativistic hydro + Relativistic radiation transfer (no closure condition)

Shock tube configuration (Farris et al., 2008), $P_r/P_g \approx 10$

Γ	κ^{a}	Left state ^{c}	Right State ^c
5/3	0.08	$\rho_0 = 1.0$	$ \rho_0 = 3.65 $
,		$P = 6.0 \times 10^{-3}$	$P = 3.59 \times 10^{-2}$
		$u^x = 0.69$	$u^x = 0.189$
		E = 0.18	E = 1.30

Closure condition: P = fE

- Eddington approximation: f = 1/3
- M1-closure (Levermore, 1984) f = f(E,F) joins "optically thin" and "thick" cases
- Photon Boltzmann equation

Transformation of fluxes from source to observer's frame

Lorentz covariance, Doppler effect and aberration

- Radiation flux increases
- Spectrum becomes harder
- The space shrinks towards the direction of motion

Γ = 10

V = 0

gamma=1.000E00

V = 0.5 c

Γ = 100

SN Ibc shock breakout modeling (Tolstov et al. 2013)

- Radiation Transfer Short Characteristic Method (about 90% of calculation time)
- Radius x Angle x Energy = 350 * 100 * 200 = = 7 000 000 for 1 time step
- 200 steps of RADA, 10000 steps of STELLA, 3 days of calculation

XRO080109/SN2008D in the Model of SNIb

How to explain the duration and spectrum of the outburst?

External medium is optically thin to affect the radiation (Chevalier, Roger A., Fransson, Claes, 2008, ApJ, 683L, 135C)

XRO080109/SN2008D in the Model of SNIb with the Stellar Wind

Can we explain the observational data by 'natural' model (WR star + wind)?

- 1. The growth of photosphere before the shock front
- 2. Changes in absorption/emission of the perturbed wind

XRO080109/SN2008D Spectra and Light Curves

• X-Ray light curves and spectra, averaged over the duration of the flash, of XRO 080109 in Swift/XRT band (0.3-10 keV) for 10A presupernova model

• No extinction

XRO080109/SN2008D Spectra and Light Curves (extinction)

of XRO 080109 in Swift/XRT band (0.3-10 keV) for 10A presupernova model

- $N_{\rm H} = 2 \times 10^{21} \, \rm cm^{-2}$, XRT response
- $E_{K} = 6\pm 2.5$ foe (Tanaka et al. 2009) in modeling of SN2008D light curve

XRO 080109 Spectral Evolution

Objectives

 Analyses, prediction and interpretation of data of Subaru Hyper-Suprime Cam (HSC) using SB templates for SN type Ib/c

New serveys: Palomar Transient Factory (PTF), Lick Observatory Supernova Search (LOSS), Catalina Real-Time Transient Survey (CRTS), Kiso/Kiso Wide Field Camera (KWFC), Skymapper, Dark Energy Survey (DES), Pan-STARRS, Subaru/HSC, Large Synoptic Survey Telescope (LSST)

- Research and development of *new and effective numerical methods* for calculating the radiation of relativistic gas dynamics
- Numerical Improvements in SRRHD code:
 - Relativistic radiation hydrodynamics in 1D
 - Relativistic radiation hydrodynamics in 2D-3D
 - Scattering processes and radiation mechanisms

SN Ibc Shock Breakout at High Redshift

PRELIMINARY RESULTS

• Cosmological parameters (Komatsu et al. 2009): $H0 = 70.5 \text{ km s}^{-1} \text{ Mpc}^{-1}$ k = 0 $\Omega_{\lambda} = 0.726$ $\Omega_{M} = 0.274$

• Dilated and redshifted multigroup LCs with the g bandpass of the Subaru/HSC

 The horizontal line – 5σ detection limit in the g-band for the Subaru/HSC 1 hr integration

• No extinction and no IGM absorption

Days since shock breakout

Conclusions

- The phenomenon of XRO080109/SN2008D may well be explained qualitatively by the explosion of a conventional WR-star surrounded by a stellar wind. The explosion energy > 3 foe. Previous analytic estimations do not take into account the growth of the photosphere accurately
- SN2008D light curve must be modeled for the optimal model
- For the accurate consideration of mildy relativistic radiation dominated shock waves *it is necessary to solve radiation transfer equation (Eddington and M1 closure are not good approximations)*
- Our numerical calculations provides us the opportunity to build robust templates for the analysis and interpretation of the SN lbc observations that will be received by Subaru/Hyper-Suprime Cam (HSC) and a number of others surveys

Thank you!

E-mail: alexey.tolstov@riken.jp

10/31/2013

Additional Slides

Optical data

(Page K.L. et al. GCN Report 110.1 15 Jan 2008), E = 2.5 foe

t, s

SN2008D light curve modeling, E=2 foe

