Prospects with Advanced Gravitational Wave detectors

Michał Wąs for the LIGO Scientific Collaboration and the Virgo collaboration

Laboratoire d'Annecy-le-Vieux de Physique des Particules

YITP

Michał Wąs (Gxxx)

Outline LIGO/Virgo Detectors Result highlights

Gamma-ray bursts Supernovae Summary

- GW same everywhere but propagation delayed ⇒ Reject spurious non-Gaussian glitches
- 3 omnidirectional detectors
 - \rightarrow sky localization by triangulation

antenna response

(Abadie et al., 2012e)

Outline	LIGO/Virgo	Gamma-ray bursts	Supernovae	
	0000000	00000000000	00000000000	

What have we not seen?

Outline	LIGO/Virgo	Gamma-ray bursts	Supernovae	
	00000000	00000000000	00000000000	

Results - binary coalescence

- Search for coalescence of binary neutron star and/or black hole (Abadie et al., 2012d)
- 2005-2010 upper limits 2 orders of magnitude above expectation
- advanced detectors
 → ×10³ increase in sensitive volume
- 40 yr⁻¹ detections expected (Abadie et al., 2010)
 - Large errors on astrophysical predictions: 0.4 400 yr⁻¹
 - Based on binary pulsars observation / population synthesis

Outline	LIGO/Virgo	Gamma-ray bursts		
	00000000	00000000000	000000000000	

Results - isolated neutron stars

- Young pulsars (neutron stars)
 - Crab (SN 1054)
 - Vela (SN $\sim 10^4$ yr ago)
 - Þ ...

spin frequency is precisely observed in radio

- The rotation period is decreasing
 → loss of rotational energy
- less than 1% of Crab energy loss is due to GW emission (Aasi et al., 2013a)
- less than 10% of Vela energy loss is due to GW emission (Aasi et al., 2013a)
- Without any radio observation the limits on energy loss higher by $\sim 10^2-10^3~{\rm (Abadie~et~al.,~2011)}$
- ⇒ EM observation enhance GW searches sensitivity

Outline	LIGO/Virgo	Gamma-ray bursts	Supernovae	
	00000000	00000000000	00000000000	

Results - unmodeled GW bursts

• Search for generic bursts of GWs (2009-2010) (Abadie et al., 2012a)

- Binary mergers
- Stellar collapse
- <u>►</u> ...
- Sensitivity in terms of E_{GW} emitted at 10 kpc

2013 October 30 9/36

Michał Was (Gxxx)

Outline	LIGO/Virgo	Gamma-ray bursts	Supernovae	
	00000000	00000000000	00000000000	

Reaching design will take time

(Aasi et al., 2013b)

Outline	LIGO/Virgo	Gamma-ray bursts	Supernovae	Summary
	00000000	00000000000	00000000000	l .

A fourth detector site helps with sky localization

Third Advanced LIGO detector planned in India 2020-2022

(Aasi et al., 2013b)

Outline	LIGO/Virgo	Gamma-ray bursts	Supernovae	
	00000000	•0000000000	00000000000	

Gamma-ray bursts

Gamma-ray bursts

- Observational definition \rightarrow a burst of γ -rays (10 keV 1 MeV)
- Discovered in the 70's by nuclear bomb test surveillance satellites

- *T*₉₀ duration of 90% of photon counts (∼ 15 − 300 keV)
- Two observational populations:
 - ► short-hard GRBs T₉₀ ≤ 2 s spectrum peaks at higher energy
 - ► long-soft GRBs T₉₀ ≥ 2 s spectrum peaks at lower energy

Gamma-ray burst models

- Long GRBs
- ⇒ Massive rapidly spinning star collapse and explosion
 - Short GRBs
- ⇒ Coalescence of a neutron star and a compact object
 - Both cases: asymmetric, compact, relativistic ⇒ good GW source
 - $\bullet\,$ typical GRB distance $\sim 10\,\text{Gpc}$

Potential lessons from GW-GRB detection

- Confirm the binary coalescence model for short GRBs
- Learn more about central engine of long GRBs
 - black hole or magnetar?

Michał Was (Gxxx)

- Precise measurement of GW speed, $\Delta \nu/c \sim 10^{-16}$
- Measure of Hubble's constant independent of cosmic ladder

Gravitational sources – quadrupolar approximation

Approximation: far field + slow moving source

• Dominant source: mass distribution quadrupolar moment

GW emission - coalescence scenario

Binary system of two compact objects (NSNS or NSBH)

- Lose energy by GW radiation
- $\bullet\,$ GW emission enters sensitive band $(\gtrsim50\,\text{Hz})<50\,\text{s}$ before coalescence
- NS needs to be disrupted \rightarrow $\textit{M}_{\rm BH}$ < 20 M_{\odot} $_{(Duez,\,2009)}$
 - \rightarrow negligible GW S/N at merger, ringdown

Michał Wąs (Gxxx)

GW emission - coalescence scenario

- $\bullet\,$ GRB central engine formed in \lesssim 1 s
- γ -ray emission delayed by $\lesssim T_{90} \sim$ 2 s
- \Rightarrow coalescence time [-5, 1] s prior to GRB observation
 - GRB observed \rightarrow rotation axis points at observer
- ⇒ GW well known and circularly polarized up to inclination of 60° → loose constraint (jet opening angle $\lesssim 30^{\circ}$)

- Magnetar central engine / Proto neutron star
 - bar mode instability in the star (Shibata et al., 2003)
 - neutron star core fragmentation (Davies et al., 2002; Kobayashi and Mészáros, 2003)
- Black hole and accretion disk
 - Disk fragmentation (Piro and Pfahl, 2007)
 - Disk precession (Romero et al., 2010)
- \Rightarrow circular polarization along rotation axis
- \Rightarrow Emitted GW energy $\lesssim 10^{-2}\,M_\odot c^2$
 - Other emission mechanism but no prospects for extra-galactic reach
 - Out of frequency band (Neutrino, normal modes, ...)
 - Too small amplitude (Core bounce, SASI, ...)

Two complementary searches – (Abadie et al., 2012c)

- Broad in scope covers most possibilities
 - "burst" searching method any signal shapes
 - $\blacktriangleright\,$ Limited to 60 500 Hz band, \lesssim 1 s duration
 - Assumes circular polarization
 - ► Loose time coincidence between γ -rays and GW $T_{GW} T_{\gamma} \in [-600, \max(T_{90}, 60)]$ s
 - $\blacktriangleright\,$ More sensitive than blind search by factor \sim 2
- Focused on short GRBs binary coalesence
 - Inspiral waveform templates, NS-NS and NS-BH
 - ► Tight time coincidence between γ -rays and GW inspiral end time $T_{\text{GW, coalescene}} T_{\gamma} \in [-5, 1]$ s
 - \blacktriangleright More sensitive to inspiral signals by factor ~ 2
- Both combine data coherently from \geq 2 detectors

2009-2010, GW non detection consequences GRB progenitor distance exclusion

Iddd

Unmodeled GW bursts with $E_{GW} = 10^{-2}\,M_\odot\,c^2$

Michał Was (Gxxx)

🗖 (((O))) VIRGO LSC»

2013 October 30 21 / 36

GRB070201 / GRB051103

Significant previous non detections

- Short GRBs,
 - GRB070201 sky location overlap with M31, (Andromeda 770 kpc)
 - GRB051103 sky location overlap with M81 (~ 3.6 Mpc)
- no GW found
 - ⇒ Binary coalescence in M31 excluded at >99% confidence level (Abbott et al., 2008)
 - ⇒ Binary coalescence in M81 excluded at 98% confidence level (Abadie et al., 2012b)
- Compatible with
 - Neutron star quake in M31/M81 (Soft gamma-repeater)
 - Coalescence in galaxy behind M31/M81

GRB051103 error box (Hurley et al., 2010)

Expectations & Prospects

• 2009-2010 results

Unmodeled GW bursts

- Prospects for advanced detectors (Abadie et al., 2012c)
 - ► ×10 sensitivity, ×5 number of GRBs $\leftarrow \gamma$ -ray satellite coverage
 - long GRBs, possible if optimistic GW emission
 - short GRBs, quite possible, especially if significant NS-BH fraction

Michał Wąs (Gxxx)

1499. 🕵 (((O))) VIRG) LSC

Binary coalescence

Outline	LIGO/Virgo	Gamma-ray bursts	Supernovae	
			•0000000000	

Supernovae prospects

rule of thumb for GW sensitivity

smallest observable GW amplitude $\propto S(f) \times S/N_{\text{threshold}}$

- Astrophysical triggers, GW models, etc ... changes search parameter space
- \Rightarrow S/N_{threshold} depends on the search hypothesis

 \Rightarrow Improves sensitivity by 20%, 70% in volume

Real data, no GW model (Aasi et al., 2013b)

Rule of thumb for GW detectability (Sutton, 2013)

GW amplitude (rss – root-sum-square)

$$h_{
m rss} = \sqrt{\int_{-\infty}^{\infty} [h_+^2(t) + h_{ imes}^2(t)] \mathrm{d}t}$$

Energetics for signal at frequency f₀

emission geometrics

Signal to Noise Ratio

• Volume where S/N above threshold ρ_{det}

$$\mathcal{R} \simeq \left(rac{G}{2\pi^2 c^3}
ight)^{1/2} rac{\sqrt{E_{
m GW}}}{S(f_0)f_0
ho_{
m det}}$$

• Almost independent of emission polarization

Value of ρ_{det} in practice (Sutton, 2013)

1999) 🕵 ((((O))) VIRG) 🛯 🕵 🔊

 $\Rightarrow \rho_{det} \simeq 20$

Summary

- Good prospects for first detection with advanced detectors \gtrsim 2015
 - Binary coalescences
 - Gamma-ray bursts
 - Pulsars
 - Galactic supernova

- $\bullet~$ Is $E_{GW} \sim 10^{-8}\,M_\odot c^2 \simeq 10^{46}\,\text{erg}$ a good rule of thumb?
- Are energetics flat with frequency?
 Higher GW emission efficiency at high frequency?

Figure 8 of Müller et al. (2013), with aLIGO sensitivity at 10 kpc Caveat: stappled plot last night

Michał Wąs (Gxxx)

Low and high frequency as important

Müller et al. (2013)

Measuring Hubble's constant with GWs

All potential GWs sources $z \lesssim 0.1$: $H_0 = c \frac{z}{D_1}$

- A(t; (1 + z)M) GW shape sets absolute amplitude of the waveform
- *D_L* luminosity distance
- *ι* binary inclination angle degenerate with luminosity distance (polarization is hard to measure)
- z redshift degenerate with the mass of the binary

Measuring Hubble's constant with GWs

$$\begin{bmatrix} h_{+}(t) \\ h_{\times}(t) \end{bmatrix} = \frac{A(t; (1+z)\mathcal{M})}{D_{L}} \begin{bmatrix} (1+\cos^{2}\iota)\cos(\Psi(t)) \\ 2\cos\iota\sin(\Psi(t)) \end{bmatrix}$$

Several approaches

- Combine GW and GRB observation (Nissanke et al., 2010)
 - redshift given by EM observations
 - GW shape yields absolute amplitude
 - \rightarrow Measure D_L from GW amplitude
 - γ-ray observation means binary close to face-on
 - \rightarrow helps breaking the D_L vs inclination degeneracy
- Use GW information alone (Taylor et al., 2012)
 - Assume *M* known binary neutron star system
 - \rightarrow Measure redshift from GW shape
 - GW shape yields absolute amplitude \rightarrow Measure D_L from GW amplitude
 - Dozens of events per year
 - \rightarrow helps breaking the D_L vs inclination degeneracy
- In both cases \sim 10% precision on H_0
- Measurement independent of cosmic ladder

References

Aasi, J. et al. (2013a). Gravitational waves from known pulsars: results from the initial detector era. arXiv:1309.4027.

- Aasi, J. et al. (2013b). Prospects for localization of gravitational wave transients by the Advanced LIGO and Advanced Virgo observatories. arXiv:1304.0670.
- Abadie, J. et al. (2010). Predictions for the rates of compact binary coalescences observable by ground-based gravitational-wave detectors. Class. Quantum Grav., 27:173001.
- Abadie, J. et al. (2011). All-sky search for periodic gravitational waves in the full S5 LIGO data. Astrophys. J., 737:93.

Abadie, J. et al. (2012a). All-sky search for gravitational-wave bursts in the second joint LIGO-Virgo run. Phys. Rev. D, 85:122007.

Abadie, J. et al. (2012b). Implications for the Origin Of GRB 051103 From LIGO Observations. Astrophys. J., 755:2.

- Abadie, J. et al. (2012c). Search for gravitational waves associated with gamma-ray bursts during LIGO science run 6 and Virgo science run 2 and 3. Astrophys. J., 760:12.
- Abadie, J. et al. (2012d). Search for Gravitational Waves from Low Mass Compact Binary Coalescence in LIGO's Sixth Science Run and Virgo's Science Runs 2 and 3. Phys. Rev. D, 85:082002.
- Abadie, J. et al. (2012e). Sensitivity achieved by the LIGO and Virgo gravitational wave detectors during LIGO's sixth and Virgo's second and third science runs. LIGO-T1100338. arXiv:1203.2674.
- Abbott, B. P. et al. (2008). Implications for the origin of GRB 070201 from LIGO observations. Astrophys. J, 681:1419.

Davies, M. B., King, A., Rosswog, S., and Wynn, G. (2002). Gamma-ray bursts, supernova kicks, and gravitational radiation. Astrophys. J. Lett., 579:L63.

Duez, M. D. (2009). Numerical relativity confronts compact neutron star binaries: a review and status report. Class. Quantum Grav., 27:114002.

- Hurley, H. et al. (2010). A new analysis of the short-duration, hard-spectrum GRB 051103, a possible extragalactic soft gamma repeater giant flare. Mon. Not. R. Astron. Soc., 403:342.
- Kobayashi, S. and Mészáros, P. (2003). Gravitational radiation from gamma-ray burst progenitors. Astrophys. J., 589:861.
- Mazets, E. P. et al. (2008). A giant flare from a soft gamma repeater in the andromeda galaxy (m31). Astrophys. J., 680:545.
- Müller, B., Janka, H.-T., and Marek, A. (2013). A new multi-dimensional general relativistic neutrino hydrodynamics code of core-collapse supernovae III. gravitational wave signals from supernova explosion models. Astrophys. J., 766:43.
- Nissanke, S. et al. (2010). Exploring short gamma-ray bursts as gravitational-wave standard sirens. Astrophys. J., 725:496.
- Piro, A. L. and Pfahl, E. (2007). Fragmentation of collapsar disks and the production of gravitational waves. Astrophys. J., 658:1173.
- Romero, G. E., Reynoso, M. M., and Christiansen, H. R. (2010). Gravitational radiation from precessing accretion disks in gamma-ray bursts. Astron. Astrophys., 524:A4.
- Shibata, M., Karino, S., and Eriguchi, Y. (2003). Dynamical bar-mode instability of differentially rotating stars: effects of equations of state and velocity profiles. Mon. Not. R. Astron. Soc., 343:619.
- Sutton, P. J. (2013). A rule of thumb for the detectability of gravitational-wave bursts. arXiv:1304.0210.
- Taylor, S. R., Gair, J. R., and Mandel, I. (2012). Cosmology using advanced gravitational-wave detectors alone. Phys. Rev. D, 85:023535.

