Neutrino Oscillations in Core-Collapse Supernovae

Meng-Ru Wu, Technische Universität Darmstadt

Supernovae and Gamma-Ray Bursts 2013 10/14/2013-11/15/2013

Unterstützt von / Supported by

Alexander von Humboldt Stiftung/Foundation

Neutrino Oscillations in Core-Collapse Supernovae

- Core-collapse supernovae & neutrinos
- Active-active neutrino oscillations
- Active-sterile neutrino oscillations

Supernova explosion - the death of massive stars

(From NASA website)

energy of the emitted light ~ 10^{49} - 10^{50} ergs ^(From AAO website) peak luminosity may be as bright as an entire galaxy!

- produce elements after BBN
- star formation & galaxy formation
- galactic chemical enrichment

Neutrinos in supernovae

Over 99 percent of gravitational energy is carried away by $\sim 10^{58}$ different kind of neutrinos in a time scale of 10 seconds.

(H.-Th. Janka, et al, PTEP 01A309 (2012))

- \rightarrow Delayed neutrino-heating mechanism for explosion
- \rightarrow Neutrino-driven winds as a site of heavy element formation
- \rightarrow Neutrino-induced nucleosynthesis in supernova envelopes

Neutrino signals

We have ~ 20 SN neutrinos detected from SN1987a

- Confirms the basic picture of core-collapse SN model
- Set limit on the absolute neutrino mass from the time-of-flight

Neutrino mixing among active flavors

Energy hierarchy of supernova neutrinos

There exists an energy hierarchy between the emitted neutrinos :

$$\langle E_{\nu_e} \rangle < \langle E_{\bar{\nu}_e} \rangle < \{ \langle E_{\nu_\mu} \rangle, \langle E_{\nu_\tau} \rangle \}$$

because of (a) muon and tau abundances are suppressed (b) more neutrons than protons

Neutrino flavor oscillations might affect supernova physics!

The next galactic supernova?

Table 2 Summary of neutrino detectors with supernova sensitivity	Table 2	Summary	of neutrino	detectors with	n supernova	sensitivity ^a
--	---------	---------	-------------	----------------	-------------	--------------------------

Detector	Туре	Mass (kt)	Location	Events	Live period
aksan	C_nH_{2n}	0.33	Caucasus	50	1980-present
VD	C_nH_{2n}	1	Italy	300	1992-present
uper-Kamiokande	H ₂ O	32	Japan	7,000	1996-present
lamLAND	C_nH_{2n}	1	Japan	300	2002-present
IiniBooNE ^b	C_nH_{2n}	0.7	USA	200	2002-present
orexino	C_nH_{2n}	0.3	Italy	100	2007-present
ceCube	Long string	0.6/PMT	South Pole	N/A	2007-present
carus	Ar	0.6	Italy	60	Near future
IALO	Pb	0.08	Canada	30	Near future
NO+	C_nH_{2n}	0.8	Canada	300	Near future
/icroBooNE ^b	Ar	0.17	USA	17	Near future
JOvA ^b	C_nH_{2n}	15	USA	4,000	Near future
BNE liquid argon	Ar	34	USA	3,000	Future
BNE with water Cherenkov	H ₂ O	200	USA	44,000	Proposed
IEMPHYS	H ₂ O	440	Europe	88,000	Future
Iyper-Kamiokande	H ₂ O	540	Japan	110,000	Future
ENA	C_nH_{2n}	50	Europe	15,000	Future
LACIER	Ar	100	Europe	9,000	Future

(Kate Scholberg., Ann.Rev.Nucl.Part.Sci, 62, 2012)

- Supernova explosion : Explosion mechanism, shock propagation, progenitor structure, NS or BH?...

- Properties of proto-neutron star : Nuclear equation of state, hadron-quark phase transition....

- Properties of neutrinos : Neutrino mass hierarchy, absolute neutrino mass, non-standard interaction? sterile neutrinos?...

Diffusive supernova neutrino background

$$\frac{d\phi}{dE_{\nu}} = c \int R_{\rm CCSN}(z,M) \frac{dN_{\nu}(\bar{E}_{\nu},M)}{d\bar{E}_{\nu}dM} (1+z) \left| \frac{dt}{dz} \right| dz dM$$

Better understanding of neutrino oscillations in supernovae allows us to extract more information!

Active-active Neutrino Oscillations in Supernovae

Separation of two regimes :

Inside the neutrinospheres \rightarrow neutrinos are trapped, no flavor oscillations, described by Boltzmann transport

Outside the neutrinospheres \rightarrow free-streaming, flavor oscillations described by one-particle Schrödinger-like equation in flavor space

Neutrino flavor evolution :

$$i\frac{d}{dt}|\nu\rangle = (H_{\text{vac}} + H_m + H_\nu)|\nu\rangle \quad , \ |\nu\rangle = \left[a_e, a'_\mu, a'_\tau\right]^{\dagger}$$

vacuum term :
$$H_{\text{vac}} \approx \frac{\Delta m_{31}^2}{4E_{\nu}} \begin{bmatrix} -\cos 2\theta_{13} & 0 & \sin 2\theta_{13} \\ 0 & 1 & 0 \\ \sin 2\theta_{13} & 0 & \cos 2\theta_{13} \end{bmatrix} + \frac{\Delta m_{21}^2}{4E_{\nu}} \begin{bmatrix} -\cos 2\theta_{12} & \sin 2\theta_{12} & 0 \\ \sin 2\theta_{12} & \cos 2\theta_{12} & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

MSW term : $H_m = \pm \sqrt{2} G_F n_e diag(1,0,0)$ (Wolfenstein 1978; Mikheyev & Smirnov, 1985)

=> MSW resonance :
$$\pm \sqrt{2} G_F n_e = \frac{\Delta m_{ij}^2}{2 E_v} \cos 2\theta_{ji}$$

for δm_{31}^2 , $\rho_{res} \sim O(10^3) \text{ g/cm}^3$
for δm_{21}^2 , $\rho_{res} \sim O(10) \text{ g/cm}^3$

Mostly adiabatic, but may be disturbed by the passing of supernova shock

Neutrino flavor evolution :

$$i\frac{d}{dt}|\nu\rangle = (H_{\text{vac}} + H_m + H_\nu)|\nu\rangle \quad , \ |\nu\rangle = \left[a_e, a'_\mu, a'_\tau\right]^{\dagger}$$

neutrino-neutrino term :

(Fuller, et. al., 1987; Pantaleone, 1992; Sigl & Raffelt, 1992; Pehlivan & Balantekin 2006)

$$H_{\nu} = \sqrt{2}G_{F} \int (\underbrace{1 - \cos \theta_{\vec{p}\vec{q}}}_{\infty}) [\rho_{\nu}(\vec{q}) - \bar{\rho}_{\nu}^{*}(\vec{q})] dn_{\nu}(\vec{q}) \\ \propto \left(\frac{R_{\nu}}{r}\right)^{2} \rho_{\nu} = |\nu\rangle\langle\nu| = \begin{vmatrix} |a_{e}|^{2} & a_{e}a_{\mu'}^{*} & a_{e}a_{\tau'}^{*} \\ a_{e}^{*}a_{\mu'} & |a_{\mu'}|^{2} & a_{\mu'}a_{\tau'}^{*} \\ a_{e}^{*}a_{\tau'} & a_{\mu'}^{*}a_{\tau'} & |a_{\tau'}|^{2} \end{vmatrix}$$

r

=> coupled non-linear equation

=> collective neutrino oscillations would occur closer to the PNS

 $\frac{\Delta m_{31}^2}{2E} \approx \sqrt{2} G_F (n_{\nu_e} - n_{\bar{\nu}_e}) \frac{R_\nu^2}{r^2}$

Why "collective"?

Two flavor, pure isotropic neutrino gas :

Neutrino "spin":
$$\vec{s}_{\nu} \equiv \langle \nu | \vec{\sigma}/2 | \nu \rangle = \frac{1}{2} \begin{pmatrix} 2 \Re (a_e^* a_x) \\ 2 \Im (a_e^* a_x) \\ |a_e^2| - |a_x^2| \end{pmatrix}$$

$$\frac{d \vec{s}_i}{dt} = \vec{s}_i \times \left(\omega_i \vec{H}_V - \mu \sum_j \vec{s}_j \right) \qquad \omega_i \equiv$$

when $\mu \gg \omega_i$, $\frac{d \vec{s}_i}{dt} \approx -\mu \vec{s}_i \times \vec{S}$

 \rightarrow every neutrino "spin" essentially aligns with \vec{S}

$$\Rightarrow \frac{d\vec{S}}{dt} \approx \langle \omega \rangle \vec{S} \times \vec{H}_{V}$$

All neutrino "spins" precess (oscillate) around \vec{H}_{V} with a collective frequency $\langle \omega \rangle$.

	Shock Revival ~O(10² km)	v-driven Wind ~O(10 ³ km)	v-induced nucleosynthesis in He shell ~O(10⁵ km)	Neutrino signals
Collective Oscillations	No(?)	Maybe	Yes	Yes
MSW H-resonance	No	No	Yes	Yes
MSW L-resonance	No	No	No	Yes

Neutrino signals and mass hierarchy

In the accretion phase of Fe-core SN, collective oscillations are expected to be suppressed by the large matter potential.

Neutrino signals and mass hierarchy

In the accretion phase of Fe-core SN, collective oscillations are expected to be suppressed by the large matter potential.

 \rightarrow possibility of using SN signal to distinguish the neutrino mass hierarchy by comparing the event rates and spectra using multiple detection channels.

(MRW, Qian, Martinez-Pinedo, Fischer, in preparation)

Neutrino-bulb model for collective oscillations

(Duan et. al., PRD 74, 105014, 2006)

- Supernova environment is spherically symmetric.
- All neutrinos are emitted from a sharp neutrinosphere.
- All neutrinos are in pure flavor states at the neutrino sphere.
 - \rightarrow ray-tracing neutrinos with different energy E_V and emission angle θ .

$$i\frac{d}{dr}\psi(E_{\nu},\theta,r) = \left[\frac{H_{\rm v}(E_{\nu}) + H_m(r)}{D(\theta,r)} + H_{\nu}(\theta,r)\right]\psi(E_{\nu},\theta,r)$$

Spectral splits (swaps) :

The collective frequency

$$\langle \omega \rangle = \int \frac{\delta m^2}{2E_{\nu}} f_{\nu}(E_{\nu},\mu) dE_{\nu} d\mu$$

gives rise to the "spectral splits" ("spectral swaps") (Raffelt 2007, 2011. Duan et. al. 2007. Dasupta et. al., 2009. MRW & Qian 2011, Volpe et. al., 2011)

Spectral splits (swaps) :

The collective frequency

$$\langle \omega \rangle = \int \frac{\delta m^2}{2E_{\nu}} f_{\nu}(E_{\nu},\mu) dE_{\nu} d\mu$$

gives rise to the "spectral splits" ("spectral swaps") (Raffelt 2007, 2011. Duan et. al. 2007. Dasupta et. al., 2009. MRW & Qian 2011, Volpe et. al., 2011)

Warning :

The results sensitively depend on :

(a) relative spectra of electron (anti)neutrinos and mu/tau (anti)neutrinos.

(b) competition of matter potential and neutrino-neutrino potential.

 \rightarrow possibility to explore the micro-physics that determines the neutrino spectra.

- Numerically, requires a large numbers of angular bins/modes ($\sim 10^2 - 10^4$) to prevent spurious flavor instability.

- Numerically, requires a large numbers of angular bins/modes ($\sim 10^2 - 10^4$) to prevent spurious flavor instability.

- Break down of spherical symmetry from the azimuthal-angle induced instability \rightarrow ultimate need of reduced 6-D problem? (Raffelt et. al, PRL, 2013)

- Numerically, requires a large numbers of angular bins/modes ($\sim 10^2 - 10^4$) to prevent spurious flavor instability.

- Break down of spherical symmetry from the azimuthal-angle induced instability \rightarrow ultimate need of reduced 6-D problem?

- Are the two regimes (Boltzmann & Schrodinger-like) really separable? (Cherry et. al, PRL, 2012)

- Numerically, requires a large numbers of angular bins/modes ($\sim 10^2 - 10^4$) to prevent spurious flavor instability.

- Break down of spherical symmetry from the azimuthal-angle induced instability \rightarrow ultimate need of reduced 6-D problem?

- Are the two regimes (Boltzmann & Schrodinger-like) really separable?

- Is there any neutrino-antineutrino coherent flavor transformation near the neutrinosphere? (Volpe et. al, PRD, 2013, Vlasenko et. al., 2013)

More works to be done both analytically and numerically!

Summary (I)

- Neutrinos play essential roles in core-collapse supernovae. To really understand their effects in supernovae and to extract more information from SN neutrino signals, it is important to understand their flavor transformation.

- If collective neutrino oscillations are suppressed during the accretion phase of Fe-CCSNe. There is a possibility of using the neutrino signals to identify the neutrino mass hierarchy.

- Collective neutrino oscillations among active flavors typically produce spectral splits/swaps. However, many more challenges are still ahead of us.

Active-sterile Neutrino Oscillations in Supernovae

eV sterile neutrinos?

(Kopp, Machado, Maltoni, Schwertz, JHEP05 (2013) 050)

The anomaly of electron antineutrino disappearance experiments from short-baseline reactors & Gallium solar neutrino experiments may be accounted for by introducing eV scale sterile neutrinos.

In 3+1 scheme :
$$P_{ee}^{\text{SBL},3+1} = 1 - 4|U_{e4}|^2(1 - |U_{e4}|^2)\sin^2\frac{\Delta m_{41}^2L}{4E} = 1 - \sin^2 2\theta_{ee}\sin^2\frac{\Delta m_{41}^2L}{4E}$$

 $\delta m_{14}^2 \sim O(\mathrm{eV}^2), \quad \sin^2 2\theta_{14} = \sin^2 2\theta_{ee} \sim 0.1$

Hints from different experiments/observations

- LSND, MiniBooNE
- Long-base line accelerator experiments
- Cosmology/BBN
- Solar Neutrinos

Role of eV sterile neutrinos in supernovae?

First pointed out in [Nunokawa, Peltoniemi, Rossi & Valle, PRD 56, 1704(1997)] that eV sterile neutrinos might have effects on shock-revival and electron fraction In the ejecta.

However, the feedback on the electron-to-baryon ratio (Ye) was not treated in a consistent manner.

Neutrino oscillations in medium

With two-flavor approximation and in the free-streaming regime, the neutrino flavor evolution is governed by the vacuum Hamiltonian + matter-induced Hamiltonian :

$$H_{\rm vac} = \frac{\delta m_{14}^2}{4E_{\nu}} \begin{bmatrix} -\cos 2\theta_{14} & \sin 2\theta_{14} \\ \sin 2\theta_{14} & \cos 2\theta_{14} \end{bmatrix}$$

$$H_{\rm m} = \pm \frac{\sqrt{2}}{2} G_F n_b \left(Y_e - \frac{Y_n}{2} \right) \begin{bmatrix} 1 & 0\\ 0 & -1 \end{bmatrix}$$
$$= \pm \frac{3\sqrt{2}}{4} G_F n_b \left(Y_e - \frac{1}{3} \right) \begin{bmatrix} 1 & 0\\ 0 & -1 \end{bmatrix}$$

different from the MSW potential that for active flavors because of the neutral-current

=> MSW resonance :

$$\frac{\delta m_{14}^2}{4E_{\nu}}\cos 2\theta_{14} = \pm \frac{3\sqrt{2}}{4}G_F n_b \left(Y_e - \frac{1}{3}\right)$$

Supernova profiles

- Because of the deleptoniztion that occurs during the collapse and the shock break-out, the electron-to-baryon ratio Ye ~ 0.1 around the neutrinosphere such that active-sterile MSW resonance could occur between the neutrinosphere and the shock.

- Collective neutrino oscillations are suppressed because at IR in bulb model, $\rho \sim 10^9 - 10^{11} {
m g/cm}^3$ and $Y_e \gg Y_{\nu_e}$

MSW flavor transformation at the inner resonance

For neutrinos :

$$Y_e < \frac{1}{3}^+, \nu_L = \nu_e, \ \nu_H = \nu_s, \qquad Y_e > \frac{1}{3}^+, \nu_L = \nu_s, \ \nu_H = \nu_e$$

For antineutrinos :

$$Y_e < \frac{1}{3}^-, \bar{\nu}_L = \bar{\nu}_s, \ \bar{\nu}_H = \bar{\nu}_e, \qquad Y_e > \frac{1}{3}^-, \bar{\nu}_L = \bar{\nu}_e, \ \bar{\nu}_H = \bar{\nu}_s,$$

Electron (anti)neutrinos may be transformed to sterile (anti)neutrinos when they cross Ye \sim 1/3.

MSW flavor transformation at the inner resonance

L-Z formula

30

40

50

Numerical integration

Landau-Zener survival probability :

$$P_{ee} = \exp\left(-\frac{\pi^2}{2}\frac{\Delta r}{L_{\rm osc}}\right)$$

The oscillation length at resonance :

$$L_{\rm osc} = \frac{4\pi E_{\nu}}{\delta m_s^2 \sin 2\theta_{14}},$$

$$\approx 45 \,\mathrm{m} \left(\frac{E_{\nu}}{10 \,\mathrm{MeV}}\right) \left(\frac{1.75 \mathrm{eV}^2}{\delta m_s^2}\right) \left(\frac{0.1^{1/2}}{\sin 2\theta}\right)$$

The resonant width :

Survival Probability P_{ee}

0.8

0.6

0.4

0.2

0

10

00

Time evolution of RIR and E0.5 with Ye from an 8.8 SN Model

- The inner resonance happens at radius that increases with shock expansion initially, and then retreats with PNS cooling later.

- $E_{0.5}$ follows the change of R_{IR} , exceeding the average neutrino energy ~ 10 MeV for substantial amount of time.

(MRW, Fischer, Martinez-Pinedo, Qian, arXiv:1305.2382)

Feedback on Ye profile?

Since (1) Ye is determined by the competition of rates of electron/positron and electron (anti)neutrino captures :

$$\nu_e + n \rightleftharpoons p + e^-$$

 $\bar{\nu}_e + p \rightleftharpoons n + e^+$

(2) electron (anti)neutrino capture rates are affected by the flavor oscillations which depends on Ye profiles

 \rightarrow Need to evolve the Ye along with the active-sterile flavor transformation!

Feedback on Ye profile:

We follow the evolution of Ye for relevant mass shells, assuming the hydrodynamics are not affected.

Effect on the oscillations

The formation of the Ye plateau breaks the degeneracy between neutrinos and antineutrinos and induces more flavor transformation in the shock expansion phase.

- Reduce the capture rates of electron neutrinos more than that of electron antineutrinos.

- Greatly reduce the *v*-heating rates around the phase of shock break-out.

Effect on nucleosynthesis

Ye at alpha freeze-out in the ejecta is reduced from ~0.5 to ~0.4.
 For the 8.8M₀ SN model, the main products of nucleosynthesis shift from the iron peak to Sr-Ru.

Effect on v-heating rates

The reduction of heating rate around the shock break-out :

Possibility of using SN models to constrain the parameter space of sterile neutrinos?

Summary (II)

- If light eV sterile neutrinos exist, active-sterile MSW flavor conversion in supernovae might happen between the neutrinosphere and the shock.

- The flavor conversion reduces the neutrino heating rates (dynamics) substantially and change the ratio of electron neutrino capture and electron antineutrino capture rates (nucleosynthesis).

- Including the feedback on Ye creates a plateau around Ye~1/3 and furthers enhance the effects.

- It would be interesting to include it in a supernova simulation to see if it could provide firm constraints on the parameter space of sterile neutrinos and study the signature in neutrino signals.

Thanks for your attention!