

Type Ic Core-Collapse Supernovae Evolved from Very Massive Stars

Takashi Yoshida

Yukawa Institute for Theoretical Physics, Kyoto University

Hideyuki Umeda, Shinpei Okita

Department of Astronomy, University of Tokyo

Supernovae and Gamma-Ray Bursts in Kyoto, 2013 Conference on Supernovae October 29, 2013

Very Massive Stars

Super-luminous SN-R

Takashi Yoshida "Supernovae and Gamma-Ray Bursts in Kyoto", YITP, October 29, 2013

SN 2007bi

Takashi Yoshida "Supernovae and Gamma-Ray Bursts in Kyoto", YITP, October 29, 2013

Evolution and SNe of Very Massive Stars

Progenitors for SNe Ic with large ⁵⁶Ni production

Massive Star evolution (TY & Umeda 2011; Umeda, TY & Takahashi 2012) $M_{\rm MS} = (13 -) \ 100 - 500 \ M_{\odot}, Z=0.004$

- Mass loss rate Main-sequence Vink et al. (2001) ∝ Z^{0.69}, Z^{0.64}
 Red giant de Jager et al. (1988) (Z dependence: ∝ Z^{0.64})
 Wolf-Rayet stars Nugis & Lamers (2000) (Z dependence: Vink & de Koter 2005)
 - Final mass, CO-core mass, stellar type

56Ni production in aspherical core-collapse SNe Ic

- Aspherical SN explosions of 110 and 250 M_{\odot} stars (Z=0.004) with various opening angles θ_{op}
 - **Dependence of** $M(^{56}Ni)$ and ejecta amount on θ_{op}

Constraints from the observations of SN 2007bi

Final Mass of Very Massive Stars

Final mass M_f depends on mass loss rate.

 $\sim M_{\rm MS} > 100 - 140 M_{\odot} \longrightarrow \rm WO \text{ or WC stars ... SNe Ic}$

CO Core Mass of Very Massive Stars

CC SN Ic with M(⁵⁶Ni)>3M₀ → A: 110 < M_{MS} < 280 M₀
Small mass loss rate → PISN is possible for SN 2007bi

Pulsational Pair-Instability SNe

Pulsational pair-instability (PPI) SNe

Pulsations by pair-instability Core-collapse

⁵⁶Ni Production of Aspherical CC SNe

One possibility for explosion mechanism of SN 2007bi

Conclusions

Very massive stars in Z=0.004

> Final mass and CO-core mass strongly depend on the mass loss rate.

• Progenitor of SNe Ic $\longrightarrow M_{\rm MS} > 100 - 140 M_{\odot}$

SNe Ic with large ⁵⁶Ni production

• CCSN (PPI SN) with $M(^{56}Ni) \geq 3 M_{\odot}$

 $110 \le M_{\rm MS} \le 280 \ M_{\odot}, E \ge 2 \times 10^{52} \ {\rm erg}$

• PISN with $M(^{56}Ni) \gtrsim 3 M_{\odot}$

 $\longrightarrow M_{\rm MS} \gtrsim 500 \ M_{\odot}$

 $(M_{\rm MS} \gtrsim 300 M_{\odot}$ with small mass loss rate)

Aspherical CC (PPI) SN models M_{MS}=250M_o and E=7×10⁵² erg, M_{MS}=110M_o and E=5×10⁵² erg One possibility for explosion mechanism of SN 2007bi

Takashi Yoshida "Supernovae and Gamma-Ray Bursts in Kyoto", YITP, October 29, 2013