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Why large D?

• Theories often 
– have parameters that can be varied
– simplify at boundaries/origin of parameter 

space, eg:

• QED around e2=0

• SU(N) Yang-Mills around N=infty
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• Theories often 
– have parameters that can be varied
– simplify at boundaries/origin of parameter 
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• R µν=0 has D as natural parameter

• GR simplifies greatly at D→∞
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� Large D expansion can be useful

– deeper understanding of the theory 
(reformulation?)

– calculations: new perturbative expansion

Why large D?



• Feynman diagrams Strominger 1981, Bjerrum-Bohr 2003, Canfora 2005

• Analogue of large N of Yang-Mills?

– SO(D-1,1) local symmetry of GR

• Large N YM: gluons arrange into worldsheets

• QGR

– not dominated by planar diagrams

– D not only in graviton polarizations, but also in phase 

space integrals: terrible UV behavior

Large D limit of quantum GR?
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• Large D Kaluza-Klein truncation
– keeps ∼D2 polarizations of gravitons

– 4d UV behavior

Not very clear how useful

Large D limit of quantum GR?



• Classical GR is well defined at any D

• Much of quantum gravity has been learned 
from semiclassical black hole physics

Similar motivation & techniques: B. Kol et al

large-D study of Euclidean Schw zero mode

Classical theory



What’s this theory?

A theory of black holes that interact via 
the grav field between them, and emit 

and absorb gravitational waves

GR in vacuum
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Basic solution

length scale r0

GR in vacuum

ds2 = −
�
1 −

�r0
r

�D−3�
dt2 +

dr2

1−
�
r0
r

�D−3 + r
2dΩD−2



• r0 not the only scale 

• Small parameter 1/D
⇒ hierarchy of scales

r0/D ` r0

• This is the main feature of large-D GR 

• This talk is about its origin & implications

GR in vacuum – large D



Different physics at different scales:

• ‘Far’ dynamics at scales O(r0 D
0) from horizon 

– flat space, almost trivial

• ‘Near’ dynamics at scales O(r0/D) from horizon 
– ‘string’ dynamics, non-trivial

GR in vacuum – large D



Two main effects:
1. Small cross sections

• elementary geometry effect

2. Interactions localized near horizon

• gravitational effect

GR @ large D



Area of spheres becomes small
compared to hypercubes that enclose them

Elementary geometry @ large D

...

ΩD−2 =
2π(D−1)/2

Γ
�
D−1
2

� → ∼ D−D/2 → 0

Area(Sphere)
Area(Cube)

= 22−DΩD−2



Lots of space in diagonal directions

Sphere of finite radius but zero area
� vanishing cross sections

...L
1 1

L

L2 = x21 + · · ·+ x2D−1 = D− 1

L→ D1/2 ≫ 1

Elementary geometry @ large D



• Large potential gradient:

Φ(r) ∼ (r0/r)D−3

⇒∇Φ|r0
∼ D/r0

Localization of interactions

r0

Φ(r)

r

D



• Large potential gradient:

Φ(r) ∼ (r0/r)D−3

⇒∇Φ|r0
∼ D/r0

⇒⇒⇒⇒ Hierarchy of scales

r0/D ` r0

Localization of interactions

r0

Φ(r)

r

D



• r0 fixed outside horizon

Flat, empty space at r >r0

no gravitational field

Localization of interactions

ds2 → −dt2 + dr2 + r2dΩD−2

f (r) = 1−
�r0
r

�D−3
−→ 1 for r >r0



Gravitational potential appreciable only in 
thin near-horizon region

(r0/r)D−3 = Ο(1)   ⇔ r−r0 < r0/D

Localization of interactions

r−r0 ∼ r0/D



• Interactions only within r−r0 < r0/D

• No capture of particles outside this ‘sphere 
of influence’

• Probed by frequencies ω > D/r0

Localization of interactions



GR @ D →∞ : far view
Holes cut out in Minkowski space

scale O(r0 D
0)
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GR @ D →∞ : far view

No interaction, confirmed in

• collisions

• radiation from binaries
• scalar emission/absorption

Holes cut out in Minkowski space

No wave absorption (perfect reflection)
@ D →∞

scale O(r0 D
0)



GR @ D →∞ : near view

r−r0 ` r0

Keep r0/D finite

Includes ‘sphere of influence’
r−r0 < r0/D

⇒⇒⇒⇒ Non-trivial dynamics

Overlaps with far region at
r0/D ` r−r0  ` r0

scale O(r0/D)



GR @ D →∞ : near view

Near-horizon coordinate:  R=(r/r0)
D−3

ds2(Schw)→−R− 1
R

dt2 +
r20
D2

dR2

R(R− 1) + r
2
0dΩ

2
D−2

r−r0` r0



GR @ D →∞ : near view

Near-horizon coordinate:  R=(r/r0)
D−3

Change tnear = D/(2r0) tfar R = cosh2ρ

⇒ 2d string black hole

ds2(Schw)→−R− 1
R

dt2 +
r20
D2

dR2

R(R− 1) + r
2
0dΩ

2
D−2

Witten, Das et al, Elitzur et al

scale O(r0/D)

ds2nh =
4r20
D2

�
− tanh2 ρ dt2near + dρ2

�
+ r20dΩ

2
D−2



GR @ D →∞ : near view

• Spherical reduction of Einstein-Hilbert

⇒ 2d dilaton gravity

ds2nh =
4r20
D2

�
g(2)µν dx

µdxν
�
+ r20e

−4Φ(x)/(D−2)dΩ2D−2

g(2)µν , Φ

I =

�
d2x

√
−g e−2Φ

�
R+ 4

D − 3
D − 2

(∇Φ)2 + (D
− 3)(D − 2)
r20

e
4Φ

D−2

�

scale O(r0/D)



GR @ D →∞ : near view

• Spherical reduction of Einstein-Hilbert

D →∞ ⇒ 2d string gravity
Soda, Grumiller et al

λ =
D

2r0

ds2nh =
4r20
D2

�
g(2)µν dx

µdxν
�
+ r20e

−4Φ(x)/(D−2)dΩ2D−2

scale O(r0/D)

I =

�
d2x

√
−g e−2Φ

�
R+ 4(∇Φ)2 + 4λ2

�



GR @ D →∞ : near view

• String length: 

lstring = 1/λ = 2r0/D

α´ ∼ (r0/D)2

λ =
D

2r0

I =

�
d2x

√
−g e−2Φ

�
R + 4(∇Φ)2 + 4λ2

�

scale O(r0/D)



GR @ D →∞ : near view

• MinkowskiD → 2d linear dilaton vacuum

• 2d conformal symmetry @ large D

• Quasinormal modes: string-scale 

� ωqnm ∼ ωstring = D/r0

(long lived: Im ωqnm ` Re ωqnm )

scale O(r0/D)



Entropy, far view

S ∼ M 1+1/(D−3) →S ∼M

⇒ Black holes merge w/ no entropy gain

Could also break up at no entropy cost
(horizon becomes singular at D→∞ )

⇒ Absence of interactions



Entropy, near view

S ∼ M 1+1/(D−3) →S ∼M

⇒ Hagedorn string entropy

S =TstringM

Tstring = D/(2r0)



Picture is very generic

• Outside (far) of horizon: holes that do not 
interact
for essentially all bhs:

charged, rotating, in AdS, extremal, etc

• Near-horizon: 2d string bh for all neutral 
non-extremal bhs

other: 3d string-theory black string (Horne+Horowitz)

GR @ D→∞



Large-D expansion
at work



1. Scalar propagation
– absorption probability
– quasinormal modes

2. Black brane instability
– spectrum of unstable modes



r0/D ` r−r0 ` r0

Far-zone d.o.f.’s: waves in flat space

Near-zone d.o.f.’s: black hole excitations

They interact in overlap region

Scalar field propagation



Propagation in flat space 

w/ bdry conds at holes

Effective theory

flat space

determined from near solution

�flatφ = 0

∂rφωl

φωl

����
r=r0

= F (r0, ω, l)



• Analytic calculation of absorption probability 
•

→ 0 for ω < ωcrit ∼ ωstring : perfect mirror

→ 1 for ω > ωcrit : perfect absorber

Low-frequency limit

Black hole absorption

σs−wave = AHor

�
1− ω

2r20
D

+ . . .

�



Gregory-Laflamme instability

r0

δr0 ∼ eΩt+ikz

2π/k t r0



Gregory-Laflamme instability

r0

δr0 ∼ eΩt+ikz

2π/k t r0

Ω(k)

→ computed numerically from 

linearized perturbation

k r0

Ωr0



• Near / far match 
up to fourth order:

GL instability @ large D

n = D−4

Ω = k̂ − k̂2 − k̂

2n
(1 + 2k̂ − 2k̂2)

+
k̂

24n2
(9 + 24k̂ + 12k̂2 − 8π2k̂2 + 8π2k̂3 − 12k̂4)

NB: zero-mode done by Kol et al 

k̂ =
k√
n



GL instability @ large D

• Compare to numerical results: 

D = n + 4

Large D, analytic

numerics  (Figueras)



Outlook



• Any problem that can be formulated 

in arbitrary D is amenable to large D 

expansion

simpler, even analytically solvable

Encouraging example: black string instab

1. Practical method for solving GR



α´ ∼ (r0/D)2

• Far: l > (α´)1/2: grav waves in flat space 
w/ holes

• Near: l ∼ (α´)1/2 : ‘string’ physics

• Moonshine? or really string theory ? What 
kind?

2. Reformulate GR around large D?

r − r0 �
r0

D





• Dimensionful scale
LPlanck = (Gh)1/(D−2)

• Quantum effects governed by r0/Lplanck

• Scaling: how large are the black holes, which 

quantum effects at large D
Finite entropy: r0/Lplanck ∼ D1/2

Finite temperature: r0/Lplanck ∼ D

Finite energy of Hawking radn: r0/Lplanck ∼ D2

Quantum effects



GM = measure of extrinsic curvature

lmass ∼ (GM)1/(D−3) ∼ r0/D1/2

` lfar ∼ r0

Mass-length

GM =
(D − 2)ΩD−2

16π
rD−30



• Must choose how to scale the cosmo-radius

� Λ=−1/LΛ
2=−(D−1)(D−2)/2L2

• Keep L fixed: Λ →−∞

• rH=r0(1+O(1/D)), f →1+r 2/L 2

• Fields localized near horizon

• Black brane: 
P=ε/(D−2) → 0,   TH → Dr0/L 2 : hot dusty brane

Anti-deSitterD

ds2 = −fdt2 + f−1dr2 + r2dΩD−2, f = 1−
�r0
r

�D−3
+
r2

L2


