The Large D limit of General Relativity

Roberto Emparan ICREA & U. Barcelona

w/ Kentaro Tanabe + Ryotaku Suzukiw/ Daniel Grumiller + Kentaro Tanabe

$R_{\mu\nu}=0$

encode a vast amount of physics

$R_{\mu\nu}=0$

encode a vast amount of physics

but very hard to solve (really!)

- Theories often
 - have parameters that can be varied
 - simplify at boundaries/origin of parameter space, eg:
 - QED around $e^2=0$
 - SU(N) Yang-Mills around N=infty

- Theories often
 - have parameters that can be varied
 - simplify at boundaries/origin of parameter space
- $R_{\mu\nu} = 0$ has **D** as natural parameter

- Theories often
 - have parameters that can be varied
 - simplify at boundaries/origin of parameter space
- $R_{\mu\nu} = 0$ has **D** as natural parameter
- GR simplifies greatly at $D \rightarrow \infty$

Large D expansion can be useful

–deeper understanding of the theory (reformulation?)

-calculations: new perturbative expansion

- Feynman diagrams Strominger 1981, Bjerrum-Bohr 2003, Canfora 2005
- Analogue of large *N* of Yang-Mills?
 - SO(D-1,1) local symmetry of GR

- Feynman diagrams Strominger 1981, Bjerrum-Bohr 2003, Canfora 2005
- Analogue of large *N* of Yang-Mills?

- SO(D-1,1) local symmetry of GR

• Large *N* YM: gluons arrange into worldsheets

- Feynman diagrams Strominger 1981, Bjerrum-Bohr 2003, Canfora 2005
- Analogue of large *N* of Yang-Mills?

- SO(D-1,1) local symmetry of GR

- Large *N* YM: gluons arrange into worldsheets
- QGR
 - not dominated by planar diagrams
 - D not only in graviton polarizations, but also in phase space integrals: terrible UV behavior

- Large *D* Kaluza-Klein truncation
 - keeps $\sim D^2$ polarizations of gravitons
 - 4d UV behavior

Not very clear how useful

Classical theory

- Classical GR is well defined at any D
- Much of quantum gravity has been learned from semiclassical black hole physics

Similar motivation & techniques: *B. Kol et al* large-D study of Euclidean Schw zero mode

GR in vacuum

What's this theory?

GR in vacuum

What's this theory?

A theory of black holes that interact via the grav field between them, and emit and absorb gravitational waves

GR in vacuum

Basic solution

$$ds^{2} = -\left(1 - \left(\frac{r_{0}}{r}\right)^{D-3}\right) dt^{2} + \frac{dr^{2}}{1 - \left(\frac{r_{0}}{r}\right)^{D-3}} + r^{2} d\Omega_{D-2}$$

length scale r_0

GR in vacuum – large D

- r_0 not the only scale
- Small parameter 1/D \Rightarrow hierarchy of scales

$$r_0/D \ll r_0$$

- This is the main feature of large-D GR
- This talk is about its origin & implications

GR in vacuum – large D

Different physics at different scales:

- 'Far' dynamics at scales $O(r_0 D^0)$ from horizon – flat space, almost trivial
- 'Near' dynamics at scales $O(r_0/D)$ from horizon – 'string' dynamics, non-trivial

GR @ large D

- Two main effects:
- 1. Small cross sections
 - elementary geometry effect

- 2. Interactions localized near horizon
 - gravitational effect

Elementary geometry @ large D

Area of spheres becomes small compared to hypercubes that enclose them

Elementary geometry @ large D

Lots of space in diagonal directions

Sphere of *finite radius* but *zero area* → vanishing cross sections

• Large potential gradient: $\Phi(r)$

$$\Phi(r) \sim (r_0/r)^{D-3}$$

$$\Rightarrow \nabla \Phi|_{r_0} \sim D/r_0$$

• Large potential gradient: $\Phi(r)$

 $\Phi(r) \sim (r_0/r)^{D-3}$

$$\Rightarrow \nabla \Phi|_{r_0} \sim D/r_0$$

 \Rightarrow Hierarchy of scales

 $r_0/D \ll r_0$

• r_0 fixed outside horizon

$$f(r) = 1 - \left(\frac{r_0}{r}\right)^{D-3} \longrightarrow 1 \quad \text{for } r > r_0$$

$$ds^2 \to -dt^2 + dr^2 + r^2 d\Omega_{D-2}$$

Flat, empty space at $r > r_0$ no gravitational field

Gravitational potential appreciable only in *thin* near-horizon region

$$(r_0/r)^{D-3} = O(1) \iff r - r_0 < r_0/D$$

- Interactions only within $r r_0 < r_0/D$
- No capture of particles outside this 'sphere of influence'
- Probed by frequencies $\omega > D/r_0$

Holes cut out in Minkowski space

GR (D D $\rightarrow \infty$: *far* view scale $O(r_0 D^0)$

Holes cut out in Minkowski space No wave absorption (perfect reflection) @ $D \rightarrow \infty$

GR (D D $\rightarrow \infty$: *far* view scale $O(r_0 D^0)$

Holes cut out in Minkowski space No wave absorption (perfect reflection) @ $D \rightarrow \infty$

No interaction, confirmed in

- collisions
- radiation from binaries
- scalar emission/absorption

GR @ D $\rightarrow \infty$: *near* view scale $O(r_0/D)$

Keep r_0/D finite

 $r-r_0 \ll r_0$

Includes 'sphere of influence' $r - r_0 < r_0/D$

 \Rightarrow Non-trivial dynamics

Overlaps with far region at $r_0/D \ll r - r_0 \ll r_0$

GR @ **D** $\rightarrow \infty$: *near* view $r-r_0 \ll r_0$

Near-horizon coordinate: $R = (r/r_0)^{D-3}$

$$ds^{2}(\text{Schw}) \rightarrow -\frac{\mathsf{R}-1}{\mathsf{R}}dt^{2} + \frac{r_{0}^{2}}{D^{2}}\frac{d\mathsf{R}^{2}}{\mathsf{R}(\mathsf{R}-1)} + r_{0}^{2}d\Omega_{D-2}^{2}$$

GR @ D $\rightarrow \infty$: *near* view scale $O(r_0/D)$

Near-horizon coordinate: $R = (r/r_0)^{D-3}$

$$ds^{2}(\text{Schw}) \rightarrow -\frac{\mathsf{R}-1}{\mathsf{R}}dt^{2} + \frac{r_{0}^{2}}{D^{2}}\frac{d\mathsf{R}^{2}}{\mathsf{R}(\mathsf{R}-1)} + r_{0}^{2}d\Omega_{D-2}^{2}$$

Change $t_{\text{near}} = D/(2r_0) t_{\text{far}}$ $\mathsf{R} = \cosh^2 \rho$

 \Rightarrow 2d string black hole Witten, Das et al, Elitzur et al

$$ds_{\rm nh}^2 = \frac{4r_0^2}{D^2} \left(-\tanh^2 \rho \, dt_{\rm near}^2 + d\rho^2 \right) + r_0^2 d\Omega_{D-2}^2$$

GR @ D $\rightarrow \infty$: *nearview* scale $O(r_0/D)$

• Spherical reduction of Einstein-Hilbert

$$ds_{\rm nh}^2 = \frac{4r_0^2}{D^2} \left(g_{\mu\nu}^{(2)} dx^{\mu} dx^{\nu} \right) + r_0^2 e^{-4\Phi(x)/(D-2)} d\Omega_{D-2}^2$$

$$\Rightarrow 2d \text{ dilaton gravity} \quad g_{\mu\nu}^{(2)}, \Phi$$

$$I = \int d^2x \sqrt{-g} e^{-2\Phi} \left(R + 4\frac{D-3}{D-2}(\nabla\Phi)^2 + \frac{(D-3)(D-2)}{r_0^2} e^{\frac{4\Phi}{D-2}} \right)$$

GR @ D $\rightarrow \infty$: *nearview* scale $O(r_0/D)$

• Spherical reduction of Einstein-Hilbert

$$ds_{nh}^{2} = \frac{4r_{0}^{2}}{D^{2}} \left(g_{\mu\nu}^{(2)} dx^{\mu} dx^{\nu} \right) + r_{0}^{2} e^{-4\Phi(x)/(D-2)} d\Omega_{D-2}^{2}$$
$$\mathsf{D} \longrightarrow \infty \implies \mathsf{2d \ string \ gravity}$$
Soda, Grumiller et al

$$I = \int d^2x \sqrt{-g} e^{-2\Phi} \left(R + 4(\nabla\Phi)^2 + 4\lambda^2 \right)$$

 $\lambda = \frac{D}{2r_0}$

GR @ D $\rightarrow \infty$: *near* view scale $O(r_0/D)$

D

$$I = \int d^2x \sqrt{-g} e^{-2\Phi} \left(R + 4(\nabla \Phi)^2 + 4\lambda^2 \right)$$
$$\lambda = \frac{D}{2r_0}$$

String length: •

$$l_{\rm string} = 1/\lambda = 2r_0/D$$

 $lpha' \sim (r_0/D)^2$

GR @ D $\rightarrow \infty$: *near* view scale $O(r_0/D)$

- Minkowski_D \rightarrow 2d linear dilaton vacuum
- 2d conformal symmetry @ large D
- Quasinormal modes: string-scale

$$\omega_{\rm qnm} \sim \omega_{\rm string} = D/r_0$$

(long lived: ${\rm Im}~\omega_{\rm qnm} \,{\ll} \, {\rm Re}~\omega_{\rm qnm}$)

Entropy, far view

 $S \sim M^{1+1/(D-3)} \rightarrow S \sim M$

 \Rightarrow Black holes merge w/ no entropy gain

Could also break up at no entropy cost (horizon becomes singular at $D \rightarrow \infty$)

 \Rightarrow Absence of interactions

Entropy, near view

$$S \sim M^{1+1/(D-3)} \rightarrow S \sim M$$

\Rightarrow Hagedorn string entropy

$$S=T_{\rm string}M$$

$$T_{\rm string} = D/(2r_0)$$

$\mathsf{GR} @ D \rightarrow \infty$

Picture is very generic

Outside (far) of horizon: holes that do not interact

for essentially all bhs:

charged, rotating, in AdS, extremal, etc

 Near-horizon: 2d string bh for all neutral non-extremal bhs

other: 3d string-theory black string (Horne+Horowitz)

Large-D expansion at work

Scalar propagation

 absorption probability
 quasinormal modes

- 2. Black brane instability
 - spectrum of unstable modes

Scalar field propagation

Far-zone d.o.f.'s: *waves in flat space* Near-zone d.o.f.'s: *black hole excitations* They interact in overlap region

Effective theory

Propagation in flat space

$$\Box_{\mathrm{flat}}\phi=0$$

w/ bdry conds at holes

 $\frac{\partial_r \phi_{\omega l}}{\phi_{\omega l}} \bigg|_{r=r_0} = F(r_0, \omega, l)$

flat space

determined from near solution

Black hole absorption

- Analytic calculation of absorption probability
- •

ightarrow 0 for $\omega < \omega_{crit} \sim \omega_{
m string}$

ightarrow 1 for $\omega > \omega_{crit}$

- : perfect mirror
- : perfect absorber

Low-frequency limit

$$\sigma^{\mathrm{s-wave}} = A_{\mathrm{Hor}} \left(1 - \frac{\omega^2 r_0^2}{D} + \dots \right)$$

Gregory-Laflamme instability

 $2\pi/k \gtrsim r_0$

 $\delta r_0 \sim e^{\Omega t + ikz}$

GL instability @ large D

 Near / far match up to fourth order:

$$\Omega = \hat{k} - \hat{k}^2 - \frac{\hat{k}}{2n} (1 + 2\hat{k} - 2\hat{k}^2) + \frac{\hat{k}}{24n^2} (9 + 24\hat{k} + 12\hat{k}^2 - 8\pi^2\hat{k}^2 + 8\pi^2\hat{k}^3 - 12\hat{k}^4)$$

$$\hat{k} = \frac{k}{\sqrt{n}} \qquad \qquad n = D-4$$

NB: zero-mode done by Kol et al

GL instability @ large D

• Compare to numerical results:

Outlook

1. Practical method for solving GR

 Any problem that can be formulated in arbitrary D is amenable to large D expansion

simpler, even analytically solvable Encouraging example: black string instab

2. Reformulate GR around large D? $\alpha' \sim (r_0/D)^2$

- Far: $l > (\alpha')^{1/2}$: grav waves in flat space w/ holes
- Near: $l \sim (\alpha')^{1/2}$: 'string' physics
- Moonshine? or really string theory ? What kind?

Quantum effects

• Dimensionful scale

 $L_{\rm Planck} = (G\hbar)^{1/(D-2)}$

- Quantum effects governed by $r_0/L_{\rm planck}$
- Scaling: how large are the black holes, which quantum effects at large D

Finite entropy: $r_0/L_{\rm planck} \sim D^{1/2}$

Finite temperature: $r_0/L_{\rm planck} \sim D$

Finite energy of Hawking radn: $r_0/L_{\rm planck} \sim D^2$

Mass-length

GM = measure of extrinsic curvature

$$GM = \frac{(D-2)\Omega_{D-2}}{16\pi} r_0^{D-3}$$

$$l_{\rm mass} \sim (GM)^{1/(D-3)} \sim r_0/D^{1/2} \ll l_{\rm far} \sim r_0$$

Anti-deSitter_D

• Must choose how to scale the cosmo-radius

$$\Lambda = -1/L_{\Lambda}^{2} = -(D-1)(D-2)/2L^{2}$$

• Keep L fixed: $\Lambda \rightarrow -\infty$

$$ds^{2} = -fdt^{2} + f^{-1}dr^{2} + r^{2}d\Omega_{D-2}, \quad f = 1 - \left(\frac{r_{0}}{r}\right)^{D-3} + \frac{r^{2}}{L^{2}}$$

- $r_H = r_0 (1 + O(1/D)), \quad f \to 1 + r^2/L^2$
- Fields localized near horizon
- Black brane:

 $P = \varepsilon/(D-2) \rightarrow 0$, $T_H \rightarrow Dr_0/L^2$: hot dusty brane