Entanglement Entropy for Disjoint Intervals in AdS/CFT

Thomas Faulkner

Institute for Advanced Study

based on arXiv:1303.7221

(see also T.Hartman arXiv:1303.6955)

Entanglement Entropy : Definitions

 $\mathcal{H} = \mathcal{H}_{A} \times \mathcal{H}_{A^{c}}$ $\rho_{\mathcal{A}} = \operatorname{tr}_{\mathcal{A}^c} |0\rangle \langle 0| \rangle$ Vacuum $S_{EE} = -\mathrm{tr}\rho_{\mathcal{A}}\ln\rho_{\mathcal{A}}$ Hilbert subspace chosen geometrically: \mathcal{A}_1 \mathcal{A}_2 \mathcal{B}_{-} R R Focus on I+I dimensions: $A = A_1 \cup A_2 \cup \ldots$ Entanglement Renyi Entropy (ERE) $S_n = \frac{1}{1-n} \log \left(\mathrm{tr} \rho_{\mathcal{A}}^n \right) \qquad \qquad \text{interesting} \\ \text{quantity to study}$ $\lim S_n = S_{EE}$

 $n \rightarrow 1$

Entanglement Entropy : Motivation

- Universal observable (lattice systems, QFT, ...)
- Diagnostic tool:
 - gapped phases (exotic/topological phases in CM)
 - critical systems (RG flow)
 - Fermions (area law violations, oscillating terms,...)
 - non-equilibrium dynamics (quantum quenches)
 - Foundations:
 - computational algorithms based on EE
 - underpinnings of AdS/CFT? gravity?

cf: Myers and Polchinski's talk

Entanglement Entropy : Motivation

• However a major drawbacks:

Really hard to calculate! Even for free fields

• But slowly our tools are becoming better

e.g. Casini, Huerta, Myers; Nishioka, Yaakov

This talk - intersection of two tools used to study EE
 2d CFT and the Ryu-Takayanagi formula
 Cardy, Calabrese
 Ryu, Takayanagi

Original Goal: arXiv:1303.7221

Attempt to prove RT formula for some simple yet non-trivial cases

After Juan and Aitor:

Maldacena, Lewkowycz 1304.4926

Maybe some things that made you uncomfortable about their proof should be alleviated here

???

- Proof does not directly apply here since the boundary manifold has non-trivial topology
- Understand limitations if there are some?
- Systematically formulate corrections to it

Valid for: $G_N \to 0$

Multiple minimal surfaces: take the global minimum

EE known for free fermions but NOT compact bosons!

Mutual Information $\mathcal{B} z_1$ \mathcal{A}_1 z_2 \mathcal{B} z_3 \mathcal{A}_2 z_4 \mathcal{B}

• In two interval case useful to consider:

$$I(\mathcal{A}_{1}, \mathcal{A}_{2}) = S_{EE}(\mathcal{A}_{1}) + S_{EE}(\mathcal{A}_{2}) - S_{EE}(\mathcal{A}_{1} \cup \mathcal{A}_{2})$$

$$= \underbrace{\overset{\epsilon}{\overset{H}{\overset{H}{\overset{H}{}}}}_{\overset{H}{}} \underbrace{\bullet}_{\overset{H}{}} + \underbrace{\bullet}_{\overset{H}{}} \underbrace{\bullet}_{\overset{H}{\phantom{H$$

 $ightarrow \sigma$

- Cutoff independent + scale invariance depends only on the ratio: I(a/L)
- More generally conformally invariant:

$$x = \frac{(z_1 - z_2)(z_3 - z_4)}{(z_4 - z_2)(z_3 - z_1)} = \frac{1}{(1 + a/L)^2}$$

The replica trick
Main computational tool for EE in QFT

$$S_{EE}(\mathcal{A}) = -\text{Tr}\rho_{\mathcal{A}}\ln\rho_{\mathcal{A}}$$
 hard to deal
Introduce Entanglement Renyi Entropy: with
 $S_n(\mathcal{A}) = -\frac{1}{n-1}\ln \text{Tr}\rho_{\mathcal{A}}^n$

Compute for integer $n \ge 2$ attempt to continue to non-integer take the limit

$$\lim_{n \to 1} S_n(\mathcal{A}) = S_{EE}(\mathcal{A})$$

Why? One can formulate $Tr \rho_A^n$ as a euclidean path-integral

The replica trick

For a single interval this is topologically a sphere:

Conformal transformation:

$$w^n = \left(\frac{z - z_1}{z - z_2}\right)$$

$$Z(\mathcal{M}_n) \sim Z(\text{sphere})$$
 ??

Almost but not quite!

Remember the Weyl anomaly in 2d CFTs:

$$ds^{2} \equiv dz d\bar{z} = e^{2\phi} dw d\bar{w} \equiv e^{2\phi} d\hat{s}^{2}$$

$$Z(ds^{2}) = e^{S_{L}(\phi)} Z(d\hat{s}^{2})$$
Conformal factor
Liouville action
$$S_{L} = \frac{c}{6} \left(n - \frac{1}{n}\right) \ln(|z_{1} - z_{2}|/\epsilon)$$

Gives ERE of a single interval:

$$S_n = \frac{c}{6}(1+n^{-1})\ln(|z_1 - z_2|/\epsilon)$$

Twist operators:

Replica trick = computation in product orbifold: $(CFT)^n/\mathbb{Z}_n$

Branch points = twist operators:

 $Z_{\mathcal{M}_n}(ds^2) = \langle \sigma_+(z_1)\sigma_-(z_2)\rangle|_{(CFT)^n/\mathbb{Z}_n}$

More efficient way to calculate ERE:

$$\langle T(w) \rangle_{w-\text{plane}} = 0 \quad \rightarrow \quad \langle T(z) \rangle_{z-\text{plane}} = \frac{c}{12} \left\{ \stackrel{\mathbf{A}}{w}(z), z \right\}$$

Schwarzian: $\{w(z), z\} = \frac{w'''}{w'} - \frac{3}{2} \left(\frac{w''}{w'}\right)^2$

 $w^n = \left(\frac{z - z_1}{z - z_2}\right)$

Famous example: Casimir energy of CFT on circle $\left(w = e^{iz/L} \rightarrow \langle T_{tt} \rangle_{cyl} \sim -c/L^2\right)$

Manifestation of the Weyl Anomaly!

$$n \langle T(z) \rangle_{z-\text{plane}} \Big|_{CFT} = \frac{\langle T_{\text{orb}}(z)\sigma_{+}(z_{1})\sigma_{-}(z_{2}) \rangle}{\langle \sigma_{+}(z_{1})\sigma_{-}(z_{2}) \rangle} \Big|_{CFT^{n}/\mathbb{Z}_{n}}$$
$$= \sum_{i=1,2} \frac{h_{n}}{(z-z_{i})^{2}} + \frac{p_{i}}{(z-z_{i})} \quad \text{Where:} \quad h_{n} = \frac{c}{12}(n-n^{-1})$$
$$p_{1} = -p_{2} = \frac{2h_{n}}{z_{1}-z_{2}}$$

More efficient way to calculate ERE:

Conformal Ward Identity applied to the twist operators in orbifold theory:

$$\langle T_{\rm orb}(z)\sigma_+(z_1)\sigma_-(z_2)\rangle = \left(\sum_i \frac{h_n}{(z-z_i)^2} + \frac{1}{(z-z_i)}\frac{\partial}{\partial z_i}\right) \langle \sigma_+(z_1)\sigma_-(z_2)\rangle$$
conformal primaries

From this we can identify:

• twist operator dimension:

$$h_n = \frac{c}{12} \frac{n^2 - 1}{n}$$

• accessory parameter:

$$p_1 = \frac{\partial}{\partial z_1} \left\langle \sigma_+(z_1)\sigma_-(z_2) \right\rangle = \frac{2h_n}{z_1 - z_2}$$

Integrating the accessory parameter gives us the ERE!

• this will hold for the multiple intervals case as well

Two intervals leads to more complicated surface: **Riemann surface:**

Riemann surface:

$$y^{n} = \frac{(z - z_{1})(z - z_{3})}{(z - z_{2})(z - z_{4})} \qquad ds^{2} = dz d\bar{z}$$

- A genus (n-1) surface has a 3(n-2) space of complex structures \leftarrow (generalization of τ)
- This surface has only one real parameter
- This is a one dimensional slice of moduli space

Characterized as those with \mathbb{Z}_n replica symmetry

Solve Einstein's equations subject to boundary conditions and bulk regularity. $\partial B^{\gamma} = \mathcal{M}_n$

Many solutions!
$$\mathcal{O}(c)$$

$$Z_{\mathcal{M}_n} = \sum_{\gamma} \exp\left(-S_{\text{grav}}^{\gamma} + \mathcal{O}(c^0)\right) \qquad G_N \propto c^{-1}$$

Classical gravity limit: only need least action solution

Key- magic of AdS_3 !!

All solutions of 3d gravity: Quotients: $B_{\gamma} = \mathbb{H}_3/\Gamma_{\gamma}$ isometries Γ_{γ} subgroup of $SL(2,\mathbb{C})$ still a huge number of these!

Simplifying assumptions:

Least action solution is a handlebody
 This handlebody preserves the boundary symmetries:

 \mathbb{Z}_n replica symmetry not spontaneously broken

Find two solutions: $\gamma = \alpha, \beta$ TF`I3 at fixed: (x, n)

To summarize:

- α, β exchange dominance at x=1/2
- Bulk action can be analytically continued in n $\lim_{n\to 1} \frac{1}{n-1} (S_{\rm grav}^{\alpha,\beta} - S^1) =$

Lengths of following geodesics:

Handlebody solution:

Fill in to make a solid torus

Handlebody solution:

Actually many different ways to fill in!

General handlebody solution:

$$\mathbb{H}_3$$
 : $ds^2 = \frac{dr^2 + dw d\bar{w}}{r^2}$

Action of the quotient Γ_{γ} : $(r \approx 0)$ $w \rightarrow \frac{aw+b}{cw+d}$

Conformal isometries of the boundary

 Γ_γ acts on $\mathbb C$ such that $\mathbb C/\Gamma_\gamma = \mathcal M_n$

So let's start by describing: $\mathbb{C}/\Gamma_{\gamma}$

Handlebody requires Γ_{γ} to be a Schottky group

How do we describe the bulk?

General handlebody solution: Super easy - extend circles into bulk hemispheres and identify hemispheres:

General handlebody solution: Super easy - extend circles into bulk hemispheres and identify hemispheres:

How to construct?

- Want to find w(z) _____ empty AdS solution
- Stress tensor on w-plane: $\langle T_{ww} \rangle^{\gamma} = 0$
- On the branched z-plane: $\langle T_{zz} \rangle^{\gamma} = \frac{c}{12} \left(\frac{a}{2} \right)^{\gamma}$

$$\left(\frac{w'''}{w'} - \frac{3}{2}\left(\frac{w''}{w'}\right)^2\right)$$

- Differential equation for w(z)! Construct $\langle T_{zz} \rangle^{\gamma}$ independently
- Better:

$$\psi''(z) + \hat{T}_{zz}\psi(z) = 0$$
 $w(z) = \frac{\psi_1(z)}{\psi_2(z)}$

How to construct?

- three conditions on p_i such that ∞ is regular point
- so only one unknown in \hat{T}_{zz} !!! call this: p_x
- more generally: $\hat{T}_{zz} \rightarrow \hat{T}_{zz} + \sum_{s=1}^{3g-4} c_s \omega_{zz}$ more accessory • but all these transform under parameters \mathbb{Z}_n replica symmetry so by assumption: $c_s = 0$

Monodromies:

But how do we fix the remaining accesory parameter?

Pick A-cycles symmetrically: OR $\alpha =$ Equivalent to fixing $c_s = 0$ Remaining p_x fixed by above monodromy condition

Use the same trick as for a single interval

Conformal Ward Identity in orbifold theory:

$$\langle T_{\rm orb}(z)\sigma_{+}\sigma_{-}\sigma_{+}\sigma_{-}\rangle \approx \frac{cn}{12} \sum_{\gamma} \hat{T}_{zz}^{\gamma} e^{-S_{\rm grav}^{\gamma}}$$

$$= \left(\sum_{i} \frac{h_{n}}{(z-z_{i})^{2}} + \frac{1}{(z-z_{i})} \frac{\partial}{\partial z_{i}}\right) \langle \sigma_{+}\sigma_{-}\sigma_{+}\sigma_{-}\rangle$$

$$\approx \sum_{\gamma} e^{-S_{\rm grav}^{\gamma}}$$

Comparing on a saddle by saddle basis:

 (z_1, z_2, z_3, z_4) $= (0, x, 1, \infty)$

$$\frac{dS_{\rm grav}^{\gamma}}{dx} = \frac{cn}{12} p_x^{\gamma}$$

Can integrate this to find bulk action

Comments:

Prescription: I. solve the monodromy condition on the α or β cycles by tuning p_x
2. Integrate to find the bulk action
3. ERE is related to the minimal action:

$$S_n \sim \frac{1}{n-1} \min_{\gamma=\alpha,\beta} S_{\text{grav}}^{\gamma}$$

cf: Juan and Aitor

- Numerical prescription!
- Prescription can be formulated for non-integer n
- Bulk solution makes no sense for non-integer n
- Limit $n \rightarrow 1$ can be found and gives RT answer
- More than two intervals can also be worked out and agrees with RT

More Comments:

Monodromy conditions can be understood in terms of the RT geodesics

Generalizations and applications: Barrella, Dong, Hartnoll, Martin

• Can also compute ERE for a single interval in a thermal state using these ideas

- ODE is different and monodromy conditions are different
- With the bulk solution in hand these authors calculated the leading quantum corrections by computing I-loop determinants:

$$Z^{H_3/\Gamma} = \prod_{\gamma \in \mathcal{P}} \left(\prod_{l,l'} \left(1 - q_{\gamma}^{l+h} \bar{q}_{\gamma}^{l'+h} \right)^{-1/2} \right)$$

Schottky $\longrightarrow^{\gamma \in \mathcal{P}} \left(I - q_{\gamma}^{l+h} \bar{q}_{\gamma}^{l'+h} \right)^{-1/2}$ Multiplier of group element

Corrections agreed with general CFT expectation

CFT derivation: Hartman

• Exact same prescription can be arrived at in a completely different way for large-c CFTs

Zamolodchikov

- At large-c the relevant F's are computed by the same monodromy problem as for the handlebodies
- Assuming nice behavior of the spectrum of primaries as well as for the OPE coefficients one arrives at the same result

Conclusions

 Developed methods to compute EREs in 2d CFTs with a gravity dual

• Found agreement with RT

• Understood some of the assumptions that go into RT. Interesting to find situations where assumptions break down ... new non-geometric phases of gravity?

e.g: \mathbb{Z}_n replica symmetry breaking??

- Methods have forged a way to calculate quantum corrections to RT
- Lots more to do!

