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1. Finite endpoint momentum
1.1. Why do we need it?

A highly successful phenomenological account of fragmentation (Lund model) starts
with energetic quarks moving apart while linked by a string: the “yo-yo” [Andersson

et al, 1983; Artru, 1983]. Earlier work goes back to [Bardeen et al, 1976].

t

q qqq

x

meson
meson
fragmentation

• When gstr = 0, all that can happen is that the massless quark and anti-quark
oscillate in a linear potential. gstr 6= 0 allows for fragmentation events.

• Initial energy is entirely in q and q̄. Sometime later, it’s entirely in the string.
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To account for the medium in a heavy ion collision, a related strategy was pursued
in AdS5-Schwarzschild: [Chesler et al, 0804.3110], similar to [Gubser et al, 0803.1470].

6

FIG. 4: A typical falling string studied in this paper, plotted in blue at four different instants in time. The string is created
at a point and, as time passes, evolves into an increasingly extended object. Well after the creation event, but long before the
plunge into the horizon, the string profile approaches a universal null string configuration which is largely insensitive to the
initial conditions. Consequently, the string endpoint trajectories, shown in green and yellow, approach null geodesics.

the black hole. Our strategy in this subsection is to con-
struct an approximate solution to the string equations of
motion which will provide a good description for times
sufficiently long after the initial creation event but well
before the string endpoints reach the horizon. This will
be possible because, as we will discuss, at times well after
the creation event but long before the final “plunge”, typ-
ical string configurations approach near-universal forms
which are characterized by only a few parameters. This
observation will allow us to prepare states illustrating
universal features and understand the resulting physics
of quark energy loss, without requiring a detailed de-
scription of the early-time dynamics responsible for the
production of the quark-antiquark pair.

For reasonable falling string solutions, we will see that
the endpoint motion is well-approximated by the trajec-
tory of a light-like geodesic. Equations for null geodesics
in the AdS-BH geometry are easy work out. For motion
in the x-u plane, one finds

�
dxgeo

dt

�2

=
f2

ξ2
, (4.5a)

�
dugeo

dt

�2

=
f2

�
ξ2 − f

�

ξ2
, (4.5b)

where ξ is a constant which determines the initial incli-
nation of the geodesic in the x-u plane and, more funda-
mentally, specifies the conserved spatial momentum asso-
ciated with the geodesic, f(u)−1dxgeo/dt = ξ−1. More-
over, we have

�
dxgeo

du

�2

=
1

ξ2 − f
. (4.6)

From this equation, one sees that geodesics which start
close to the boundary, at u = u∗ → 0, can travel very far
in the x̂ direction provided ξ2 ≈ f(u∗) → 1. In particu-
lar, the total spatial distance such geodesics travel before
falling into the horizon scales like u2

h/u∗.

We will be interested in string configurations where the
spatial velocity of the string endpoint is close to the local
speed of light for an arbitrarily long period of time (since
this will maximize the penetration distance). Because
open string endpoints must always travel at the speed of
light, the velocity in the radial direction must be small
and correspondingly, the radial coordinate of the string
endpoints will be approximately constant for an arbitrar-
ily long period of time. As the string endpoints become
more and more widely separated, the string must stretch
and expand. For reasonable string profiles, this implies
that short wavelength perturbations in the initial struc-
ture of the string will stretched to progressively longer
wavelengths, resulting in a smooth string profile at late
times.4 Moreover, as the string endpoints separate, the
middle of the string must fall toward the event horizon.
This occurs on a time scale ∆t of order uh. (This scale
sets the infall time of a particle released at rest at the
boundary, or of a null geodesic with ξ > 1.)

The origin of this behavior can also be understood as
follows. Consider the string at some time t shortly after
the creation event. It will have expanded to a size ∼ t.
By construction, one half of the string will have a posi-
tive large momentum in the spatial x̂ direction, while the
other half has negative x̂ momentum. The spatial mo-
mentum density must be highly inhomogeneous so that
the two endpoints move off in opposite directions. As
time progresses, the parts of the string with the highest
momentum density will remain close to a string endpoint.
Portions of the string with low spatial momentum den-

4 “Unreasonable” string profiles can have structure on arbitrarily
short wavelengths. While the initial structure will be inflated
as time progresses, because the string endpoints can only travel
a distance of order u2

h/uc before reaching the horizon, one can
always cook up initial conditions such that fluctuations in the
string profile never become small during this time interval. We
will avoid such unreasonable initial conditions in this paper.

Standard boundary conditions were applied: ∂σXµ = 0.

Initial state is a short string intended to reflect state of a quark-anti-quark pair pro-
duced in an energetic scattering event.

It would be more faithful to the Lund model to have finite momentum at the string
endpoints.
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To see why finite endpoint momentum makes sense for classical strings, consider an
interpolation between Regge and the yo-yo:

Xµ(τ, σ) =
1

2
Y µ(τ − σ) +

1

2
Y µ(τ + σ) . (1)

where

dY µ

dξ
=




√
`2

1 sin2 ξ + `2
2 cos2 ξ

`1 sin ξ
`2 cos ξ


 Y µ(0) =




0
−`1

0


 . (2)

Snapshots at constant τ ,
with `2 = `1/10

Regge case is `1 = `2, and then X0 = τ .

Yo-yo is `2 = 0, but now X0(τ, σ) is complicated because Ẏ 0 = `1| sin ξ|.
Observe Xµ(τ, 0) = Y µ(τ ): endpoint prescribes entire motion of string.
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The mapping (τ, σ) → (X0, X1) is partially degenerate when `2 = 0: a finite re-
gion maps to the edge of the string.
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More transparent would be to use a static gauge, X0 = t and X1 = x, and allow
each endpoint to carry Eendpoint = t/(2πα′), so that

Etotal =
2`1 − 2t

2πα′
+ 2× t

2πα′
=

2`1

2πα′
. (3)
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1.2. Endpoints follow geodesics

Now I want to argue that endpoint trajectories naturally follow spacetime geodesics
when the endpoint momentum is non-vanishing. Argument proceeds in three steps:

Step 1: Formulate an action that includes finite endpoint momentum.

S = − 1

4πα′

∫

M

dτdσ
√
−hhab∂aXµ∂bX

νGµν +

∫

∂M

dξ
1

2η
ẊµẊνGµν , (4)

where η is the einbein on the edge of the worldsheet.

Step 2: Formulate eom’s in terms of endpoint momenta and bulk momentum density.

P a
µ = − 1

2πα′

√
−hhabGµν∂bX

ν bulk momentum density

pµ =
1

η
GµνẊ

ν endpoint momentum
(5)

∂aP
a
µ − Γκµλ∂aX

λP a
κ = 0 bulk conservation of momentum

ṗµ − ΓκµλẊ
λpκ = σ̇aεabP

b
µ boundary loses/gains energy from bulk

(6)
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Step 3: Manipulate endpoint equations in a conformal gauge.

Use a metric where
√
−hhab = diag{−1, 1}. Then I claim

σ̇aεabP
b
µ ±

η

2πα′
pµ = 0 . (7)

or, equivalently,
(εab
√
−hhbc ∓ δca)σ̇a∂cXν = 0 . (8)

This is because Ma
c ≡ εab

√
−hhbc has eigenvectors (1,±1); and along the world-

sheet boundary, we have σ̇a ∝ (1,±1).

So
ṗµ − ΓκµλẊ

λpκ = ∓ η

2πα′
pµ , (9)

where we take− when the string endpoint is “unrolling.”

We can now see that endpoint moves along a geodesic:

˙̃pµ − ΓκµλẊ
λp̃κ = 0 where p̃µ =

1

η̃
GµνẊ

ν . (10)
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1.3. Doubled strings in AdS5

Yo-yo generalizes easily to global AdS5, most simply as a doubled string.

ds2
5 = L2

(− cosh2 ρ dτ 2 + dρ2 + sinh2 ρ dΩ2
3

)
, (11)

and we embed string into an AdS2 submanifold:

ds2
2 = L2

(− cosh2 ρ dτ 2 + dρ2
)

(12)

with endpoint trajectory determined by

tan
τ

2
= tanh

ρ

2
. (13)

The endpoint energy is

pτ = −EL
2

+
L2

πα′
sinh ρ . (14)

so snapback occurs at ρ∗ = sinh−1
(
πα′

2L
E
)

.

What is dual operator? Propose

O = trXI(∇1)
SXI , (15)

in same multiplet as the operators trXI(∇2 + i∇3)
SXI dual to Regge strings.
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1.4. Lightcone Green-Schwarz action

Lightcone Green-Schwarz formalism accommodates finite endpoint momentum in
an interesting way.

The claim is S = Sbulk + Sbdy where, after requiring X+ = πq+τ and Γ+θ = 0,
we write (with α′ = 1/2 and assuming a boundary at σ− = constant)

Sbulk =

∫

M

d2σ

[
− 1

2π
ηab∂aX

i∂bX
i + iq+θ̄Γ−ρa∂aθ

]
(16)

Sbdy =
1

2

∫

∂M

dξ
1

η

[
Ẋ2
i + 2πiq+θ̄ρ−Γ−θ̇

]
, (17)

where ρα are worldsheet gamma matrices and θ̄Aa ≡ θBbΓ0
ABρ

0
ab.

Sbdy is not the light-cone superparticle, which would involve ρτ not ρ−, and would
be supersymmetric by itself.

The supersymmetry variations are

δX i = 2θ̄Γiε δθ =
1

2πiq+
Γ+Γiρa∂aX

iε . (18)
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A straightforward calculation leads to

δSbulk =

∫

M

d2σ ∂a

[
1

π
θ̄ρbρaΓi∂bX

iε

]
. (19)

The standard setup is to require ∂σX i = 0 at a boundary σ = 0: then

δSbulk =

∫

∂M

dξ
1

π
θ̄ρ3Γ

iẊ iε where ξ = τ and ρ3 = ρτρσ ; (20)

and by requiring
θ = −iρσθ ε = iρσε (21)

we get δSbulk = 0.

Life is not so simple for a null boundary, say at σ− = 0: Now

δSbulk = −
∫

∂M

dξ
1

π
θ̄ρ+ρ−Ẋ iΓiε = −

∫

∂M

dξ
1

π
θ̄(1− ρ3)Ẋ

iΓiε (22)

and we need boundary term to cancel this non-vanishing variation from the bulk.

First trick: Computation of p+ and use of eom for ṗ+ leads to

d

dξ

(
1

η

)
= −1

π
where ξ = σ+ =

τ + σ√
2
. (23)
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Second trick: δθ contains ρa∂aX i, but because we only use ρ−δθ on boundary, we
only need ρ+∂+X

i = ρ+Ẋ i.

Now we just need a couple of partial integrations wrt ξ to get

δSbdy =

∫

∂M

dξ

[
2

η
θ̄ρ3Ẍ

iΓiε +
1

π
θ̄(1− ρ3)Ẋ

iΓiε

]
. (24)

Red term cancels δSbulk, and remaining term vanishes using (21).

Interesting questions remain:

• Could we have gotten boundary term from bulk GS action using a non-injective
worldsheet embedding?

• What is the covariant, kappa symmetric action with boundary term?

• Could we consider localized momentum more generally on higher branes?
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2. Application to light quark energy loss
Single quark setup: [Gubser et al, 0803.1470]

3,1

t=0

t=1

v(z)

AdS−Schwarzschild

horizon

x

z

1

z=z

z=0

5

x∆

z=zUV

R

H

If a string starts at t = 0 with one end through the horizon and the other on a flavor
brane, how far can it get before it falls through the horizon?

There’s a big range of choice of initial conditions.

∆xstop <∼ κ
E1/3

λ1/6T 4/3
with an estimate κ ∈ (0.35, 0.41).
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Dissociating meson setup: [Chesler et al, 0804.3110] 6

FIG. 4: A typical falling string studied in this paper, plotted in blue at four different instants in time. The string is created
at a point and, as time passes, evolves into an increasingly extended object. Well after the creation event, but long before the
plunge into the horizon, the string profile approaches a universal null string configuration which is largely insensitive to the
initial conditions. Consequently, the string endpoint trajectories, shown in green and yellow, approach null geodesics.

the black hole. Our strategy in this subsection is to con-
struct an approximate solution to the string equations of
motion which will provide a good description for times
sufficiently long after the initial creation event but well
before the string endpoints reach the horizon. This will
be possible because, as we will discuss, at times well after
the creation event but long before the final “plunge”, typ-
ical string configurations approach near-universal forms
which are characterized by only a few parameters. This
observation will allow us to prepare states illustrating
universal features and understand the resulting physics
of quark energy loss, without requiring a detailed de-
scription of the early-time dynamics responsible for the
production of the quark-antiquark pair.

For reasonable falling string solutions, we will see that
the endpoint motion is well-approximated by the trajec-
tory of a light-like geodesic. Equations for null geodesics
in the AdS-BH geometry are easy work out. For motion
in the x-u plane, one finds

�
dxgeo

dt

�2

=
f2

ξ2
, (4.5a)

�
dugeo

dt

�2

=
f2

�
ξ2 − f

�

ξ2
, (4.5b)

where ξ is a constant which determines the initial incli-
nation of the geodesic in the x-u plane and, more funda-
mentally, specifies the conserved spatial momentum asso-
ciated with the geodesic, f(u)−1dxgeo/dt = ξ−1. More-
over, we have

�
dxgeo

du

�2

=
1

ξ2 − f
. (4.6)

From this equation, one sees that geodesics which start
close to the boundary, at u = u∗ → 0, can travel very far
in the x̂ direction provided ξ2 ≈ f(u∗) → 1. In particu-
lar, the total spatial distance such geodesics travel before
falling into the horizon scales like u2

h/u∗.

We will be interested in string configurations where the
spatial velocity of the string endpoint is close to the local
speed of light for an arbitrarily long period of time (since
this will maximize the penetration distance). Because
open string endpoints must always travel at the speed of
light, the velocity in the radial direction must be small
and correspondingly, the radial coordinate of the string
endpoints will be approximately constant for an arbitrar-
ily long period of time. As the string endpoints become
more and more widely separated, the string must stretch
and expand. For reasonable string profiles, this implies
that short wavelength perturbations in the initial struc-
ture of the string will stretched to progressively longer
wavelengths, resulting in a smooth string profile at late
times.4 Moreover, as the string endpoints separate, the
middle of the string must fall toward the event horizon.
This occurs on a time scale ∆t of order uh. (This scale
sets the infall time of a particle released at rest at the
boundary, or of a null geodesic with ξ > 1.)

The origin of this behavior can also be understood as
follows. Consider the string at some time t shortly after
the creation event. It will have expanded to a size ∼ t.
By construction, one half of the string will have a posi-
tive large momentum in the spatial x̂ direction, while the
other half has negative x̂ momentum. The spatial mo-
mentum density must be highly inhomogeneous so that
the two endpoints move off in opposite directions. As
time progresses, the parts of the string with the highest
momentum density will remain close to a string endpoint.
Portions of the string with low spatial momentum den-

4 “Unreasonable” string profiles can have structure on arbitrarily
short wavelengths. While the initial structure will be inflated
as time progresses, because the string endpoints can only travel
a distance of order u2

h/uc before reaching the horizon, one can
always cook up initial conditions such that fluctuations in the
string profile never become small during this time interval. We
will avoid such unreasonable initial conditions in this paper.

2

studying the propagation through the plasma of ener-
getic excitations which resemble well-collimated quark
jets. The open string configurations we consider may
be regarded as providing a dual description of dressed
quarks, with high energy, moving through a non-Abelian
plasma. We are not studying the result of a local current
operator acting directly on the strongly coupled N = 4
SYM plasma. (See, however, Ref. [37].) Our motiva-
tion is similar to that of Ref. [17], in which weak cou-
pling physics in asymptotically free QCD is envisioned
as producing a high energy excitation, whose propaga-
tion through the plasma is then modeled by studying
the behavior of the same type of excitation in a strongly
coupled N = 4 SYM plasma.

The energy loss rate for a heavy quark depends only
on the quark’s velocity, the value of the ’t Hooft coupling
λ, and the temperature of the plasma through which the
quark is moving [13]. In other words, for very heavy
quarks which slowly decelerate, the velocity is the only
aspect of their initial conditions which influences the en-
ergy loss rate. This turns out not to be the case for
light quarks. Initial conditions for a classical string in-
volve two free functions: the initial string profile and
its time derivative. As we discuss in detail below, the
instantaneous energy loss rate of a light quark depends
strongly, in general, on the precise choice of these ini-
tial functions. In the dual field theory, this reflects the
fact that any complete specification of an initial state
containing an energetic quark must also involve a char-
acterization of the gauge field configuration. In the per-
turbative regime, one can easily see that the interactions
of heavy particles with a gauge field are spin-independent
(up to 1/M corrections), but interactions of relativistic
particles are spin-dependent even at leading order. So
it is perhaps unsurprising that the energy loss of a light
projectile also depends on the configuration of the glu-
onic cloud surrounding the projectile in a non-universal
fashion.

One quantity which is rather insensitive to the pre-
cise initial conditions of the string is the maximum dis-
tance ∆xmax(E) which a quark with initial energy E can
travel. It should be emphasized that we are consider-
ing effectively on-shell quarks which can travel a large
distance ∆x before thermalizing. The maximum pene-
tration depth ∆xmax grows without bound as the energy
E increases.

We numerically compute the penetration depth ∆x for
many different sets of string initial conditions, and find
that the maximum penetration depth does indeed scale
like E1/3. Our results are illustrated in Fig. 1 , where
the logarithm of the penetration depth is plotted as a
function of the logarithm of the initial quark energy for
many different sets of initial conditions. As is evident
from the figure, the penetration depth of a light quark is
bounded by a curve ∆xmax = const. × E1/3.

We also demonstrate the scaling relation ∆xmax ∼
E1/3 analytically. As discussed in Ref. [34], strings which
correspond to long-lived massless quarks are approxi-

FIG. 1: A log-log plot of the quark stopping distance
∆x as a function of total quark energy E for many falling
strings with initial conditions of the form shown in Eq. (4.53).
All data points fall below the red line given by ∆x =

(0.526/T )
`
E/T

√
λ

´1/3
.

mately null strings. A strictly null string is one whose
worldsheet metric is everywhere degenerate. The qual-
itative origin of this connection is easy to understand.
Strings which correspond to light quarks fall into the
event horizon. As they fall they become more and more
light-like and hence closer and closer to a null configura-
tion as time progresses. The profile of the null string is
almost independent of the initial conditions used to cre-
ate the string — for the quasiparticle excitations studied
in this paper, the corresponding null strings are speci-
fied by two numbers only, an initial inclination and ra-
dial depth. By analyzing strings corresponding to light
quarks as small perturbations away from null string con-
figurations, we show that the total distance a quark
can travel must be bounded by a maximum distance
∆xmax = (C/T )(E/T

√
λ)1/3 for some O(1) constant C.

We numerically confirm that strings corresponding to
long-lived light quarks are, in fact, close to being null,
and obtain an estimate of the constant C.

Although the endpoint motion of our string solutions
is well approximated by appropriate light-like geodesics,
consistent with the discussion of Ref. [34], we find that
the relationship between the parameters of the geodesic
and the string profile and energy is more complicated
(and rather different) than the surmises presented in
Ref. [35]. This will be discussed further in Section V .

In addition to studying the penetration depth, we also
examine the instantaneous rate of energy loss, dE/dt.
For light quarks the energy loss rate shows non-universal
features and is sensitive to initial conditions. For the
states we study, we find that it typically increases with
time during the period when the dressed quark is a well-
defined quasiparticle and sharply peaks during the final

• ∆xstop ≤ κ
E1/3

λ1/6T 4/3
with

κ = 0.526 from extensive
numerical study.

• Reminiscent of perturbative
BDMPS result (e.g. [Baier et al,
hep-ph/9608322])

∆EBDMPS =
1

4
αsCRq̂(∆x)2.

• Recent PHENIX study [Adare
et al, 1208.2254] actually favors
∆E ∝ `3 over `2.
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Our plan:

• Show how κ = 0.526 = 21/3√
π

Γ(5
4)

Γ(3
4)

comes out of spacetime geodesics plus a

slightly tricky accounting of initial energy.

• Show how finite endpoint momentum gives κ = 0.624.

• Show how single quark can approach κ = 0.990.

• Propose a new account of instantaneous energy loss based on endpoint ṗµ.

2.1. No endpoint momentum

When a string has a lot of momentum in x1 direction, it quickly settles into a segment
of trailing string with velocity v =

√
f (z∗), where AdS5-Schwarzschild metric is

ds2 =
L2

z2

(
−f (z)dt2 + d~x2 +

dz2

f (z)

)
with f (z) = 1− z4

z4
H

. (25)

So we evaluate energy (half the total energy of the meson) as

E∗ =
L2

2πα′
1√

1− v2

[
1

z∗
− 1

zH

]
+

1

v

dE

dt
∆x(z∗, zH) ≈ L2

2πα′
1√

1− v2

1

z∗
. (26)
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The endpoint subsequently stays close to a null geodesic, which is a solution to

dxgeo

dz
=

1√
f (z∗)− f (z)

=
z2
H√

z4 − z4
∗
. (27)

So we find ∆xstop by intersecting geodesic with horizon:

∆xstop =
z2
H

z∗

√
πΓ(5

4
)

Γ(3
4
)
− 2F1

(
1

4
,

1

2
,

5

4
,
z4
∗
z4
H

)
zH , (28)

and in the high-energy limit where z∗ � zH

∆xstop =
21/3

√
π

Γ
(

5
4

)

Γ
(

3
4

) 1

T

(
E∗√
λT

)1/3

, (29)
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2.2. Including endpoint momentum

Following spirit of Lund, assign all energy to the endpoints initially. Also require
Eendpoint → 0 just as string crosses horizon.

Calculate evolution of Eendpoint = −pt using

ṗt = − η

2πα′
pt =

√
λ

2π

f

z2

dt

dz
. (30)

Arrive at

E∗ ≈
√
λ

2
√
π

√
πΓ
(

3
4

)

Γ
(

1
4

) z2
H

z3
∗

√
f (z∗) . (31)

The same spacetime geodesic calculation as before now leads to

∆xstop =
21/3

π2/3

Γ
(

5
4

)
Γ
(

1
4

)1/3

Γ
(

3
4

)4/3

1

T

(
E∗√
λT

)1/3

=
0.624

T

(
E∗√
λT

)1/3

, (32)

as before with z∗ � zH .

Only the energy calculation changed.
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One can numerically determine the shape of the bulk of the string:

-6 -4 -2 0 2 4 6

0.

0.2

0.4

0.6

0.8

1.

ΠTx

Π
T

z

String goes further because we budgeted initial energy differently: no initial down-
ward motion, only longitudinally outward.
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2.3. Single quarks and instantaneous energy loss

How far a string can go if one end passes through the horizon and total energy E
outside horizon is fixed?

Argument from spacetime geodesics is now familiar: start near the horizon moving
upward; require Eendpoint → 0 only when we fall completely into the horizon; and
use ṗµ equation to evolve Eendpoint along endpoint geodesic. Answer:

∆xstop =
2

π2/3

Γ
(

5
4

)
Γ
(

1
4

)1/3

Γ
(

3
4

)4/3

1

T

(
E√
λT

)1/3

=
0.990

T

(
E√
λT

)1/3

(33)

To find motion of the bulk of the string, it helps a lot to use Eddington-Finkelstein
coordinates:

ds2 = − r
2

L2

(
1− r4

H

r4

)
dv2 + 2dvdr +

r2

L2
d~x2 . (34)

Initializing with a segment of the trailing string,

xtrailing = β

(
v − L2

rH
tan−1 r

rH

)
, (35)

one finds—qualitatively—a trailing string truncated by the null geodesic.
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Amusing feature: at fixed E-F time, “trailing” string leads the endpoint (known to
[Casalderrey-Solana and Teaney, hep-th/0701123]).
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Starting from ṗµ for the endpoint, can derive

dE

dx
= −
√
λ

2π

√
f (z∗)

z2
, (36)

where z is determined as the height of the endpoint geodesic at position x.
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The result is a
bell-shaped dE/dx,
different from usual
ansatz
dE/dx ∼ EαxβT γ.
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• Preliminary results (red) suggest
that RAA at LHC is underpredicted
by this model: λ = 1 here!linear blast wave

non-linear blast wave

• RAA is number of high-energy
particles observed divided by
expectations from pp.

• Probably need to go beyond
conformal models—running
coupling is important.
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3. Summary
• Finite endpoint momentum is part of classical string theory.

• Generally covariant superstring action including finite endpoint momentum must
exist, but I don’t understand the details.

• Endpoints with finite momentum follow spacetime geodesics except for abrupt
changes in direction.

• Generalizations to finite momentum localized on a higher dimensional brane
seem natural and interesting.

• Could try to replay Lund model in AdS5: starts with strings localized to AdS2.

• Finite endpoint momentum helps identify trajectories that maximize transverse
distance traveled in AdS5-Schwarzschild with fixed energy.

• Heavy-ion applications of ∆xstop ∝ E1/3 and bell-shaped dE/dx are under
consideration.

• Interesting to consider also the charge of the endpoints: e.g. with a strong elec-
tric field, could we get endpoints to spontaneously rise up out of a black hole?
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4. The whole history of a heavy ion collision
I’d like to offer a few thoughts (somewhat disconnected) about the whole history of
a heavy ion collision, based partly on 1210.4181.

22

both the leading order variance and the NLO inclusive multiplicity can be
determined simultaneously. The variance contains useful information that
can convey information about the earliest stages of a heavy ion collision.
In particular, correlations between particles in a range of rapidity windows
can provide insight into the early stages of a heavy ion collision [68]. This
provides a segue for the topic of the second lecture on the properties of the
Glasma.

Lecture II: What does the Glasma look like and how does it
thermalize to form a Quark Gluon Plasma ?

In the previous lecture, we outlined a formalism to compute particle
production in field theories with strong time dependent sources. As argued
previously, the Color Glass Condensate is an example of such a field theory.
In the CGC framework, the high energy factorization suggested by eq. (1)
is assumed to compute final states. In this lecture, we will address the
question of how one computes in practice the initial Glasma fields after
a heavy ion collision, what the properties of these fields are and outline
theoretical approaches to understanding how these fields may thermalize to
form a Quark Gluon Plasma. A cartoon depicting the various stages of the
spacetime evolution of matter in a heavy ion collision is shown in fig. 3.

z (beam axis)

t

strong fields classical EOMs

gluons & quarks out of eq. kinetic theory

gluons & quarks in eq.
hydrodynamics

hadrons in eq.

freeze out

Fig. 3. Space-time development of a nucleus-nucleus collision. A goal of the Color

Glass Condensate approach is to describe the first stage – dominated by strong

fields – and to match it to the subsequent descriptions by kinetic theory or hydro-

dynamics.

In the CGC effective field theory, hard (large x) parton modes in each
of the nuclei are Lorentz contracted, static sources of color charge for the

Conventional understanding of the history of a heavy ion collision relies on beam-
axis boost invariance and a series of “phases” of hadronic matter.

But boost invariance is actually not a very good symmetry of the final state.



Finite momentum at string endpoints 24 S. Gubser

A cluster of many quarks and gluons (known as a nucleus) collides with another
such cluster. What is this like in AdS5?

D1s = 

BH = QGP
longitudinal classical
color fieldsstrings &  

This is very boost-non-invariant. Is there nevertheless some interesting averaged
description?
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4.1. Bjorken flow

Bjorken flow is simple because it respects a four-parameter symmetry group,
SO(1, 1) (along beam axis) × ISO(2) (in transverse plane).

ε = ε(τ ) where τ =
√
t2 − x2

3
(37)

because τ is the unique combination of the xµ invariant under SO(1, 1)× ISO(2).

The velocity field is also determined by symmetry:

uµ =
∂µτ√
∂µτ∂µτ

. (38)

Dynamics only enter into determining the form of ε(τ ): ∇µTµν = 0 where

Tµν = εuµuν +
ε

3
(ηµν + uµuν) , (39)

leads to ε = ε0/τ
4/3.

Janik-Peschanski construction of a boost-invariant black hole in AdS5 generalizes
Bjorken flow to include many viscous corrections.
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4.2. A modified boost symmetry

ISO(2) is an acceptable idealization, but boost-invariance is the enemy.

How about altering boost generator to something more general in SO(4, 2)?

If we insist [b, g] = 0 for g ∈ ISO(2), then the only sensible choice is SO(1, 1)C

generated by

b = B(3)︸︷︷︸
beamline boost

+ t3T(3)︸ ︷︷ ︸
beamline translation

+ k3K(3)︸ ︷︷ ︸
special conformal

.
(40)

If t3 6= 0 and k3 = 0, then the SO(1, 1)C× ISO(2)-invariant combination of xµ is

τC =
√

(t + t3)2 − x2
3 . (41)

For t3 real, we can trivially repeat Bjorken flow story:

uC
µ = − ∂µτ

C

√
∂µτC∂µτC

TC
µν = εCuC

µ u
C
ν +

εC

3
(ηµν + uC

µ u
C
ν ) εC =

εC0
(τC)4/3

(42)
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∇µTC
µν = 0 is automatic because we’re just translating Bjorken flow in time.

What if we translated by imaginary t3? All quantities that were supposed to be real
now become complex!

No problem, define Tµν = Re{TC
µν}. Clearly,∇µTµν = 0.
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Positive energy
condition: If we
require Tµνξµξν ≥ 0
inside future
light-cone for null or
timelike ξµ, it follows
that arg εC0 = π/3.

So “complexified”
Bjorken flow is
essentially unique.
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Tµν generally does not obey
hydrodynamic ansatz.

We can still define local
4-velocity by

Tµνu
ν = −εLuµ

with εL > 0.

Define yF through

uµ = (cosh yF , 0, 0, sinh yF )

in lab frame.
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Then yF ≈ η at mid-rapidities, but dyF/dη ≈ 1/2 at forward rapidities.
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In local frame where uµ = (1, 0, 0, 0), find

T µ
ν = diag{−εL, p⊥, p⊥, pL} (43)

Landau frame
energy density

�
��

transverse
pressure

6

longitudinal
pressure

@
@I

Then p⊥ 6= pL is a
measure of how far
we are from inviscid
hydro.

In forward region,
pL ≈ −εL, similar to
glasma.
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Cooper-Frye freezeout over hydrodynamic region results in dN/dy somewhat too
square too match BRAHMS data at

√
sNN = 200 GeV—but not too bad for t3 ≈

0.2 fm/c.
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Cooper-Frye converts each fluid element to free-streaming particles at T ≈ 130 MeV.
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4.3. Thoughts for the future
• What’s going on microscopically or holographically in SO(1, 1)C flow?

Maybe some combination of longitudinal color fields and quasiparticles, i.e. a
QCD-Boltzmann equation?

What is the AdS dual of complex time deformation? Re{gµν}?? Strings & BH??

• Can we look at perturbations?

Easy in principle, linearized eom’s are often complexified and you take Re{} at
the end.

• How should we handle hadronization?

Maybe something like Schwinger production? Currently, we don’t have ~E, only
Tµν.

• Why would SO(1, 1)C be a good symmetry?

• Can we consider finite transverse size?

SO(1, 1)C× SO(3)q symmetry fits the bill, and one can work out the invariant
coordinate; but region where positivity constraints should be applied is confus-
ing me, as are branch cuts.
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