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Black Hole Entropy:

e Bekenstein and Hawking: event horizons have entropy!

A

d—2
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SBH — 27T

» extends to de Sitter horizons and Rindler horizons

e window into quantum gravity?!?

e quantum gravity provides a fundamental scale

(5% =8rG n/c?



Proposal : Geometric Entropy

* in a theory of quantum gravity, for any sufficiently large region
with a smooth boundary in a smooth background (eg, flat space),
there is an entanglement entropy which takes the form:

g — Az

EE — 4GN

* in QG, short-range quantum entanglement corresponding to
area law Is a signature of macroscopic spacetime geometry



. Bianchi & M
Proposal : Geometric Entropy (Blanchi & Myers)
* in a theory of quantum gravity, for any sufficiently large region
with a smooth boundary in a smooth background (eg, flat space),
there is an entanglement entropy which takes the form:

As,
Sre = 4G N

 evidence comes from several directions:
holographic S in AAS/CFT correspondence

QFT renormalization of G n

iInduced gravity, eg, Randall-Sundrum 2 model

A

Jacobson’s “thermal origin” of gravity

5. spin-foam approach to quantum gravity

(cf. van Raamsdonk’s “Building up spacetime with quantum entanglement”)
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Entanglement Entropy

» general tool; divide quantum system into two parts and use
entropy as measure of correlations between subsystems

 in QFT, typically introduce a (smooth) boundary or entangling
surface . which divides the space into two separate regions

o trace over degrees of freedom in “outside” region

* remaining dof are described by a density matrix pa

——> calculate von Neumann entropy: Sz = =17 [pa log p 4]

(t = constant)




Entanglement Entropy
e remaining dof are described by a density matrix pa

——> calculate von Neumann entropy: Szr = =17 [pa log pa|

(t = constant

e result is UV divergent!
e must regulate calculation: ¢ = short-distance cut-off

RI—2 R4 d = spacetime dimension
+ co a1 + .-

As;

5d—2

» careful analysis reveals geometric structure, eg, S = ¢o + .-



Entanglement Entropy
e remaining dof are described by a density matrix pa

——> calculate von Neumann entropy: Szr = =17 [pa log pa|

(t = constant)

e must regulate calculation: 9 = short-distance cut-off

RI—2 R4 d = spacetime dimension

S — Co5d—2 —|— C25d—4 _|_

e leading coefficients sensitive to details of regulator, eg, 0 — 20
e find universal information characterizing underlying QFT in

subleading terms, eg, § = ... +1Og (R/S) + ---



General comments on Entanglement Entropy:

e nonlocal quantity which is (at best) very difficult to measure
—> no (accepted) experimental procedure

* in condensed matter theory: diagnostic to characterize quantum
critical points or topological phases (eg, quantum spin fluids)

* in quantum information theory: useful measure of quantum
entanglement (a computational resource)

* 4

 recently considered in AdS/CFT correspondence
(Ryu & Takayanagi 06)



(Ryu & Takayanagi "06)

Holographic Entanglement Entropy:

r = 00
AdS boundary

boundary
conformal field
theory

AdS bulk potential/redshift

l gravitational
spacetime

v

= ool!

Ay
S(A) = t 7
(4) ax?}iz 4G N

« “UV divergence” because area integral extends to 7 = o0



(Ryu & Takayanagi "06)

Holographic Entanglement Entropy:

T = 00
AdS boundary

T:RQ

cut-off in boundary CFT:
6§ =L*/Ry
(. /

Ay
S(A) = t ——
(A) ey 4G

« “UV divergence” because area integral extends to r = oo
« introduce regulator surface at large radius: 7 = Ry
— short-distance cut-off in boundary theory: § = I, /Ry

regulator surface



(Ryu & Takayanagi "06)

Holographic Entanglement Entropy:

AdS boundary

cut-off surface

cut-off in boundary CFT:
6 = L*/ Ry
v /
» general expression (as desired):

S(A) ~ co(R/6)¥ 2 +c1(R/5)4* 4 ... 4  universal

contributions”

e conjecture —> many detailed consistency tests
(Ryu, Takayanagi, Headrick, Hung, Smolkin, Faulkner, . . .)

e proof!! ——— *“generalized gravitational entropy”
(Lewkowycz & Maldacena)



Lessons from Holographic EE:

AdS/CFT Dictionary:
Boundary: thermal plasma «—> ulk: black hole

Temperature Temperature
Energy Energy
Entropy Entropy




Lessons from Holographic EE:

(entanglement entropy)youndary
= (entropy associated with extremal surface)y,

« R&T construction assigns entropy Ser = A/(4GN) to bulk
regions with “unconventional” boundaries:

' sheet L+
not black hole! not horizon! lee

not causal domain!
M

What are the rules?

N\ extremal
surface

—> with our proposal, Sg,, defines S /Elgl)lt—;eet E
In bulk gravity for any surface

e indicates S g, applies more broadly




Lessons from Holographic EE:
(entanglement entropy),oundary

= (entropy associated with extremal surface)y,

« R&T construction assigns entropy Spr = A/(4G N) to bulk
regions with “unconventional” boundaries:

« with our proposal, Sg, defines Sg¢ in bulk gravity for any surface

e what about extremization?
—> needed to make match above  (in accord with proof)

» Sg,, on other surfaces already speculated to give other entropic
measures of entanglement in boundary theory

—> entanglement between high and low scales

(Balasubramanian, McDermott & van Raamsdonk)

—> causal holographic information
(Hubeny & Rangamani; H, R & Tonni; Freivogel & Mosk)

» sSee Maldacena’s talk (Faulkner, Lewkowycz & Maldacena)
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Where did “Entanglement Entropy " come from?:

« Sorkin '84: looking for origin of black hole entropy

: A
e recall that leading term obeys “area law”: S = ¢y 5d_22 + -

—> suggestive of BH formula if 6 ~ ¢p

(Sorkin "84; Bombelli, Koul, Lee & Sorkin; Srednicki; Frolov & Novikov)

* problem?: leading singularity not universal; regulator dependent

e resolution: this singularity represents contribution of “low energy
d.o.f. which actually renormalizes “bare” area term Sy = A/4Gy
(Susskind & Uglum)

1 4c Asx,
’ (5) - 5d_02\}00 yd—2 Tt

both coefficients are regulator dependent
o o but for a given regulator should match!




BH Entropy ~ Entanglement Entropy (Demers, Lafrance & Myers)

* massive d=4 scalar: integrating out yields effective metric action

. N - 1
€ZW(g) — /D¢ eZI(Qbag) Wlth ] = —5 /d4$\/ —g [gabva¢vb¢+m2¢2 ]

e must regulate to control UV divergences in W(Q)
1

5
—> Pauli-Villars fields: —5/61496\/—_92 (9% VadiVedi + m*6; |
1=1

. : : 2 2 .
¢1,2 . antl-Commutlng,mm =m @ ¢3’4 *commuting, m%A — mﬁ

. . . 2 2
¢s * anti-commuting, m3 = m” + \ UV regulator scale

e effective Einstein term: W ~ L /d% —gR B with

167 127
i 9,2 i .9 9.2 | .2 i G2 | .02
C.Iuadratlc /B>A,u.:2 21n Sﬁi i) ”1 +41In '_3’[: L m,}] +m” [111 ,;n =+2In '3’{1,! L ”F ]
divergence p? 4 m? 42 + m? 4p2 + m? p? + m?
L. : _ 1 B
e renormalization of Newton’s constant: ¢ a)” Ton
-



BH Entropy ~ Entanglement Entropy (Demers, Lafrance & Myers)

* massive d=4 scalar: integrating out yields effective action W(Q)

: : : 1 B :
o effective Einstein term: W ~ — / d*zv/—gR —— with
167 127
guadratic /B-> 2 o1y 3u® 4+ m? ATl 3u? + m? b m? Y 3u? + m?
divergence — & p? 4+ m? 4p? 4+ m?2 42 +m2 T 2+ m2

e renormalization of Newton’s constant: 5(%) = B

e scalar field contribution to BH entropy: § ~ AB _A 5(1)

 extends to log divergence; matches curvature correction to S, 4



BH Entropy ~ Entanglement Entropy (Susskind & Uglum)
As

1 400 — “ o
’ (é) - 5d_2\))00 yd—2 +
both coefficients are regulator dependent
o - but for a given regulator should match!

« “a beautiful idea killed by ugly calculations”??

« seemed matching was not always working??
e numerical factors resolved; extra boundary terms interpeted

~

?@) (Fursaev, Solodukhin, Miele, lellici, Moretti, Donnelly, Wall . .. )
(Cooperman & Luty)

——> matching of area term works for any QFT (s=0,1/2, 1, 3/2)
to all orders in perturbation theory for any Killing horizon

« technical difficulties for spin-2 graviton
¥ - results apply for Rindler horizon in flat space

e Some conceptual iIssues may remain (Jacobson & Satz; Solodukhin)



BH Entropy ~ Entanglement Entropy (Susskind & Uglum)

1 4eg A
’ (é) - 5d_2\))00 yd—2 +
both coefficients are regulator dependent
o - but for a given regulator should match!

+ “a beautiful killed by ugly facts™>?> (@

L 1
 result “unsatisfying”. Spg :+ Ser : ég(a) 4+

where did bare term come from?
e consider “induced gravity”: Gio =0 (Jacobson; Frolov, Fursaev & Solodukhin)

» formally “off-shell” method is precisely calculation of S
(Susskind & Uglum; Callan & Wilczek; Myers & Sinha: extends to S, 4)
 challenge: understand microscopic d.o.f. of quantum gravity

—> AdS/CFT: eternal black hole (or any Killing horizon)
(Maldacena; van Raamsdonk et al; Casini, Huerta & Myers)
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Entanglement Hamiltonian:‘ D

« first step in calculation of S is to determine p 4

* PA reproduces standard correlators, eg, if global vacuum:

Tr(pa ¢(z)o(y)) = (0o(z)d(y)|0)

* by causality,© 4 describes physics throughout causal domainD



Entanglement Hamiltonian: ‘ D

« hermitian and positive semi-definite, hence p4 = e H

—> H = modular or entanglement Hamiltonian

- formally can consider evolution by U(s) = p’ = e~ "H*

e unfortunately  is nonlocal and flow is nonlocal/not geometric

H:/dd Ly v (x W+/dd 1 /dd Ly 8% (2, y) T T + -+



Entanglement Hamiltonian:‘ D

« hermitian and positive semi-definite, hence p4 = e H

—> H = modular or entanglement Hamiltonian

« H explicitly known only in limited examples
* most famous example: Rindler wedge
H = boost generator B

= 21K = —27’(’/ A2y dx [z Tyo)
A(x>0)




Entanglement Hamiltonian: < >

Can this formalism provide
Insight for “area law”termin S ?

LgeoLgeom >> 5>> 5

e zoom Iin on infinitesimal patch of 9D .

—> region looks like flat space
—> 0D looks like Rindler horizon

e assume Hadamard-like state —>
correlators have standard UV sing’s

» UV part of p4 same as in flat space  §Lres
« i must have Rindlerterm: H = 27K + - - -




Entanglement Hamiltonian: < >

Can this formalism provide
insight for “area law”termin S ?

for each infinitesimal patch:

e UV part of o4 must be —
same as in flat space

e H must have Rindler term:
H=2rK + ---
—> Rindler H yields area law; hence 6Sgr = codAs /042 + -

—> hence S must contain divergent area law contribution!

* invoke Cooperman & Luty: area law divergence matches
precisely renormalization of 1/G':

A (1
SEE = Z(S(E) +

for any large region of smooth geometry!!



Entanglement Hamiltonian: < >

Can this formalism provide
Insight for “area law”termin S ?

e Cooperman & Luty: area law divergence
matches precisely renormalization of 1/G :

A (1
SEE = Z(S(E) +

for any large region of smooth geometry!!

e consistency check of new proposal but
where did bare term come from?



Entanglement Hamiltonian:
where did bare term come from?

 formally can apply standard geometric arguments in Rindler
patches, analogous to the “off-shell” calc’s for black holes

e entanglement Hamiltonian not “mysterious” with Killing symmetry
H = 27'('/ dV'u TMV kl/
by

eg, Killing horizons: Rindler, de Sitter, stationary black holes, . ..

(see also: Wong, Klich, Pando Zayas & Vaman)

o carry QFT discussion over to geometric discussion:
- zooming in on entangling surface restores “rotational” symmetry
- can apply standard geometric arguments to find bndry terms

—> spherical entangling surface in flat space

(Balasubramanian, Czech, Chowdhury & de Boer)

Y kR _ As
I_/dx\@[mdeJr ] ) S; +

4Gy




Entanglement Hamiltonian:
where did bare term come from?

 consider gravitational action with higher order corrections:

R (]
]_/dd:z;\/_[ + 5 R2+ —RWRH—

(7i' Okl o
167TGd JHl + ]

27

« apply new technology: “Distributional Geometry of Squashed Cones”
(Fursaev, Patrushev & Solodukhin)

Sgg = £—|—4a1/dd_2y\/ﬁR—|—2a2/
>

d2yvVh|2RY G- — K'K;

: 1
+ 4/432/ dd_2y\/ﬁ [hachbdcabcd - K;bKiab + szK“ + .-
by

e compare to Wald entropy for such higher curvature actions:

Swale—Qﬂ'/ dd 2y\/_

A V/\
"€y

RW

— In general, Sge and S,,,4 differ (beyond area law) by extrinsic
curvature terms but will agree on stationary event horizon



Entanglement Hamiltonian:
where did bare term come from?

e challenge : understand “bare term” from perspective of
microscopic d.o.f. of quantum gravity
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5) Randall-Sundrum 2 model

* AdS/CFT cut-off surface becomes a physical brane

—> graviton zero-mode becomes normalizable

—> D=d+1 AdS gravity (with cut-off) + brane matter

—)
d-dim. CFT (with cut-off) + d-dim. gravity + brane matter

 induced gravity: “boundary divergences” become effective action
[d/2]
Ling = 2 Z SR 21 rin, + Iprane €—— on-shell

n=0

—~ [ C C1 C
:2/ddaj\/§( d + 5d—2R—|— 5d—4R2+”.) ‘|_21fin‘|_]brane
LCFT

correlators

cancel W'Fh L boundary gravity
brane tension



5) Randall-Sundrum 2 model
* AdS/CFT cut-off surface becomes a physical brane

—> graviton zero-mode becomes normalizable

—> D=d+1 AdS gravity (with cut-off) + brane matter

—)
d-dim. CFT (with cut-off) + d-dim. gravity + brane matter

* induced gravity: “boundary divergences” become effective action
* AdS scale, L = short-distance cut-off 0 in CFT

« fundamental parameters: cut-off scale o in CFT

CFT central charge (# dof) Ctr (> 1)
1 8w Cr 1 8T C'r

B = ) = =~ 5> ¢
(GN)bdry deﬁilry 692" (GN)pur 051 §d—1 ( Pb)

P,bulk

 only leading contributions in an expansion of large Cr !l



5) Randall-Sundrum 2 model (Fursaev: Emparan)

« entanglement entropy calculated with R&T prescription

—> for BH’s on brane, horizon entropy = entanglement entropy

(see also: Hawking, Maldacena & Strominger; Iwashita et al)

» entanglement entropy for any macroscopic region is finite in

a smooth boundary geometry: (Pourhasan, Smolkin & RM)
A
S(A) = > -]
4 (GN)bdry

—> Dbrane regulates all entanglement entropies!!



5) Randall-Sundrum 2 model (Pourhasan, Smolkin & RM)

e consider boundary gravitational action to higher orders:

] = dd Y y 2 = C,. 17kl
/ ”3\/5[16de e (RJR A(d — 1)R ) T g Ciak O+

using models with Einstein and GB gravity in bulk

o careful analysis of asymptotic geometry yields

p— _— d iJ 5 — —_ t i
Spp 4Gd+“/ yf[R G5 — = R KK]
1
+ 4/632/ dd_2y\/ﬁ[hachbdcabcd — 1< ab + mli%l( ] + .-
>

e complete agreement with previous geometric calculation!!



Entanglement Hamiltonian:
where did bare term come from?

 consider gravitational action with higher order corrections:

R (]
]_/dd:z;\/_[ + 5 R2+ —RWRH—

(7i' Okl o
167TGd JHl + ]

27

« apply new technology: “Distributional Geometry of Squashed Cones”
(Fursaev, Patrushev & Solodukhin)

Sgg = £—|—4a1/dd_2y\/ﬁR—|—2a2/
>

d2yvVh|2RY G- — K'K;

: 1
+ 4/432/ dd_2y\/ﬁ [hachbdcabcd - K;bKiab + szK“ + .-
by

e compare to Wald entropy for such higher curvature actions:

Swale—Qﬂ'/ dd 2y\/_

A V/\
"€y

RW

— In general, Sge and S,,,4 differ (beyond area law) by extrinsic
curvature terms but will agree on stationary event horizon



5) Randall-Sundrum 2 model (Pourhasan, Smolkin & RM)

e consider boundary gravitational action to higher orders:

e ] R filp pij & o\ B2 g
= /d x\/gllf)‘ﬁ(}d i (R”R d-10" ) Tan CigmC=™ +
using models with Einstein and GB gravity in bulk
o careful analysis of asymptotic geometry yields

p— _— d iJ 5 — —_ t i
Spp 4Gd+“/ yf[R G5 — = R KK]
1
+ 4/%2/ dd_2y\/ﬁlhachbdcabcd — 1< ab + mli%l( ] + .-
>

e complete agreement with previous geometric calculation!!
e again, Sg¢ and S, 4 agree up to extrinsic curvature terms

 supports idea that new results calculate entanglement entropy



5) Randall-Sundrum 2 model

(with Pourhasan & Smolkin)

 consider entanglement entropy of “slab” geometry in flat space:

A HO—2
S(A) — Ed_2

P.bdry
e test corrections —J

o define: C(¢) =¢5'(¢)

e Lorentz inv, unitarity &
subadditivity: C’(¢) < 0
(Casini & Huerta; Myers & Singh)




5) Randall-Sundrum 2 model _ |
(with Pourhasan & Smolkin)

I I I I I
10 — e ——
08+ — D=3 —
el D=3
S osf T -
0 D
041 — D=6 7
02~ —
|
I}.U 1 1 1 I I 1 I
o 2

Q".u|"'"h =



5) Randall-Sundrum 2 model

D.12

0.10

0.08

0.04

0.0z

0.00

(with Pourhasan & Smolkin)




5) Randall-Sundrum 2 model _ |
(with Pourhasan & Smolkin)

A . . . ,x om
=  Lorentz inv, unitarity & StHeaeiettvty:
| C'(6) < 0 - 4um X

— D=3

e inequality breaks down when ¢ ~ o

— D=4

—> higher curvature & nonlocal
effects important; slab not =
resolved; subadditivity lost

SRS

(similar test with cylinders)
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Conclusions:

 proposal: in quantum gravity, for any sufficiently large region in
a smooth background, there is a finite entanglement entropy
which takes the form:

o five lines of evidence: 1) holographic entanglement entropy,
2) QFT renormalization of 1/Gy, 3) induced gravity models,
4) Jacobson’s arguments and 5) spin-foam models



FAQ: 1) Why should | care?
After all entanglement entropy is not a measurable quantity?

e not yet! it remains an interesting question to find physical
processes are governed by entanglement entropy

———> eg, production of charged black holes in bkgd field;
(Garfinkle, Giddings & Strominger)

Renyi entropy & tunneling between spin chain states
(Abanin & Demler)

e compare to quantum many body physics:  (Popescu, Short & Winter)

generic states do not satisfy “area law” but low energy states do

—> |ocality of the underlying Hamiltonian restricts the
entanglement of the microscopic constituents

—> tensor network program

Lesson(s) for quantum gravity?



FAQ: 2) Why should | care?
“Smooth curvatures are a signature of macroscopic spacetime”
seems a simpler/better/more intuitive slogan.

e this proposal relates (semi)classical geometry directly to a
property of the underlying quantum description



FAQ: 3) Why should | care?
The area of a finite region can not possibly be an

observable in quantum gravity!

 question of observables in QG has a long history; do not have
a solution here but suggestion towards a construction

—> In spacetime with boundary, use
light sheets to connect entangling
surface to boundary and define X
with corresponding boundary data




FAQ: 4) Is this the same thing as L&M'’s “Generalized
Gravitational Entropy”?

* not at present; recall the important role of boundary data and
extremal surfaces in the “GGE” discussion

» seems like it should be related but must reformulate the
“boundary” data in terms of the chosen entangling surface
(see Appendix C in L&M)



FAQ: 5) Is there a relation between this proposal and
M&S’s “ER = EPR” idea?

e sure thing, definitely not and maybe??7??

 note that S=Sg,, refers to short-range entanglement of
“*QG degrees of freedom” (“glue holding the spacetime together™)

e in contrast, ER=EPR seems primarily to refer to long-range
entanglement of widely separated “ordinary guanta”

e seems more like “virtual qubits” of Verlinde? ??

FAQ: 6) Is there a relation between this proposal and Yasha
Neiman’s “imaginary part of the gravity action”?

 probably; go read: arXiv:1301.7041 , arXiv:1303.4752 , arXiv:1305.2207



Conclusions:

 proposal: in quantum gravity, for any sufficiently large region in
a smooth background, there is a finite entanglement entropy
which takes the form:

As;
SEE — |
4G N

e future directions:
» find interesting string framework to calculate
» find connection to “generalized gravitational entropy”

» better understand higher curvature corrections
» does entropy have an operational meaning?
» further develop spin-foam calculations

» avoid being scrambled by any firewalls!



