
Non-‐spherical	  collapse	  &	  
Early	  Thermaliza5on,	  

1302.1277	  	  with	  Eunseok	  Oh,	  
	  hep-‐th/0511199	  	  with	  Shuryak,Zahed	  	  	  	  

	  	  	  	  	  	  Sang-‐Jin	  Sin	  (Hanyang	  U.)	  

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  @	  KIAS-‐YITP,	  	  	  2013.07.05	  



Announced	  5tle	  was	  
Thermal	  Mass	  and	  Plasmino	  	  

Based	  on	  	  

1205.3377;	  1305.1446	  	  	  

with	  Yunseok	  Seo	  +	  Yang	  Zhou	  

I	  will	  talk	  about	  this	  	  as	  second	  topic.	  	  



Early	  thermaliza5on.	  	  

•  Is	  one	  of	  the	  puzzles	  in	  RHIC	  :	  Heavy	  ion	  
collision	  fireball	  equilibrate	  just	  in	  passing	  5me	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  t~	  1	  fm/c	  



This	  is	  one	  of	  the	  evidence	  that	  	  
QGP	  in	  RHIC	  exp.	  is	  sQGP!	  

Other	  evidences	  for	  sQGP:	  	  
small	  eta/s,	  ellip5c	  collec5ve	  flow,	  	  
Jet	  quenching	  

Why	  strong?	  Asympto5c	  freedom	  +	  Rapid	  
par5cle	  crea5on.	  	  

	  	  Ini5al	  E=200GeV/par5cle,	  T=200MeV.	  	  



In	  gravity	  dual,	  

•  Thermalized	  state	  =	  BH,	  so	  
	  	  	  	  	  Early	  thermaliza5on	  means,	  Easy	  BH	  forma5on.	  	  
	  	  	  	  	  So	  Our	  ques5on	  will	  be:	  	  
Can	  a	  generic	  collapse	  in	  	  AdS	  give	  a	  BH	  	  
in	  ONE	  dynamical	  5me?	  

•  many	  works	  are	  done!	  	  
	  	  	  	  	  Aharony,	  Bucher,	  Chesler,…,Gubser,	  Minwalla,	  	  
….	  Yaffe,	  Zayas	  
My	  work	  with	  Shuryak	  and	  Zahed	  (‘05)	  hep-‐th/0511199	  



	  Claim	  and	  conclusion	  	  

•  Any	  shape	  of	  dust	  par5cle	  distribu5on	  will	  
collapse	  into	  Black	  hole	  in	  a	  5me	  	  
less	  than	  the	  one	  Falling	  5me.	  	  

•  	  This	  is	  the	  mechanism	  of	  	  
Early	  Thermaliza5on.	  (review	  of	  0511199)	  	  



	  In	  AdS	  space	  

Figure 1. Collapse of a shell with arbitrary shape in AdS space. The whole shell will reach at the

center simultaneously. Tfall =
π
2
R
c .

It is easy to see that the system describe an non-linear oscillator. If we assume that the

particle starts with zero radial velocity from the initial radial position r0, then

E = m
�
1 + r20, (2.4)

which establish an dictionary between the total energy and the initial radial coordinate.

Introducing vc by vc = r0/
�
1 + r20, we have E =

m√
1−v2c

. Its velocity in the radial direction

start with 0 and grows up to vc when it reaches at the center. Interestingly, we can find

the exact solution of the equation of motion:

r =
vc cos t�

1− v2c cos
2 t

. (2.5)

The remarkable property of this solution is that the period of the motion is 2π, independent

of the original position r0, as if it is an simple harmonic oscillator. Restoring the scale

parameters R, c by r, t, v → r/R, t/R, v/c the falling time is

Tfall =
π

2

R

c
. (2.6)

This means that arbitrary set of particles, falling in AdS will form a black hole regard-

less of the initial position, provided, (i) all the particles start with zero initial velocities,

and (ii) Interaction between the particles are negligible. See figure 1.

How do we justify or relax the conditions listed above?

1. In AdS/CFT correspondence, the radial direction is the dual of the energy scale.

If two gold ions collided in RHIC and created particles of energy Ei and mass mi,

– 3 –



In	  flat	  space,	  

Figure 1: The system of particles after initialization.

8 Simulation Results

Long run times do indeed show the clumping. The absence of any adherence
to units in this simulation precludes any conclusions about whether these are
“galaxies” or “stars,” but the results are promising.

5

Figure 2: The system of particles after the simulation has run for 2.5 days
nonstop.
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Then	  Why	  in	  ads?	  	  	  	  	  1302.1277	  	  

•  Consider	  a	  free	  fall	  of	  a	  massive	  par5cle	  in	  ads.	  

scalar field collapse where it is assumed that matter is in a state of coherent condensation.

Only when particle’s wave functions are overlapping, one can justify treating many particles

in terms of condensation wave function or the scalar field configuration.

In the gauge/gravity duality one considers the limit where string is much smaller than

the AdS radius. In this limit the wave nature as well as the stringy nature is suppressed.

For the many particle system in RHIC, a scalar field configuration is not the proper dual

configuration to the fireball. Therefore we consider the shell as a collection of the interacting

particles in AdS. We will show that particles arrive at the center simultaneously regardless

of their masses, initial positions and velocities. This means that arbitrary shape of shell

will gradually becomes the spherical shell, as it falls. After such shell pass the ‘would be

horizon’, black hole forms and particle’s motion can not continue. We will first show this

for particles without inter-particle interaction and then we will show that the same thing is

true even in the presence of the interacting. In gauge/gravity duality, the dynamics of gluon

exchange is treated by gravity background in leading 1/N expansion. So here neglecting

inter-particle interaction means treating particle interaction in leading 1/N expansion of

gauge theory.

Even in the simplest case of free fall along the radial direction, the equation of the

motion (EOM) is that of a non-linear oscillator. Nevertheless its period is independent of

the amplitude as if it is a simple harmonic oscillator(SHO). This is a remakable property of

AdS5 spacetime. We will de-mystify this phenomena by finding a non-linear mapping that

transform the EOM of the falling into that of SHO. We call this property as synchronization

effect of AdS. This means that any non-spherical shell in AdS space becomes spherical shell

as it falls, and all parts of the shell reach the center simultaneously. It means any cloud

falls to become a black hole in AdS space. We will see that adding initial velocity does not

change the conclusion. We believe that this property is the fundamental reason, from the

dual point of view, behind the early thermalization of the strongly interacting quark gluon

plasma.

2 Collapse in global AdS5 without inter-particle interaction

To consider the collapse of non-spherical shell which is consist of non-interacting particles,

we need to look at the motion of individual particles. For AdS5 with spherical boundary

the metric is given by

ds2 = −(1 + r2/R2)c2dt2 + r2dΩ2 +
dr2

1 + r2/R2
(2.1)

The equation of motion is given by the action

S = −m

� �
−gµν ẋµẋνdt, with ẋ =

dx

dt
. (2.2)

For simplicity, we first consider the radial motion and set R = 1, c = 1. The energy

conservation can be written as

m(1 + r2)�
1 + r2 − ṙ2/(1 + r2)

= E. (2.3)
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ṙ2 + (m/E)2(1 + r2)2(1 + r2 − E2/m2) = 0



The	  equa5on	  of	  mo5on	  turns	  out	  	  
to	  be	  integrable.	  	  	  

With	  change	  of	  variable	  

The	  equa5on	  of	  mo5on	  become	  SHO:	  

r =
v√

1− v2

v̇2 + v2 = v2c := 1− (m/E)2



Solu5on	  	  
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π
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R
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Falling	  5me	  is	  the	  same	  independent	  of	  the	  
ini5al	  condi5on	  of	  par5cle.	  	  

r_0	  is	  the	  	  ini5al	  radial	  posi5on.	  	  	  	  	  	  	  	  	  	  v_c	  is	  the	  velocity	  at	  the	  center.	  	  	  



This	  means	  what	  I	  claim.	  

	  	  	  	  	  	  	  	  Generic	  collapse	  will	  give	  a	  black	  hole,	  
provided	  that	  they	  start	  from	  sta5c	  
configura5on.	  
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π
2
R
c .

It is easy to see that the system describe an non-linear oscillator. If we assume that the

particle starts with zero radial velocity from the initial radial position r0, then

E = m
�
1 + r20, (2.4)

which establish an dictionary between the total energy and the initial radial coordinate.

Introducing vc by vc = r0/
�
1 + r20, we have E =

m√
1−v2c

. Its velocity in the radial direction

start with 0 and grows up to vc when it reaches at the center. Interestingly, we can find

the exact solution of the equation of motion:

r =
vc cos t�

1− v2c cos
2 t

. (2.5)

The remarkable property of this solution is that the period of the motion is 2π, independent

of the original position r0, as if it is an simple harmonic oscillator. Restoring the scale

parameters R, c by r, t, v → r/R, t/R, v/c the falling time is

Tfall =
π

2

R

c
. (2.6)

This means that arbitrary set of particles, falling in AdS will form a black hole regard-

less of the initial position, provided, (i) all the particles start with zero initial velocities,

and (ii) Interaction between the particles are negligible. See figure 1.

How do we justify or relax the conditions listed above?

1. In AdS/CFT correspondence, the radial direction is the dual of the energy scale.

If two gold ions collided in RHIC and created particles of energy Ei and mass mi,

– 3 –



Status	  on	  BH	  making	  in	  AdS	  
see	  Ishibashi’s	  talk.	  

1	  	  scalar	  field	  collapse	  	  turbulant	  instability	  	  
If	  one	  can	  wait	  long,	  OK	  
But	  if	  you	  need	  to	  form	  BH	  in	  one	  dynamical	  5me,	  

	  	  	  	  	  even	  spherical	  collapse	  is	  not	  easy,	  not	  to	  men5oning	  the	  
generic	  shell.	  	  

Is	  this	  a	  contradic5on	  to	  what	  I	  said?	  	  
No.	  I	  used	  dust.	  	  
Wave	  is	  hard	  to	  localize!	  	  This	  in	  par5cle	  QM	  is	  uncertainly	  principle.	  	  

•  2.	  Spherical	  ini5al	  condi5on	  	  even	  in	  the	  case	  one	  get	  BH	  
	  	  	  	  in	  one	  falling	  (remember	  BIG	  shell),	  	  such	  fine	  tuned	  Ini5al	  Condi5on	  

is	  not	  of	  no	  use	  for	  RHIC	  exp.	  	  



II.	  Is	  this	  the	  Mechanism	  of	  	  
early	  thermaliza5on?	  

•  Q1.	  What/Why	  dust	  ?	  
•  Q2.	  Why	  fall?	  	  	  
•  Q3.	  Why	  non-‐interac5ng	  dust?	  	  
•  Q4.	  Poincare	  patch?	  
•  Q5.	  What	  is	  the	  ini5al	  velocity	  effect?	  
•  Q6.	  What	  happen	  if	  we	  add	  interac5on?	  	  
•  Q7.	  Any	  predic5on?	  	  

-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐	  
•  Q8.	  Where	  is	  entropy	  genera5on?	  
•  Q9.	  back	  reac5on	  of	  gravity?	  	  
•  Q10.	  Is	  this	  mechanism	  universal?	  
•  Q11.What	  is	  wrong	  with	  Shock	  wave?	  	  
	  	  	  ………etc.……	  



Q1.	  What/Why	  dust?	  	  

•  The	  holographic	  image	  of	  the	  created	  par5cles	  is	  
the	  dust	  in	  the	  bulk.	  	  
Since	  they	  are	  NOT	  in	  a	  coherent	  state	  or	  Bose	  
condensa5on	  state,	  it	  is	  beter	  not	  to	  be	  
described	  as	  a	  non-‐trivial	  field	  configura5on	  of	  
scalar	  or	  any	  tensor.	  	  

•  More	  proper	  discussion	  should	  involve	  Par5cle	  
crea5on	  mechanism	  in	  string	  theory.	  	  Open	  string	  
scatering	  can	  pinch	  off	  	  	  closed	  string.	  	  	  

•  But	  we	  start	  from	  the	  crea5on	  of	  5000	  par5cles.	  	  



Q2.	  Why	  Fall	  ?	  
1.	  It	  equilibrates	  auer	  some	  Expansion	  
•  Accodring	  to	  UV/IR	  rela5on,	  	  
Expansion	  @bdry	  is	  dual	  to	  the	  Falling	  in	  bulk.	  

!

! " #

"

#

!

Figure 3: Holographic correspondence of the expansion in 4d and the falling in 5d. From the boundary

point of view, the front part ‘1’ is freely streaming while the inner part ‘3’ sees medium effects. From the

bulk point of view: the lower part ‘1’ falls freely while the upper part ‘3’ sees the AdS black hole geometry.

Birkhoff’s theorem tells that whether the inner part is really black hole or not is not an issue. Thus the

inner part ‘3’ feels that it is in thermal equilibrium.

r =
εR

√

(εt/R)2 + 1
= R2/t − (R/t)3/2ε2 + O(t−5), (14)

so that the initial condition dependence ( that is the ε dependence) disappears rapidly as time goes

on. We believe that this focusing effect plays an important role in the initial formation of the black

hole geometry. So eq. (14) can be thought to describe the front surface of the fireball which is not

equilibrated.

After reaching bottom (IR region) the droplet will spread and flatten to make a pancake. For

late time falling objects, such a stack of mass on the IR brane generates a black hole geometry due

to Birkhoff’s theorem. See Fig. 3 and its capture. The particles inside the front surface, experience

the interaction of a medium and the expansion in the center of the fireball is dual to the falling of

a particle in the AdS black hole background.

In the next subsection, we will consider the case with fundamental fields (quarks).

2.3 With quarks: creation of closed string

Now if we have particles in the fundamental color representations in addition to the ones in the

adjoint color representation, we need to introduce probe branes in bulk [21]. A heavy meson is a

quark and antiquark connected by a string deep in AdS. The scattering of such mesons could be

8
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2.	  	  Because	  holographic	  image	  of	  a	  created	  	  	  par5cle	  is	  at	  r>	  0.	  	  

Why	  Fall?	  	  	  	  con5nued	  	  

Polchinski+Strassler	  (hep-‐th/0109174)	  
Maximum	  contribu5on	  to	  scatering	  amplitude	  is	  from	  a	  definite	  height.	  )	  

2.1 Where is the holographic image of initial scattering?

In [12], Polchinski and Strassler argued that the gauge theory scattering amplitude is dominated by

a contribution in the dual picture stemming from the height rscat ≈
√

s. For definiteness, we briefly

review [12].

Consider the exclusive process 2 → m particles. For the gauge theory momentum pµ, we

associate the string theory momentum in bulk p̃µ set by the height r through #1

√
α′p̃µ =

R2

r
pµ. (1)

The gauge theory amplitude A(p) at the boundary and the string theory amplitude in a flat space

As(p̃) are related by the postulated formulae

A(p) =

∫

drdΩ5
√

gAs(p̃)
m+2
∏

i=1

ψi(r, Ω). (2)

The string amplitude As(p̃) fall off exponentially for small r, and the wave functions fall off at large

r so that the maximum contribution occurs at finite height

rscat ∼ R2p. (3)

More explicitly, for m = 2,

rscat ∼ R2
√

|t| ln(s/|t|)/(∆ − 4) . (4)

If rscat is not smaller than the IR cut-off rmin (the position of the IR brane) the image of the collision

in bulk is located at a certain height in AdS rather than the bottom as is claimed in [13, 18]. The

higher
√

s the closer to the boundary #2.

But how is this consistent with the fact that the AdS wavefunctions of the incoming particles

are peaked in the IR not the UV as shown in the Fig. 1?
#1Here we change the scale of the red shift factor from the convention of [12] for later convenience. In our convention,

the gauge theory string tension α̂′ = Λ−2 with the minimum height rmin = R2Λ defined by the minimum glueball

mass Λ.
#2The image, although localized at rscat is not sharp unless the object has high conformal weight, for which the

size of the holographic image along the r direction, δrscat, is estimated to be

δrscat

rscat
∼

1
√

∆
. (5)

Therefore for high conformal weight in 4d, the holographic image is localized. To simplify the discussion, let’s discuss
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Figure 2: Probability distributions. Notice that z = 0 is the boundary. For higher excitations it is more

likely to be at UV region.

On the other hand and between the collisions, the particles are off mass-shell (k2 > 0)and k should

be interpreted as the momentum transfer. The wave function is

φ(z) = z2Iν(kz) for k2 > 0. (8)

As the 5d mass (equivalently ∼ ν) increases, no qualitative change in the wave functions is

observed except that it is slightly pushed to the IR region(larger z). On the other hand, increasing

the 4d mass (k2) includes more nodes in the allowed region and effectively pushes the wave function

into UV region. This “push-to-UV” effect is more dramatic if we consider the ‘radial’ probability

density P (z) =
√

g|φ(z)|2. Due to the measure (
√

g), the dominant peak is near the boundary rather

than horizon. We can estimate the location of the dominant peak in terms of xν1, the first zero of

the Jν(x). We suggest that the location of the holographic image of the incoming glueball with mass

M4 (=
√
−k2 := k) is given by

r0 ∼ 1
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M4 ∼ R2k, (9)

which is consistent with eq.(3).

In summary, if we model a heavy ion as a glueball with large 4d mass, the holographic

image of the initial beam is at the height that is proportional to the mass. This is consistent with

6

1 2 3 4 5 6
z

0.01

0.02

0.03

0.04

0.05

0.06

0.07
P z 2, k 0.855

1 2 3 4 5 6
z

0.02

0.04

0.06

0.08

0.1

P z 2, k 1.405

1 2 3 4 5 6
z

0.1

0.2

0.3

0.4
P z 2, k 4.571

Figure 2: Probability distributions. Notice that z = 0 is the boundary. For higher excitations it is more

likely to be at UV region.

On the other hand and between the collisions, the particles are off mass-shell (k2 > 0)and k should

be interpreted as the momentum transfer. The wave function is

φ(z) = z2Iν(kz) for k2 > 0. (8)

As the 5d mass (equivalently ∼ ν) increases, no qualitative change in the wave functions is

observed except that it is slightly pushed to the IR region(larger z). On the other hand, increasing

the 4d mass (k2) includes more nodes in the allowed region and effectively pushes the wave function

into UV region. This “push-to-UV” effect is more dramatic if we consider the ‘radial’ probability

density P (z) =
√

g|φ(z)|2. Due to the measure (
√

g), the dominant peak is near the boundary rather

than horizon. We can estimate the location of the dominant peak in terms of xν1, the first zero of

the Jν(x). We suggest that the location of the holographic image of the incoming glueball with mass

M4 (=
√
−k2 := k) is given by

r0 ∼ 1

2

R2

xν1
M4 ∼ R2k, (9)

which is consistent with eq.(3).

In summary, if we model a heavy ion as a glueball with large 4d mass, the holographic

image of the initial beam is at the height that is proportional to the mass. This is consistent with

6



Q3.	  Why	  non-‐interac5ng	  dust?	  

•  All	  the	  gluon	  mediated	  interac5ons	  are	  
transformed	  away	  as	  background	  gravity	  
	  dusts	  are	  free	  par5cle	  in	  a	  ads	  background.	  	  

•  But	  non-‐gluonic	  interac5ons	  should	  be	  
remained	  and	  will	  be	  discussed	  later.	  	  



Q4.	  Poincare	  Patch?	  	  

•  Mo5on	  not	  periodic.	  Falling	  5me	  is	  infinite.	  

•  Ini5al	  condi5on	  dependence	  rapidly	  disappear.	  	  
Synchroniza5on	  effect	  is	  s5ll	  there.	  	  

•  Forma5on	  of	  trapped	  surface	  in	  “finite	  5me”	  
seems	  “obvious”.	  	  	  	  

!

! " #

"

#

!

Figure 3: Holographic correspondence of the expansion in 4d and the falling in 5d. From the boundary

point of view, the front part ‘1’ is freely streaming while the inner part ‘3’ sees medium effects. From the

bulk point of view: the lower part ‘1’ falls freely while the upper part ‘3’ sees the AdS black hole geometry.

Birkhoff’s theorem tells that whether the inner part is really black hole or not is not an issue. Thus the

inner part ‘3’ feels that it is in thermal equilibrium.

r =
εR

√

(εt/R)2 + 1
= R2/t − (R/t)3/2ε2 + O(t−5), (14)

so that the initial condition dependence ( that is the ε dependence) disappears rapidly as time goes

on. We believe that this focusing effect plays an important role in the initial formation of the black

hole geometry. So eq. (14) can be thought to describe the front surface of the fireball which is not

equilibrated.

After reaching bottom (IR region) the droplet will spread and flatten to make a pancake. For

late time falling objects, such a stack of mass on the IR brane generates a black hole geometry due

to Birkhoff’s theorem. See Fig. 3 and its capture. The particles inside the front surface, experience

the interaction of a medium and the expansion in the center of the fireball is dual to the falling of

a particle in the AdS black hole background.

In the next subsection, we will consider the case with fundamental fields (quarks).

2.3 With quarks: creation of closed string

Now if we have particles in the fundamental color representations in addition to the ones in the

adjoint color representation, we need to introduce probe branes in bulk [21]. A heavy meson is a

quark and antiquark connected by a string deep in AdS. The scattering of such mesons could be
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Q5.	  Effect	  of	  ini5al	  velocity	  

•  Holographic	  Image	  at	  its	  crea5on	  moment	  
does	  not	  have	  radial	  velocity.	  	  

•  	  Work	  in	  Poincare	  patch.	  	  	  

and its solution is [11]

r =
��

1 + (�t/2)2
. (3.2)

This is not a periodic solution. It show that starting from r0 = E/m = �, it takes infinite

time to reach at the center. However, the large time behavior is r ∼ 2/t, independent of

the initial height r0 = �. This is a manifestation of the synchronization effect in this metric:

two particles with different initial height falls and get closer, which is enough to argue the

canonical formation of the black hole in this metric. This effect was observed in [11] as a

‘tendency’ of time focusing but due to the infinite falling time in Poincare coordinate time,

it was not recognized there that synchronization is the exact property of the AdS space.

Later, we will show that introducing the interaction does not change the situation.

3.1 Effect of the initial velocity

Here we study the effect of the initial velocity along the space time direction. Suppose the

particle is in motion along x direction. Then two first integrals are

mr2�
r2(1− ẋ2)− ṙ2/r2

= E,
mr2ẋ�

r2(1− ẋ2)− ṙ2/r2
= p, (3.3)

which can be called as the energy and momentum respectively. If we set V = p/E,

r =
�(1− V 2

)�
1 + (�(1− V 2)t/2)2

. (3.4)

we get ẋ = V . Remarkably the large time behavior of the radial position is independent of

all of the initial conditions m,E, p. Therefore we can say that the time focusing effect is

perfect even in the presence of the motion along the collisional direction.

4 The effect of the Interaction

So far, we discussed the particles falling without interaction. We now discuss the effect of

it in Poincare coordinate where the metric is

ds2 =
1

x20
(dx20 + dxµdxµ), with x0 = 1/r (4.1)

The scalar propagator for particle with mass m2
= ∆(∆−d) in the AdSd+1 is given in [12]

and it is given by

G ∼
�

1

u(2 + u)

�∆

with u =
(x− y)M (x− y)M

2x0y0
(4.2)

Since u is nonnegative and we are interested in the most singular contribution, we will

neglect the factor u+2. The Newtonian potential in AdS can be derived from this to give

V ({xi, yi}) =

� �
d5xd5yJ(x)G(x, y)J(y), (4.3)

= GN
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i<j

�
dt

(xi0xj0)2∆
�
|xi(t)− xj(t)|2 + |xi0(t)− xj0(t)|2

�∆−1/2
(4.4)
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Q6.	  Non-‐gluonoc	  Interac5on	  	  effect	  	  

•  Newtonian	  poten5al	  in	  AdS.	  	  
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we get ẋ = V . Remarkably the large time behavior of the radial position is independent of

all of the initial conditions m,E, p. Therefore we can say that the time focusing effect is

perfect even in the presence of the motion along the collisional direction.
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neglect the factor u+2. The Newtonian potential in AdS can be derived from this to give

V ({xi, yi}) =

� �
d5xd5yJ(x)G(x, y)J(y), (4.3)

= GN

�

i<j

�
dt

(xi0xj0)2∆
�
|xi(t)− xj(t)|2 + |xi0(t)− xj0(t)|2
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r2(1− ẋ2)− ṙ2/r2
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Q6.	  Interac5on	  (non-‐gluonic)	  effect	  I:	  

•  Interac5on	  is	  not	  so	  important	  if	  atrac5ve.	  	  
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Figure 2. Falling in AdS with and initial velocity. : (Left) without inter-particle interaction. This
is the flat-boundary analogue of Figure 1. (Middle) with interaction. r v.s x, x-axis is one of the
space direction. (Right) radius as a funcntion of time. The synchronization effect (equalizing the
radial position) is manifest here.

where J(x) =
�

i δ
4(xA − xAi (t)), A = 0, 1, 2, 3. Since the initial velocities are only along

the xµ direction, we expect that the attractive interaction will only enhances the focusing

effect in radial motion. Indeed we can verify this numerically, using the equation of motion

derived from the Lagrangian

S = −m

� �
−gµν ẋµẋνdt, +V ({xi, yi}) (4.5)

In the numerical calculation we used GN = 1,∆ = 3/2 for simplicity.

In figure 2, falling of a few particles with some horizontal initial velocities starting from

different heights are drawn. The calculation is done by the mathematica. The vertical lines

are the falling trajectories and the horizontal dashed lines indicate the equal time slices.

As time goes on, it is manifest that the radial positions converge. In figure 3, we consider

what happens if inter-particle interactions are repulsive. This is possible if particles carry

extra charges. Interestingly, we see that falling is halted for some moments at the certain

radial region and then proceed to the black hole formation. We can understand such

behavior from the structure of the propagator (4.2) : In the deep IR region, u → 0 for any

finitely distant two points, therefore strong repulsion is effective there although particles

are separated enough. We speculate that this can be the mechanism of the formation of

the gravitational hair which is observed in the theory of holographic superconductor.

In figure 4, we show what happens if three particles collide with inter-particle attrac-

tion and repulsion. As we can see, whatever is the situation, radial positions of particles

converges. Therefore we conclude that such synchronization effect is not destroyed by the

interaction effect, especially if the interaction is attractive. For the repulsive case, particles
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radial position) is manifest here.
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Interac5on	  effect	  II:	  repulsion	  
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Figure 3. r v.s x. Falling in AdS with repulsive interaction. L) start from the same height. R)

start from the different height.
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Figure 4. Three particles colliding in 5 dimension. L) with attractive interaction. R) with

repulsion. All the particle arrive at the center simultaneously even in the presence of the interaction.

5 Conclusion

In this paper we demonstrated that arbitrary shape of shell in AdS falls and form a black

hole. The physical mechanism is the synchronized falling which is the characteristic prop-

erty of AdS. While individual particle’s motion is oscillation, many particle’s motion should

be terminated by the black hole formation. Once the black hole is formed, there will be no

more oscillation. The details of the stabilization of the system through losing the potential

energy should be worked out by considering the back reaction of the metric, which is not

the scope of this work.
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Mechanism	  for	  the	  
hair….?	  	  



Q7.	  Predic5on	  

•  Thermaliza5on	  5me	  <	  One	  Dynamical	  5me,	  	  
	  	  	  	  	  	  	   	   	   	   	   	   	   	   	   	  	  	  

•  Thermaliza5on:	  Sou	  	  first	  and	  Hard	  later.	  
	  	  	   	   	   	   	   	   	   	   	  (for	  pure	  gluon	  int.	  in	  the	  large	  N.)	  	  

	  higher	  energy	  	  par5cles	  arrive	  at	  the	  apparent	  
horizon	  later.	  	  	  

For simplicity, we first consider the radial motion and set R = 1, c = 1. The energy

conservation can be written as

m(1 + r2)�
1 + r2 − ṙ2/(1 + r2)

= E. (2.3)

It is easy to see that the system describe an non-linear oscillator. If we assume that the

particle starts with zero radial velocity from the initial radial position r0, then

E = m
�
1 + r20, (2.4)

which establish an dictionary between the total energy and the initial radial coordinate.

Introducing vc by vc = r0/
�
1 + r20, we have E =

m√
1−v2c

. Its velocity in the radial direction

start with 0 and grows up to vc when it reaches at the center. Interestingly, we can find

the exact solution of the equation of motion:

r =
vc cos t�

1− v2c cos
2 t

. (2.5)

The remarkable property of this solution is that the period of the motion is 2π, independent

of the original position r0, as if it is an simple harmonic oscillator. Restoring the scale

parameters R, c by r, t, v → r/R, t/R, v/c the falling time is

Tfall =
π

2

R

c
. (2.6)

This means that arbitrary set of particles, falling in AdS will form a black hole regard-

less of the initial position, provided, (i) all the particles start with zero initial velocities,

and (ii) Interaction between the particles are negligible. See figure 1.

How do we justify or relax the conditions listed above?

1. In AdS/CFT correspondence, the radial direction is the dual of the energy scale.

If two gold ions collided in RHIC and created particles of energy Ei and mass mi,

i = 1, · · · , N inside the fireball, then the holographic image of such fireball is the

particles in AdS space at the position

r0i =
�
(Ei/mi)

2 − 1. (2.7)

Particles created in the fireball have velocities in xi directions but not in radial

direction. Therefore their dual image particles do not either. This justifies the first

issue listed above.

2. In gauge/gravity dual, the gluon dynamics is replaced by the gravitational back-

ground and the leading order inter-particle gluonic interaction in the many body

quark-gluon plasma is approximated as the particle motions in a fixed gravitational

background. Therefore interparticle interaction in AdS is necessary only to take care

of the non-gluon interaction or non-leading order interaction in O(1/Nc), therefore

such inter particle interaction in AdS bulk should be absent or very weak in the large

Nc theory.
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tThermalization =
�
1/r2

H
− 1/r2
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•  Q8.	  Where	  is	  entropy	  genera5on?	  
•  Q9.	  back	  reac5on	  of	  gravity?	  	  	  
•  Q10.	  Is	  this	  mechanism	  universal	  for	  other	  
background?	  	  

•  Q11.	  What	  is	  wrong	  with	  Shock	  wave?	  	  

	  	  	  ………etc.……	  

Future	  projects.	  



Topic	  II:	  Thermal	  Mass	  and	  Plasmino	  
for	  strongly	  interac5ng	  Fermions	  

With	  	  
Yunseok	  Seo,	  	  Yang	  Zhoua,b	  



•  Massless	  par5cle	  in	  finite	  temperature	  gets	  
mass	  ~	  gT	  :	  Thermal	  mass.	  	  

•  There	  are	  Three	  scales	  in	  weak	  coupling:	  
	  T	  	  	  	  	  	  >>	  	  	  	  gT	  	  	  	  	  	  >>	  	  	  	  	  	  g^2	  T	  	  

•  Q:	  What	  will	  happen	  to	  strong	  coupling?	  	  

•  Ans:	  No	  thermal	  mass	  in	  strong	  coupling.	  	  
[See	  also	  Maldacena’s	  recent	  work]	  



In	  Hard	  Thermal	  loop	  approxima5on	  

1.	  	  Thermal	  mass(	  Klimov	  ’82,	  Weldon	  ’83)	  

2.	  Plasmino	  :	  New	  collec5ve	  mode	  (Braaten,	  Pisarski	  ’89	  )	  

	  Fermion	  In	  hot	  Medium:	  	  T>>m,	  	  

2 Thermal mass and Plasmino in field theory

We begin by giving a brief summary of hard thermal loop (HTL) discussion of plasmino. In

relativistic thermal or dense fermionic systems, there are two types of fermionic excitations.

One is the ordinary fermion with dressed dispersion relation and the other is the plasmino.

Generally two branches appear both in QED plasma and QCD plasma, namely both for

electron propagator and quark propagator. In a weakly interacting field theory, plasmino

is a collective excitation due to finite temperature or finite density effect. The fermion

propagator is written as

G(p) =
1

γ · p−m+ Σ(p)
, (2.1)

where the self-energy Σ = γµΣµ can be evaluated by one-loop calculation in the leading

order T 2 and µ2 [15]. The gauge invariant result is available for the hard thermal loop

approximation in which mass m can be ignored compared with T or µ. In this limit the

fermion propagator can be decomposed as

G =
1

2
(γ0 − γip

i)/∆+ +
1

2
(γ0 + γip

i)/∆− , (2.2)

∆± = ω ∓ p−
m2

f

2p

��
1∓ ω

p

�
log

�
ω + p

ω − p

�
± 2

�
. (2.3)

Here p = |pi| and mf is the effective mass generated by the medium effect [15]

m2
f =

1

8
g2CF

�
T 2 +

µ2

π2

�
, (2.4)

where CF = 1 for electron and CF = 4/3 for quark. Notice that both thermal and density

effect generate the effective mass. Solving for the pole of the propagator we will get two

branches of dispersion curves ω = ω±(p) and ω− is the one that describes the plasmino.

Asymptotic forms of ω± are given by

p << mf : ω±(p) � mf ± 1

3
p+

1

3mf
p2 + · · · , (2.5)

p >> mf : ω±(p) � p . (2.6)

Two branches are plotted in Figure 1. The presence of the plasmino branch may be

experimentally important since it can enhance production rate of the light di-lepton [26].

With such motivation, plasmino has been investigated extensively [6, 15–27]. For a review,

see references [7, 8].

In high temperature limit, fermion mass can be ignored therefore two branches ω± can

be characterized in terms of chirality and helicity. The ratio of chirality and helicity are ±
for ω± respectively. However, in our approach, we do not neglect the fermion mass entirely

therefore we define the plasmino character by the condition

dω−
dp

���
p→0

· dω−
dp

���
p→∞

< 0 . (2.7)
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Plasmino	  

• The	  plasmino	  mode	  has	  a	  minimum	  at	  finite	  p.	  
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Figure 1. Two branches of dispersion relation for fermion propagator. The dashed line is light

cone.

Notice that plasmino in Hard thermal loop (HTL) approximation exists in high temperature

whatever is the density. However, in the strongly coupled region, we will show that plasmino

disappears at zero density both in confined phase and deconfined phase and thermal mass

vanishes there. Plasmino can survive only for a certain window of chemical potential in

confined medium. For deconfined phase, plasmino exists only for massive fermion with

enough density. We will find that the density and temperature independent value 1/3 in

(2.5) is an artifact of HTL approximation.

3 Thermal mass and plasmino in Top Down hQCD

3.1 The Model

We set up a calculational scheme for fermion self-energy using Sakai-Sugimoto (SS) model [11]

where one uses black D4 geometry and introduce a probe D8/D̄8 for flavor dynamics. To

introduce density, we need U(1) gauge field on probe brane. The source of the U(1) gauge

field are end points of strings which are emanating from horizon in deconfined phase and

from baryon vertex in confined phase.

The geometry of confined phase is given by

ds2 =

�
U

R

�3/2 �
ηµνdx

µdxν + f(U)dx24
�
+

�
R

U

�3/2� dU2

f(U)
+ U2dΩ2

4

�
, (3.1)

where both time and Kaluza-Klein direction are periodic: x0 ∼ x0 + δx0, x4 ∼ x4 + δx4
and

f(U) = 1− U3
KK/U3 , UKK =

�
4π

3

�2 R3

δx24

with R3
= πgsNc(α�

)
3/2

. The solution also contains a nontrivial dilaton and a four form

field;

eφ = gs (U/R)
3/4 , F4 = �4(2π)

3
(α�

)
3/2Nc/Ω4 .
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Importance	  

•  Van	  Hove	  singularity.	  	  
Density	  of	  state	  is	  enhenced	  in	  low	  dim.	  	  

ρ(ω) =
�

n

�
d3k

(2π)3
δ(ω − ωn(k))

=
�

n

�
dS

(2π)3
1

∇kωn(k))

New	  mechanism	  of	  SC…..	  
Enhenced	  dilepton	  produc5on	  …..(Thoma	  ph/0008218)	  	  	  



However	  

•  	  Resumma5on	  needs	  ladder	  approxima5on,	  	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  not	  jus5fied	  for	  strong	  coupling.	  	  

It	  is	  not	  clear	  whether	  plasmino	  con5nues	  to	  
exit	  in	  the	  strong	  coupling	  limit.	  

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  &	  	  …..	  	  



Evidence	  	  

	  An	  interes5ng	  	  Numerical	  	  study	  suggested	  m_T=0.	  	  	  	  	  	  	  	  	  	  	  	  	  
	   	   	   	   	   	  ArXiv:	  1111.0117	  ,	  Nakkagawa	  et.al.	  

3

2) Figure 1 shows that the quasifermion energy ω+(p)
approachesm∗

f as p → 0: namely, the thermal mass
of the quasifermion is m∗

f

(

m∗
f

mf

)2

= 1−
4g

π

[

−
g

2π
+

√

g2

4π2
+

1

3

]

, (10)

m2
f ≡

g2T 2

8

which is determined through the next-to-leading or-
der calculation of HTL resummed effective pertur-
bation theory [2, 11].

IV. VANISHING THERMAL MASS IN THE
STRONGLY COUPLED QCD/QED MEDIUM

Now let us study how the result shown in Fig. 1 changes
as the coupling gets stronger, namely, in the region of
intermediate to strong couplings. First let us see the
quasifermion dispersion law in the small momentum re-
gion. (N.B. : Temperatures and couplings that we are
studying belong to the chiral symmetric phase [10].)
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FIG. 2: Quasifermion dispersion law at T = 0.3 for a range
of couplings from weak to strong couplings (see the text for
details). For simplicity, we show only the fermion branch.

Figure 2 shows the coupling α dependence of the nor-
malized fermion dispersion law at T = 0.3 as the coupling
α becomes stronger, where the normalization scale is the
next-to-leading order thermal mass m∗

f . For simplicity,
in Fig. 2 we show only the fermion branch. Though in the
weak coupling region we get the solution in good agree-
ment with the HTL resummed perturbation analyses, as
the coupling becomes stronger from the intermediate to
the strong coupling region, the normalized thermal mass
ω∗
+(p = 0) ≡ ω+(p = 0)/m∗

f begins to decrease from
1 and finally tends to zero (in the region α >∼ 0.27 in
Fig. 2). Namely, in the thermal QCD/QED medium, the
thermal mass of the quasifermion begins to decrease as
the strength of the coupling gets stronger and finally dis-
appears in the strong coupling region. This fact suggests

that in the recently produced strongly coupled QGP, the
thermal mass of the quasifermion should vanish or at
least become significantly lighter compared to the value
in the weakly coupled QGP.
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FIG. 3: The α dependence of the normalized thermal mass
ω∗
+(p = 0) (see the text for details).

To see the above behavior of the thermal mass more
clearly, in Fig. 3 we show the normalized thermal mass
ω∗
+(p = 0) as a function of α. In the small coupling region

(α <∼ 0.1) around the temperature range T = 0.1 ∼ 0.2,
results of the thermal mass agree well with those of
the HTL resummed perturbation calculation. The ther-
mal mass ω+(p = 0) decreases and finally vanishes as
the coupling gets stronger from the intermediate to the
strong coupling region. Analogous behavior of the ther-
mal mass ω+(p = 0) appears in the temperature depen-
dence [12, 13].
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FIG. 4: The p0 dependence of Re[B(p0, p = 0)] at T = 0.3.

This behavior of the thermal mass is determined
by the behavior of the chiral invariant mass function
Re[B(p0, p)]. In Fig. 4 we show the p0 dependence
of Re[B(p0, p = 0)] at T = 0.3. At small coupling
Re[B(p0, p = 0)] has a steep valley/peak structure in
the small p0 region, but as the coupling becomes stronger
this structure eventually disappears and Re[B(p0, p = 0)]
begins to behave almost as a straight line.
The thermal mass is given by the solution of

Re[B(p0, p = 0)]=−p0, which is the p0 coordinate of the
intersection point of the drawn curve of Re[B(p0, p = 0)]

4

and the straight solid line through the origin with a slope
-1 in Fig. 4. At first we can see with this figure that at
small coupling there are three intersection points: the
one with positive p0, one with negative p0, and one at
p0 = 0, which corresponds to the quasifermion, the plas-
mino, and the massless (or, ultrasoft) modes [3, 14], re-
spectively. As the coupling becomes stronger (α >∼ 0.27
at T = 0.3), however, there is only one intersection point
at p0 = 0, representing the massless pole in the fermion
propagator. Thus we can understand the behavior in
Fig. 3; namely, ω∗

+(p = 0) ≡ ω+(p = 0)/m∗
f is unity

in the weak coupling region, and zero in the strong cou-
pling region (α >∼ 0.27 at T = 0.3); therefore, the fermion
thermal mass vanishes completely in the corresponding
strong coupling region.

V. THE THIRD PEAK, OR THE MASSLESS
MODE

The quasifermion and the plasmino modes are well
understood in the HTL resummed analyses, the latter
being the collective mode to appear in the thermal en-
vironment. What is the third mode? Is it nothing but
evidence of the massless, or the ultrasoft mode? Is there
any signature in our analysis?
To clarify this question, in Fig. 5(a) we give the spec-

tral density ρ+(p0, p = 0) in the small coupling region
(α = 0.001, T = 0.4). Two sharp peaks, representing the
quasifermion and the plasmino poles, are clearly seen,
and the existence of a slight “peak” can also be recog-
nized around p0 = 0. To see this more clearly, in Fig. 5b
we show the rescaled version of Fig. 5a, where we can
clearly see the peak structure around p0 = 0. This third
peak is nothing but convincing evidence of the existence
of a massless or an ultrasoft mode in the weak coupling
region [3, 14]. This peak is indistinctively slight com-
pared to the sharp quasifermion/plasmino peak. This
problem will be fully discussed in a separate paper [7].

VI. IMAGINARY PART OF THE CHIRAL
INVARIANT MASS FUNCTION B, OR THE
DECAY WIDTH OF THE QUASIFERMION

Finally let us see the imaginary part of the chiral in-
variant mass function Im[B(p0, p)]. The decay width of
the quasifermion is extensively studied through the HTL
resummed effective perturbation calculation [15], giving
a gauge invariant result of O(g2T log(1/g)). However, as
is shown above, the quasiparticle exhibits an unexpected
behavior, such as the vanishing of the thermal mass in the
strongly coupled QCD/QED medium, completely differ-
ent from that expected from the HTL resummed effective
perturbation analyses. How does the decay width of the
quasifermion exhibit its property in the corresponding
strongly coupled QCD/QED medium?
In Fig. 6 we show the Im[B(p0 = ω+, p = 0)] in the
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FIG. 5: (a) Quasifermion spectral density ρ+(p0, p = 0) in the
small coupling region (α = 0.001, T = 0.4). (b) Quasifermion
spectral density ρ+(p0, p = 0) enlarged around the origin.

small coupling region, which agrees with the HTL re-
summed calculation [15] up to a numerical factor. In
Fig. 7 we show Im[B(p0 = ω+ = 0, p = 0)] in the strong
coupling region.
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FIG. 6: The Im[B] in the small coupling QGP.

As can be seen, even in the strong coupling region,
Im[B] or the decay width shows the same behavior of
O(g2T log(1/g)); the numerical factor, of course, largely
differs from that in the small coupling region. This be-
havior is again not expected, because the quasifermion
in the small coupling QGP and the one in the strong
coupling QGP are totally different; while in the former
case the quasifermion has a thermal mass of O(gT ) and
the plasmino branch exists in a fermion dispersion law,
in the latter case the thermal mass of the quasifermion
vanishes and the plasmino branch disappears.

However,	  this	  work	  is	  also	  based	  on	  SD	  idea.	  	  



	  Set	  up	  	  

•  Use	  D4/D8/D8bar	  :	  SS	  model	  :	  	  
Confinement(cf):	  by	  solitonic	  bg.	  	  
Deconfinement	  (dcf):	  Black	  hole	  bg.	  	  

•  Chiral	  Symmetry	  	  breaking:	  Joined	  D8/D8bar	  

•  Density/chemical	  poten5al:	  U(1)	  gauge	  field	  
(sourced	  by	  the	  strings	  emana5ng	  from	  horizon	  
of	  the	  BH	  or	  compact	  D4	  (baryon	  vertex).)	  	  
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χSB	  

D8	  

D8	  

There	  is	  a	  one-‐parameter	  set	  of	  D8-‐brane	  configura5ons	  that	  minimize	  the	  D8-‐brane	  
ac5on.	  

Confinement	  



D4	  brane	  geometry	  

τ  period:	  	  



Probe	  brane	  limit	  

D8-‐brane	  ac5on	  

Karch,Katz	  

Sta5onary	  Solu5on:	  



Fermion	  on	  D8	  

•  Fermion	  =mode	  of	  D4-‐D8	  string	  
	  	   	   	  	  	  	  	  	  	  =	  bi-‐fundamental	  field	  

•  When	  D4	  is	  replaced	  by	  a	  gravity,	  	  color	  index	  
is	  interpreted	  as	  “averaged	  over”	  
so	  that	  D8	  fermions	  are	  color	  averaged	  quarks.	  

•  Here	  only	  1	  flavor.	  	  	  
•  Remark:	  NOT	  a	  “bulk”	  fermion,	  No	  ads/cu.	  
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Fermion	  ac5on	  and	  eq.	  of	  M	  

•  Ignore	  S4:	  D8	  becomes	  effec5vely	  5d	  with	  one	  
dimension	  compac5fied.	  	  3+1	  d	  theory.	  	  
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probe D8/D̄8 for flavor dynamics. To introduce finite

density, we turn on U(1) gauge field on probe brane. The

source of the U(1) gauge field are end points of strings

which are emanating from horizon in deconfined phase

and from baryon vertex in confining phase. The geome-

try of confined phase is given by

ds2 =

�
U

R

�3/2 �
ηµνdx

µdxν
+ f(U)dx2

4

�

+

�
R

U

�3/2 � dU2

f(U)
+ U2dΩ2

4

�
, (7)

where both the time and the Kaluza-Klein direction are

periodic: x0 ∼ x0
+ δx0

, x4 ∼ x4 + δx4 and f(U) =

1 − U3
KK/U3 , UKK =

�
4π
3

�2 R3

δx2
4
. Here following the

original Sakai-Sugimoto model, we consider only trivial

embedding of the flavor eight brane. The action for the

U(1) gauge potential A0 on eight brane can be obtained

from the DBI action

SD8 = −T8

�
d9xe−φ

�
− det(gMN + 2πα�FMN ) . (8)

For later convenience, we use dimensionless quantities

r = U/R , r0 = UKK/R , a0 = 2πα�A0/R. The first

integral for a0(r) is

ra�0(r)�
r−3 (1/f(r)− a�0(r)

2)
= D , (9)

where D is an integral constant representing the baryon

density. The deconfined geometry is given by double

Wick rotating x4
and time from the confined one. The

gauge field profile on eight brane is solved as before by

replacing D → D�
and f → 1 in (9). Chemical potential

can be defined as the value of a0(r) at the infinity, if we

specify the value at IR boundary, which is r0 for confined

case and horizon rh for deconfined phase. In deconfined

phase we set a0 = 0 at the horizon while, for confining

case, we should set a0(r0) = m∗/q to include the medium

modified baryon mass m∗ in the chemical potential µ so

that

µ = m∗/q +

� ∞

r0

a�0dr. (10)

We will determine m∗ in a self-consistent way later.

Fermion mass is included by m5ψ̄ψ in the fermion La-

grangian. m5 will be directly related to the actual 4

dimensional vacuum fermion mass m later. Notice that

such identification is not true for AdS5 case.

Fermionic Green function: Now we study the fermion

excitation in the holographic dual background. Consider

the probe fermion field in the world volume of D8 brane.

We ignore the S4
dependence and work in the effective

5 dimensional world volume following the original paper

of SS model with the induced metric written as ds25 =

gµνdxµdxν
+ grrdr2. We use the minimal action

S =

�
d5x

√
−g i

�
ψ̄ΓMDMψ −m5ψ̄ψ

�
, (11)

where the covariant derivative isDM = ∂M+
1
4ωabMΓab−

iqAM . M denotes the bulk spacetime index while a, b
denote the tangent space index. After a factorizing ψ =

(−ggrr)−1/4e−iωt+ikix
i
Ψ , the Dirac equation for Ψ can

be give by

�
gii/grr(Γ

r∂r −m5
√
grr)Ψ+ iKµΓ

µΨ = 0 , (12)

where Kµ = (−v(r), ki) and v(r) =
�
−gii/gtt(ω + qa0).

Following the procedure in [3], we rewrite the Dirac equa-

tion (12) in terms of two component spinors in a decou-

pled form

(∂r+m5
√
grrσ

3
)Φα =

�
grr/gii(iσ

2v(r)+(−1)
αkσ1

)Φα ,
(13)

where σi
are Pauli matrices and α = 1, 2. Decompos-

ing Φ1 = (y1, z1)T , Φ2 = (y2, z2)T , we get equations of

motion for the component fields. For (y2, z2)

(∂r +m5
√
grr)y2(r) =

�
grr/gii(+v(r) + k)z2(r) (14)

(∂r −m5
√
grr)z2(r) =

�
grr/gii(−v(r) + k)y2(r) .(15)

By replacing k by −k, we obtain the equations of motion

for y1 and z1. Retarded Green function can be expressed

in terms of variables G1(r) := y1(r)/z1(r) and G2(r) :=
y2(r)/z2(r) as

GR
1,2 = lim

�→0
e−

1
2m5Rr1/4G1,2(r)|r=1/� , (16)

where G1 and G2 satisfy the following equations

�
gii
grr

∂rGα + 2m5
√
giiGα

= (−1)
αk + v(r) +

�
(−1)

α−1k + v(r)
�
G2

α . (17)

Now we want to solve (17) by imposing proper boundary

conditions. In the confined phase, v(r) = ω+qa0(r) with

a0(r) = µ+

� r

∞
dr̂

�
f(r̂)−1D2

r̂5 +D2

�1/2

. (18)

Notice that grr diverges at r0. For the regularity of the

equation, we request following boundary condition

Gα(r0) =
−mR+

√
m2R2 + k2 − ω̂2

(−1)αk − ω̂
, (19)

where ω̂ = ω+m∗ and m := m5r
3/4
0 is the 4 dimensional

vacuum mass of the fermion. Imposing the boundary

condition for retarded (advanced) Green function cor-

responds to ω → ω + i� (ω → ω − i�). In the de-

confined phase, v(r) = (ω + qa0(r)) /
√
f and a0(r) =

µ +
� r
∞ dr̂

�
D�2

r̂5+D�2

�1/2
. The IR boundary condition for

this case is

G1,2(r0) = i , (20)

required by the in-falling condition at the black hole hori-

zon.2
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5 dimensional world volume following the original paper

of SS model with the induced metric written as ds25 =
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S =
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where σi
are Pauli matrices and α = 1, 2. Decompos-
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confined phase, v(r) = (ω + qa0(r)) /
√
f and a0(r) =

µ +
� r
∞ dr̂

�
D�2

r̂5+D�2

�1/2
. The IR boundary condition for

this case is

G1,2(r0) = i , (20)
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R

U

�3/2� dU2

f(U)
+ U2dΩ2

4

�
. (3.2)

The action for the U(1) gauge potential A0 on eight brane can be obtained from the DBI

action

SD8 = −T8

�
d9xe−φ

�
− det(gMN + 2πα�FMN ) . (3.3)

= N

�
dr r4

�
f(r)(x�4)

2 + r−3
�
1/f(r)− a�20

�
, (3.4)

= N

�
dr r4

�
r−3

�
1/f(r)− a�20

�
, (3.5)

where we consider the trivial embedding at antipodal points x�4(r) = 0. The overall nor-

malization N is defined by N := T8Ω4v3δx0R5/gs , and Ω4 is the unit four sphere volume

and v3 is the three Euclidean space volume. For later convenience, we use dimensionless

quantities

r = U/R , r0 = UKK/R , a0 = 2πα�A0/R .

The first integral for a0(r) is

ra�0(r)�
r−3 (1/f − a�0(r)

2)
= D , (3.6)

where D is an integral constant representing the charge density. We can solve the gauge

field profile a0(r) by imposing boundary condition.

The deconfined geometry is given by double Wick rotating x4 and time from the

confined one

ds2 =

�
U

R

�3/2 �
−f(U)dt2 + dxidx

i
+ dx24

�
+

�
R

U

�3/2� dU2

f(U)
+ U2dΩ2

4

�
. (3.7)

The gauge field profile on eight brane is solved as before by replacing D → D�
and f → 1

in (3.6):

ra�0(r)�
r−3 (1− (a�0(r))

2)
= D� . (3.8)

The difference of two first integrals (confined and deconfined phases) is due to the presence

of f(r) factor. Chemical potential can be defined as the value of a0(r) at the infinity when

we specify the boundary condition at IR. In deconfined phase we set a0(rH) = 0 at the

horizon while, for confinined case, we choose to set a0(r0) = m/q in order to include the

baryon mass so that the chemical potential µ is given by

µ =
m

q
+

� ∞

r0

a�0(r) dr. (3.9)

This baryon mass is naturally related to the five dimensional Lagrangian fermion mass

m5 as we will see later.
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IR	  Boundary	  condi5on:	  
2.	  confinging	  case	  

•  For	  retarded(advanced)	  green	  fct	  	  
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�

+
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R

U
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f(U)
+ U2dΩ2

4

�
, (7)

where both the time and the Kaluza-Klein direction are

periodic: x0 ∼ x0
+ δx0

, x4 ∼ x4 + δx4 and f(U) =

1 − U3
KK/U3 , UKK =

�
4π
3

�2 R3

δx2
4
. Here following the

original Sakai-Sugimoto model, we consider only trivial

embedding of the flavor eight brane. The action for the

U(1) gauge potential A0 on eight brane can be obtained

from the DBI action

SD8 = −T8

�
d9xe−φ

�
− det(gMN + 2πα�FMN ) . (8)

For later convenience, we use dimensionless quantities

r = U/R , r0 = UKK/R , a0 = 2πα�A0/R. The first

integral for a0(r) is

ra�0(r)�
r−3 (1/f(r)− a�0(r)

2)
= D , (9)

where D is an integral constant representing the baryon

density. The deconfined geometry is given by double

Wick rotating x4
and time from the confined one. The

gauge field profile on eight brane is solved as before by

replacing D → D�
and f → 1 in (9). Chemical potential

can be defined as the value of a0(r) at the infinity, if we

specify the value at IR boundary, which is r0 for confined

case and horizon rh for deconfined phase. In deconfined

phase we set a0 = 0 at the horizon while, for confining

case, we should set a0(r0) = m∗/q to include the medium

modified baryon mass m∗ in the chemical potential µ so

that

µ = m∗/q +

� ∞

r0

a�0dr. (10)

We will determine m∗ in a self-consistent way later.

Fermion mass is included by m5ψ̄ψ in the fermion La-

grangian. m5 will be directly related to the actual 4

dimensional vacuum fermion mass m later. Notice that

such identification is not true for AdS5 case.

Fermionic Green function: Now we study the fermion

excitation in the holographic dual background. Consider

the probe fermion field in the world volume of D8 brane.

We ignore the S4
dependence and work in the effective

5 dimensional world volume following the original paper

of SS model with the induced metric written as ds25 =

gµνdxµdxν
+ grrdr2. We use the minimal action

S =

�
d5x

√
−g i

�
ψ̄ΓMDMψ −m5ψ̄ψ

�
, (11)

where the covariant derivative isDM = ∂M+
1
4ωabMΓab−

iqAM . M denotes the bulk spacetime index while a, b
denote the tangent space index. After a factorizing ψ =

(−ggrr)−1/4e−iωt+ikix
i
Ψ , the Dirac equation for Ψ can

be give by

�
gii/grr(Γ

r∂r −m5
√
grr)Ψ+ iKµΓ

µΨ = 0 , (12)

where Kµ = (−v(r), ki) and v(r) =
�
−gii/gtt(ω + qa0).

Following the procedure in [3], we rewrite the Dirac equa-

tion (12) in terms of two component spinors in a decou-

pled form

(∂r+m5
√
grrσ

3
)Φα =

�
grr/gii(iσ

2v(r)+(−1)
αkσ1

)Φα ,
(13)

where σi
are Pauli matrices and α = 1, 2. Decompos-

ing Φ1 = (y1, z1)T , Φ2 = (y2, z2)T , we get equations of

motion for the component fields. For (y2, z2)

(∂r +m5
√
grr)y2(r) =

�
grr/gii(+v(r) + k)z2(r) (14)

(∂r −m5
√
grr)z2(r) =

�
grr/gii(−v(r) + k)y2(r) .(15)

By replacing k by −k, we obtain the equations of motion

for y1 and z1. Retarded Green function can be expressed

in terms of variables G1(r) := y1(r)/z1(r) and G2(r) :=
y2(r)/z2(r) as

GR
1,2 = lim

�→0
e−

1
2m5Rr1/4G1,2(r)|r=1/� , (16)

where G1 and G2 satisfy the following equations

�
gii
grr

∂rGα + 2m5
√
giiGα

= (−1)
αk + v(r) +

�
(−1)

α−1k + v(r)
�
G2

α . (17)

Now we want to solve (17) by imposing proper boundary

conditions. In the confined phase, v(r) = ω+qa0(r) with

a0(r) = µ+

� r

∞
dr̂

�
f(r̂)−1D2

r̂5 +D2

�1/2

. (18)

Notice that grr diverges at r0. For the regularity of the

equation, we request following boundary condition
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√
m2R2 + k2 − ω̂2

(−1)αk − ω̂
, (19)

where ω̂ = ω+m∗ and m := m5r
3/4
0 is the 4 dimensional

vacuum mass of the fermion. Imposing the boundary

condition for retarded (advanced) Green function cor-

responds to ω → ω + i� (ω → ω − i�). In the de-
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f and a0(r) =
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� r
∞ dr̂

�
D�2
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1
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iqAM . M denotes the bulk spacetime index while a, b
denote the tangent space index. After a factorizing ψ =
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Ψ , the Dirac equation for Ψ can

be give by
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√
grr)Ψ+ iKµΓ

µΨ = 0 , (12)

where Kµ = (−v(r), ki) and v(r) =
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−gii/gtt(ω + qa0).

Following the procedure in [3], we rewrite the Dirac equa-

tion (12) in terms of two component spinors in a decou-

pled form
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)Φα =

�
grr/gii(iσ

2v(r)+(−1)
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where σi
are Pauli matrices and α = 1, 2. Decompos-

ing Φ1 = (y1, z1)T , Φ2 = (y2, z2)T , we get equations of

motion for the component fields. For (y2, z2)
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Notice that grr diverges at r0. For the regularity of the

equation, we request following boundary condition
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where ω̂ = ω+m∗ and m := m5r
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0 is the 4 dimensional
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condition for retarded (advanced) Green function cor-
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from the DBI action

SD8 = −T8

�
d9xe−φ

�
− det(gMN + 2πα�FMN ) . (8)

For later convenience, we use dimensionless quantities

r = U/R , r0 = UKK/R , a0 = 2πα�A0/R. The first

integral for a0(r) is

ra�0(r)�
r−3 (1/f(r)− a�0(r)

2)
= D , (9)
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and time from the confined one. The

gauge field profile on eight brane is solved as before by

replacing D → D�
and f → 1 in (9). Chemical potential

can be defined as the value of a0(r) at the infinity, if we

specify the value at IR boundary, which is r0 for confined

case and horizon rh for deconfined phase. In deconfined

phase we set a0 = 0 at the horizon while, for confining

case, we should set a0(r0) = m∗/q to include the medium

modified baryon mass m∗ in the chemical potential µ so

that

µ = m∗/q +

� ∞

r0

a�0dr. (10)

We will determine m∗ in a self-consistent way later.

Fermion mass is included by m5ψ̄ψ in the fermion La-

grangian. m5 will be directly related to the actual 4

dimensional vacuum fermion mass m later. Notice that

such identification is not true for AdS5 case.

Fermionic Green function: Now we study the fermion

excitation in the holographic dual background. Consider

the probe fermion field in the world volume of D8 brane.

We ignore the S4
dependence and work in the effective
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S =
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ψ̄ΓMDMψ −m5ψ̄ψ
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, (11)

where the covariant derivative isDM = ∂M+
1
4ωabMΓab−

iqAM . M denotes the bulk spacetime index while a, b
denote the tangent space index. After a factorizing ψ =
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be give by
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pled form
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where σi
are Pauli matrices and α = 1, 2. Decompos-

ing Φ1 = (y1, z1)T , Φ2 = (y2, z2)T , we get equations of

motion for the component fields. For (y2, z2)

(∂r +m5
√
grr)y2(r) =

�
grr/gii(+v(r) + k)z2(r) (14)

(∂r −m5
√
grr)z2(r) =

�
grr/gii(−v(r) + k)y2(r) .(15)

By replacing k by −k, we obtain the equations of motion

for y1 and z1. Retarded Green function can be expressed

in terms of variables G1(r) := y1(r)/z1(r) and G2(r) :=
y2(r)/z2(r) as

GR
1,2 = lim

�→0
e−

1
2m5Rr1/4G1,2(r)|r=1/� , (16)

where G1 and G2 satisfy the following equations
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gii
grr

∂rGα + 2m5
√
giiGα
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αk + v(r) +
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Now we want to solve (17) by imposing proper boundary

conditions. In the confined phase, v(r) = ω+qa0(r) with
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dr̂
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f(r̂)−1D2
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Notice that grr diverges at r0. For the regularity of the

equation, we request following boundary condition

Gα(r0) =
−mR+
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m2R2 + k2 − ω̂2

(−1)αk − ω̂
, (19)

where ω̂ = ω+m∗ and m := m5r
3/4
0 is the 4 dimensional

vacuum mass of the fermion. Imposing the boundary

condition for retarded (advanced) Green function cor-

responds to ω → ω + i� (ω → ω − i�). In the de-

confined phase, v(r) = (ω + qa0(r)) /
√
f and a0(r) =

µ +
� r
∞ dr̂

�
D�2

r̂5+D�2

�1/2
. The IR boundary condition for

this case is

G1,2(r0) = i , (20)

required by the in-falling condition at the black hole hori-

zon.



Deconfing	  case,	  massless	  fermion.	  
Vanishing	  thermal	  mass:	  0	  or	  non-‐0	  density	  

induced plasmino has interesting dual interpretation as Rashiba effect. One should be

reminded that there is no temperature induced plasmino in strong coupling regime.

3.4 Deconfined Phase

Now we discuss the fermion dispersion relation in deconfined phase of the D4-D8 model.

The brane configuration is such that D8 and D̄8 are decoupled and go straight to touch the

horizon of the D4 black brane. All the results here are given numerically and we discuss

the results for massless fermion and massive fermion separately.

Figure 8. Spectral function of massless fermionic Green function GR
2 . Left: 3D plot of spectral

function at zero density figure shows vanishing thermal mass. Right: Density plot of spectral

function at finite charge density Q = 20. Dispersion curves of negative k and positive k do not

meet smoothly. There is no plasmino either.

Figure 9. Left: 3D plot of spectral function of massive fermionic Green function GR
2 at zero density

with m = 0.2 , Q = 0. No plasmino exists. Right: Spectral function of GR
2 at finite density with

m = 0.5 and Q = 30. Plasmino exists. As density increases, dispersion curves move down along ω
axis. In all the plot k,ω axis are in the unit of πT .
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Confining	  case	  

There	  is	  Plasmino	  only	  for	  
large	  but	  not	  too	  large	  
chemical	  poten5al.	  

.	  Extreme	  high	  density	  
behavior	  is	  	  very	  complex	  
and	  rich	  and	  will	  not	  be	  
presented	  	  here.	  	  

3

FIG. 1. Dispersion relations in confined phase. The upper and
lower branches describe the normal fermion ω+ and plasmino
ω− respectively. Dotted line denotes light cone.

(a) (b)

FIG. 2. Vanishing thermal mass at zero density: the disper-
sion curve of quasi-particle passes through the origin. Top
view and side view of 3D plot of ImGR

2 with T = 1, m = 0.
True range of both ω and k is [−5, 5].

The fermion dispersion relation can be found by con-
sidering the pole location of spectral functions. We solve
(17) numerically with IR boundary conditions (19) and
(20) for confined and deconfined case respectively.

Figure 1 describes the dispersion relations ω = ω±(k)
for the confined phase. We noticed that

dω−
dp

���
p→∞

= 1,
dω−
dp

���
p→0

:= α(µ) < 0. (21)

Notice that the slope at the origin depends on the density
as shown in figure 3 while, in HTL approximation, it is
− 1

3 independent of density or temperature. The extreme
high density behavior of the dispersion curve is complex
so we will report it elsewhere. Here we restrict ourselves
to the density range where the dispersion curve shows
the traditional plasmino mode.

Figure 2 represents the dispersion relation in decon-
fined phase with zero density. Since the fermions here
are the quarks and Sakai-Sugimoto model does not allow

FIG. 3. µ dependence of α. The curve is plotted only in the
density window where there is plasmino, namely µ1 ≤ µ ≤ µ2.

any quark mass, we set m = 0. Our question is whether
thermal mass can be generated by the temperature ef-
fect. It turns out the dispersion curves pass through the
origin and this feature is independent of temperature al-
though it is illustrated for T = 1. Therefore no thermal
mass is generated and there is no plasmino in deconfined
phase with zero density. The absence of thermal mass is
actually one of most drastic difference with the weakly
coupled field theory result. Namely

mT = 0 in strong coupling ;

mT =
1

2
gT in weak couping. (22)

This is actually consistent with a recent claim made in
[25] by nonperturbative analysis. If we add finite den-
sity then the density effect can generate mass and the
dispersion curve bends accordingly.
What happen if we added a finite bulk mass for cu-

riosity? Without adding chemical potential, no plasmino
mode is generated. We find that density effect can gener-
ate extra mass as well as plasmino mode for large enough
chemical potential. The detail will be reported elsewhere.
In confined phase, we could observe plasmino character

of excitation only in a chemical potential window µ1 <
µ < µ2. Notice that in confined phase, we do not need to
set the fermion mass zero in our approach. For m = 0.1,
µ1 = 0.69 and µ2 = 1.94. As m increases, this window
gets wider. This should be compared with field theory
result for weakly coupled case, where mass and plasmino
is generated for any density. Notice that, if we turn off
both charge and bulk mass, we have the exact solution,
namely

G2(r) =
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k + ω

k − ω
, (23)

independent of radial position of the holographic screen.
Next we try to find a simple analytic formula fitting

dispersion relation. We found one for the interesting one
containing the plasmino, that is for GR

2 :
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FIG. 1. Dispersion relations in confined phase. The upper and
lower branches describe the normal fermion ω+ and plasmino
ω− respectively. Dotted line denotes light cone.
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FIG. 2. Vanishing thermal mass at zero density: the disper-
sion curve of quasi-particle passes through the origin. Top
view and side view of 3D plot of ImGR

2 with T = 1, m = 0.
True range of both ω and k is [−5, 5].

The fermion dispersion relation can be found by con-
sidering the pole location of spectral functions. We solve
(17) numerically with IR boundary conditions (19) and
(20) for confined and deconfined case respectively.

Figure 1 describes the dispersion relations ω = ω±(k)
for the confined phase. We noticed that

dω−
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���
p→∞

= 1,
dω−
dp

���
p→0

:= α(µ) < 0. (21)

Notice that the slope at the origin depends on the density
as shown in figure 3 while, in HTL approximation, it is
− 1

3 independent of density or temperature. The extreme
high density behavior of the dispersion curve is complex
so we will report it elsewhere. Here we restrict ourselves
to the density range where the dispersion curve shows
the traditional plasmino mode.

Figure 2 represents the dispersion relation in decon-
fined phase with zero density. Since the fermions here
are the quarks and Sakai-Sugimoto model does not allow

FIG. 3. µ dependence of α. The curve is plotted only in the
density window where there is plasmino, namely µ1 ≤ µ ≤ µ2.

any quark mass, we set m = 0. Our question is whether
thermal mass can be generated by the temperature ef-
fect. It turns out the dispersion curves pass through the
origin and this feature is independent of temperature al-
though it is illustrated for T = 1. Therefore no thermal
mass is generated and there is no plasmino in deconfined
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independent of radial position of the holographic screen.
Next we try to find a simple analytic formula fitting
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containing the plasmino, that is for GR
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Confinging	  case	  

at µ0 = 0.9, see the solid red line in Figure 5. At µ2 ∼ 1.7, the dispersion curve touches the

edge of lower continuum region. If we increase chemical potential further, the dispersion

curve splits again and moves down along the edge of lower continuum region. See the

dashed purple line in Figure 5.
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Figure 5. Dispersion curve of GR
2 with several values of chemical potential in confining geometry.

Here µ0 does not contain mass term.

There exists a certain momentum where the slope of dispersion curve dω/dk vanishes.

We denote this momentum kmin. If chemical potential is larger than a certain value, say

µ2, dispersion curve touches lower continuum region. We call the value of this momentum

as k0, see Figure 6(a). The density dependence of these values are drawn in Figure 6(b).
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Figure 6. (a) Definition of kmin and k0 in dispersion relation of GR
2 . (b) Chemical potential

dependence of kmin and k0.

In the region where chemical potential is larger than µ2, dispersion curve develops

unstable part between k1 < k < k0 where the pole in ω plane develops imaginary part

(equivalently self energy develops imaginary part) and the residue Z(k) of the pole develops
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Spectral	  func5on	  	  

singularity near k0, so that spectral function develops big mountain there. This behavior

of Green function suggests that for very high density, the low momentum part of the

plasmino mode is unstable with large decay width. The low momentum instability of the

quasi particle also exists in normal mode as well as in plasmino mode. See figure 7.
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Figure 7. (a) Density plot of spectral function with µ0 = 1.9. (b) Position of ω in complex plane
in the range of 0 < k < 0.4 with µ0 = 1.9. Arrows denote increasing momentum.

In Figure 7(a), we zoom up the lower continuum region where dispersion curve is

touching. The behavior of ω in complex plane is drawn in Figure 7(b) in the range of

0 < k < 0.4. In 0 < k < k1 = 0.06 region, the peak is infinitely sharp which means that

ω does not have imaginary part, it corresponds to −0.1 < ω < 0. Once dispersion curve

touches the continuum region, the peak of spectral density becomes lower and broader, and

the imaginary part of ω starts to develop in this region(0.06 < k < 0.29). If the momentum

is larger than k0 = 0.29, imaginary part of ω vanishes and spectral density has infinitely

sharp peak again.

The equation of motion (3.16) and IR boundary condition (3.21) for GR
2 become those

of GR
1 under k → −k. Therefore, we can get spectral curve for GR

1 by

G
R
1 (k) = G

R
2 (−k). (3.23)

The chemical potential dependence of the two dispersion curves are drawn in Figure 8.

In a recent study of the holographic thermal fermion, Herzog et.al [28] found an in-

teresting bulk Rashiba effect. Namely, with a finite chemical potential in the boundary,

one has dual electric field in the bulk which can couple to the fermion spin. For massive

fermion, one can simplify the discussion by taking its non-relativistic limit, which contains

spin-orbit coupling. The result is the bulk spin-orbit coupling:

H± =
k
2

2meff (r)
+ αE(r)× σ · k + . . . , (3.24)

where α is constant. With the different choice of spin, the splitting of dispersion relation

for two fermion modes is natural. One of its mode has negative slope at k = 0, signaling

the presence of plasmino in the boundary. Therefore the dual of the bulk Rashiba effect

– 11 –



Density	  dependence	  of	  plasmino	  slope	  
at	  k=0.	   3

FIG. 1. Dispersion relations in confined phase. The upper and
lower branches describe the normal fermion ω+ and plasmino
ω− respectively. Dotted line denotes light cone.

(a) (b)

FIG. 2. Vanishing thermal mass at zero density: the disper-
sion curve of quasi-particle passes through the origin. Top
view and side view of 3D plot of ImGR

2 with T = 1, m = 0.
True range of both ω and k is [−5, 5].

The fermion dispersion relation can be found by con-
sidering the pole location of spectral functions. We solve
(17) numerically with IR boundary conditions (19) and
(20) for confined and deconfined case respectively.

Figure 1 describes the dispersion relations ω = ω±(k)
for the confined phase. We noticed that

dω−
dp

���
p→∞

= 1,
dω−
dp

���
p→0

:= α(µ) < 0. (21)

Notice that the slope at the origin depends on the density
as shown in figure 3 while, in HTL approximation, it is
− 1

3 independent of density or temperature. The extreme
high density behavior of the dispersion curve is complex
so we will report it elsewhere. Here we restrict ourselves
to the density range where the dispersion curve shows
the traditional plasmino mode.

Figure 2 represents the dispersion relation in decon-
fined phase with zero density. Since the fermions here
are the quarks and Sakai-Sugimoto model does not allow

FIG. 3. µ dependence of α. The curve is plotted only in the
density window where there is plasmino, namely µ1 ≤ µ ≤ µ2.

any quark mass, we set m = 0. Our question is whether
thermal mass can be generated by the temperature ef-
fect. It turns out the dispersion curves pass through the
origin and this feature is independent of temperature al-
though it is illustrated for T = 1. Therefore no thermal
mass is generated and there is no plasmino in deconfined
phase with zero density. The absence of thermal mass is
actually one of most drastic difference with the weakly
coupled field theory result. Namely

mT = 0 in strong coupling ;

mT =
1

2
gT in weak couping. (22)

This is actually consistent with a recent claim made in
[25] by nonperturbative analysis. If we add finite den-
sity then the density effect can generate mass and the
dispersion curve bends accordingly.
What happen if we added a finite bulk mass for cu-

riosity? Without adding chemical potential, no plasmino
mode is generated. We find that density effect can gener-
ate extra mass as well as plasmino mode for large enough
chemical potential. The detail will be reported elsewhere.
In confined phase, we could observe plasmino character

of excitation only in a chemical potential window µ1 <
µ < µ2. Notice that in confined phase, we do not need to
set the fermion mass zero in our approach. For m = 0.1,
µ1 = 0.69 and µ2 = 1.94. As m increases, this window
gets wider. This should be compared with field theory
result for weakly coupled case, where mass and plasmino
is generated for any density. Notice that, if we turn off
both charge and bulk mass, we have the exact solution,
namely

G2(r) =

�
k + ω

k − ω
, (23)

independent of radial position of the holographic screen.
Next we try to find a simple analytic formula fitting

dispersion relation. We found one for the interesting one
containing the plasmino, that is for GR

2 :

GR
2 (ω, k) =

Z

ω − ω−(k)
, with ω− =

k − kF
1 +B/k

, (24)
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thermal mass can be generated by the temperature ef-
fect. It turns out the dispersion curves pass through the
origin and this feature is independent of temperature al-
though it is illustrated for T = 1. Therefore no thermal
mass is generated and there is no plasmino in deconfined
phase with zero density. The absence of thermal mass is
actually one of most drastic difference with the weakly
coupled field theory result. Namely

mT = 0 in strong coupling ;
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2
gT in weak couping. (22)

This is actually consistent with a recent claim made in
[25] by nonperturbative analysis. If we add finite den-
sity then the density effect can generate mass and the
dispersion curve bends accordingly.
What happen if we added a finite bulk mass for cu-

riosity? Without adding chemical potential, no plasmino
mode is generated. We find that density effect can gener-
ate extra mass as well as plasmino mode for large enough
chemical potential. The detail will be reported elsewhere.
In confined phase, we could observe plasmino character

of excitation only in a chemical potential window µ1 <
µ < µ2. Notice that in confined phase, we do not need to
set the fermion mass zero in our approach. For m = 0.1,
µ1 = 0.69 and µ2 = 1.94. As m increases, this window
gets wider. This should be compared with field theory
result for weakly coupled case, where mass and plasmino
is generated for any density. Notice that, if we turn off
both charge and bulk mass, we have the exact solution,
namely

G2(r) =
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independent of radial position of the holographic screen.
Next we try to find a simple analytic formula fitting

dispersion relation. We found one for the interesting one
containing the plasmino, that is for GR
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We consider the self-energy of strongly interacting quarks and baryons in the medium using
gauge/gravity duality of D4/D8 system. We study the mass generation of the thermal and/or dense
medium and the collective excitations including plasmino, by considering the spectral function of
fermion and its dispersion relation. The result is compared with those of the hard thermal loop
method. For strongly interacting quarks in deconfined phase, there is no thermal mass generation
for zero density and the plasmino excitation in confined system develops only in a window of density,
which is different from the perturbative field theory result for weakly interacting system.

The study of fermion self-energy has a long history
due to its fundamental importance in studying electronic
as well as nuclear matter system. When the excita-
tions are strongly interacting, perturbative field theory
method cannot give a reliable result since the diagrams
should be truncated to the class of ladder or rainbow
types, which can not be justified in strong coupling. Fur-
thermore in the presence of the chemical potenial, the
lattice technique is not much useful either due to the
sign problem. Therefore it is worthwhile to utilize the
gauge/gravity duality for this tantalizing problem. Re-
cently the gauge/gravity duality was used to study the
fuzzy fermi surface [1] and the non-fermi liquid nature
[2–4] of the strongly interacting fermion system.

The weakly interacting field theory (QED or QCD )
result for the fermion self energy in the medium can be
summarized by the existence of the plasmino mode [5]
and thermal mass generation of order gT . Plasmino is a
collective mode whose dispersion curve have a minimum
at finite momentum. In this letter we study the problem
using gauge/gravity duality. We will study the mass gen-
eration in the strongly interacting fermions by looking at
the dispersion relation and report a feature of plasmino
in such system.

We consider D4/D8 model [6] and turn on the fermion
fluctuation in the flavor brane world-volume with finite
quark (baryon) number density [7–9]. By solving the
spectrum of the fluctuations in the confined phase and
the quasi-normal modes in the deconfined phase, we ob-
tained the dispersion relations for the fermionic quasi-
particle excitations in four dimensional medium. Our re-
sults show that in deconfined phase, there is no thermal
mass generation for zero density which is sharply differ-
ent from weakly coupled field theory result. However, if
we add both density and bulk mass by hand, one can find
plasmino for large enough density. In the confined phase,
there is always plasmino modes for a density window. We
will focus on the branch containing the plasmino disper-
sion relations and give a potential expression.

We begin by giving brief summary of hard thermal loop
(HTL) discussion of plasmino. The fermion propagator

G(p) =
1

γ · p−m+ Σ(p)
, (1)

with the self-energy Σ = γµΣµ. The gauge invariant
result is available only for the hard thermal loop approx-
imation in which mass m can be ignored since it is small
compared with T or µ. In this limit the fermion propa-
gator can be decomposed as

G =
1

2
(γ0 − γip

i)/∆+ +
1

2
(γ0 + γip

i)/∆− , (2)

∆± = ω ∓ p−
m2

f

4p

��
1∓ ω

p

�
log

�
ω + p

ω − p

�
± 2

�
. (3)

Here p = |pi| and for electron m2
f = 1

4g
2(T 2 + µ2π2)

[10] is the effective mass generated by the medium ef-
fect. Notice that both thermal and density loop generate
the effective mass in this case. Solving the pole of the
propagator we will get two branches of dispersion curves
ω = ω±(p) and ω− is the one that describes the plasmino.
Their asymptotic forms are given by

p << mf : ω±(p) � ±1

3
p , (4)

p >> mf : ω±(p) � p . (5)

Plasmino has been extensively investigated [5, 10–22].
For a review we refer to [23, 24]. The presence of the
minimum of the plasmino branch is important since it
may enhance production rate of the light di-lepton [21].
In HTL approximation, fermions can be regarded as

massless and therefore two branches ω± can be charac-
terized in terms of chirality and the helicity; their ratio
are ±. However, in our approach, we do not neglect the
fermion mass so we define the plasmino character by the
condition

dω−
dp

���
p→0

· dω−
dp

���
p→∞

< 0 . (6)

Notice that (4) in HTL was character of ω− branch for
any density and temperature. However, in our case such
character happens for certain range of chemical potential
and fermion mass. We will find that the density and
temperature independent value 1/3 in (4) is an artifact
of HTL approximation.

Let us now set up holographic calculation scheme
for fermion self-energy. We use Sakai-Sugimoto (SS)
model [6] where we use black D4 geometry and put a

Cf:	  HTL	  
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singularity near k0, so that spectral function develops big mountain there. This behavior

of Green function suggests that for very high density, the low momentum part of the

plasmino mode is unstable with large decay width. The low momentum instability of the

quasi particle also exists in normal mode as well as in plasmino mode. See figure 7.
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Figure 7. (a) Density plot of spectral function with µ0 = 1.9. (b) Position of ω in complex plane
in the range of 0 < k < 0.4 with µ0 = 1.9. Arrows denote increasing momentum.

In Figure 7(a), we zoom up the lower continuum region where dispersion curve is

touching. The behavior of ω in complex plane is drawn in Figure 7(b) in the range of

0 < k < 0.4. In 0 < k < k1 = 0.06 region, the peak is infinitely sharp which means that

ω does not have imaginary part, it corresponds to −0.1 < ω < 0. Once dispersion curve

touches the continuum region, the peak of spectral density becomes lower and broader, and

the imaginary part of ω starts to develop in this region(0.06 < k < 0.29). If the momentum

is larger than k0 = 0.29, imaginary part of ω vanishes and spectral density has infinitely

sharp peak again.

The equation of motion (3.16) and IR boundary condition (3.21) for GR
2 become those

of GR
1 under k → −k. Therefore, we can get spectral curve for GR

1 by

G
R
1 (k) = G

R
2 (−k). (3.23)

The chemical potential dependence of the two dispersion curves are drawn in Figure 8.

In a recent study of the holographic thermal fermion, Herzog et.al [28] found an in-

teresting bulk Rashiba effect. Namely, with a finite chemical potential in the boundary,

one has dual electric field in the bulk which can couple to the fermion spin. For massive

fermion, one can simplify the discussion by taking its non-relativistic limit, which contains

spin-orbit coupling. The result is the bulk spin-orbit coupling:

H± =
k
2

2meff (r)
+ αE(r)× σ · k + . . . , (3.24)

where α is constant. With the different choice of spin, the splitting of dispersion relation

for two fermion modes is natural. One of its mode has negative slope at k = 0, signaling

the presence of plasmino in the boundary. Therefore the dual of the bulk Rashiba effect
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Figure 8. Density dependence of dispersion curves for GR
1 and GR

2 . Blue solid line denotes GR
1

and red line denotes GR
2 .

is the nothing but the plasmino mode generated by the density effect. Conversely, density

induced plasmino has interesting dual interpretation as Rashiba effect. One should be

reminded that there is no temperature induced plasmino in strong coupling regime.

3.4 Deconfined Phase

Now we discuss the fermion dispersion relation in deconfined phase of the D4-D8 model.

The brane configuration is such that D8 and D̄8 are decoupled and go straight to touch the

horizon of the D4 black brane. All the results here are given numerically and we discuss

the results for massless fermion and massive fermion separately.

Figure 9. Spectral function of massless fermion. Left: 3D plot of spectral function at zero density

figure shows vanishing thermal mass. Right: Density plot of spectral function at finite charge

density Q = 20. Dispersion curves of negative k and positive k do not meet smoothly. There is no

plasmino either. Notice the x axis and y axis are k and ω respectively. The real region for ω and k
is [−5, 5] for both figures.
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(a) (b)

Figure 14. Density plot of spectral functions. (a) m = 0, qQ = 5
√
2, there is no thermal mass and

no plasmino exists for massless fermion. (b) m = 1, qQ = 7
√
2, plasmino mode exists for massive

fermion if density is high enough.

We also studied the presence of the plasmino mode for various situations. We found

that for confining geometry, the plasmino exists for large enough chemical potential regard-

less of the fermion mass. For deconfining geometry, plasmino exists only for massive fermion

with enough denisty. We showed that the plasmino dispersion curve is absent at zero den-

sity, regardless of fermion mass, temperature, and phases (confinement/deconfinement). It

is summarized in Table 1.

Parameter Top down Bottom up

Confining Deconfining Confining Deconfining

Fermion mass
= 0

> 0 � �

Chemical potential
< µc

> µc � � � �

Table 1. The conditions for existence of plasmino are indicated by the �’s. Notice that the
condition is identical regardless of the model.

From the table, we can see that the plasmino excitation is created only in the presence

of chemical potential. This phenomena does not depend on the back ground geometry

or method(top down or bottom up), indicating the universality of of the condition for

the presence of the plasmino modes. Notice that temperature alone never create effective

(thermal) mass, which however, can be generated in the presence of large enough chemical

potential.

We also identified the dual of the bulk Rashiba effect as the presence of the boundary
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Conclusion	  .	  

•  Plasmino	  is	  present	  only	  in	  the	  presence	  of	  density	  and	  
mass.	  	  

•  Plasmino	  exist	  only	  for	  a	  window	  of	  density	  
in	  Confining	  	  case.	  	  

•  Thermal	  mass	  is	  0,	  in	  deconfined	  case	  even	  at	  zero	  
mass	  limit	  non-‐fermi	  liquid.	  

•  High	  Density	  seems	  to	  restore	  the	  fermi	  liquid	  
character.	  



Thank	  you	  
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•  Poincare	  coordinate:	  	  
Radial	  mo5on	  is	  Harmonic	  oscillator	  in	  proper	  
5me.	  	  

•  So	  each	  par5cle	  has	  the	  same	  period	  in	  proper	  	  
5me	  pi/2	  independent	  of	  the	  ini5al	  height.	  	  

•  However,	  different	  par5cle	  has	  different	  
proper	  5me.	  Pi/2	  in	  proper	  5me	  is	  infinite	  real	  
5me.	  	  

Polchinski-Strassler’s argument as detailed above. The scattering takes place at a given height since

their initial states are localized there.

2.2 Expansion and Thermalization

Since RHIC data shows that the fireball after collision is a thermalized, an AdS black hole should be

formed. But then how?. For this, we notice that the AdS gravity has anti-tidal force so that it has

a focusing property. Namely, two vertically separated particles in AdS bulk will become closer as

they fall. We have a gas of falling debris after collision. If one consider a local rest frame of the fluid

(lagrangian coordinate in fluid mechanics language), the common proper time for all the particles

can be used as a time coordinate. This is similar to the treatment of Bjorken in 3+1 spacetime by

assuming LRF. As we will see below, all the falling particles released from different heights arrive

at the bottom afther the same proper time, τ = πR/2. The unavoidable consequence of this is that

the motion of AdS fluid is like a ’cosmological’ contraction leading to the final singularity and the

dual of the fireball forms an AdS black hole. Of course, The dual of this contraction is the fireball

expansion in the boundary.

To be more explicit, consider a radial in-fall in AdS space:

dτ2 =
( r

R

)2
dt2 −

(

R

r

)2

dr2. (10)

For massless particle, the motion is described by a null geodesic with solution

r = R2/t , (11)

and the falling should start on the AdS boundary at t = 0, which is consistent with the picture that

the free falling of massless particles in AdS is dual to the free expansion in the boundary whose front

surface is expanding with light velocity [5, 20]. For massive particle it leads to

(

dr

dτ

)2

+
( r

R

)2
= ε2, (12)

where ε = (r/R)2 dt
dτ denotes the energy per unit mass. The resulting motion is harmonic in proper

time,

r = Rε cos(τ/R), t = R/ε · tan(τ/R). (13)

The period is 2πR which is independent of the initial conditions. In case there is an IR brane,

the initial difference in height δr(τ = 0) = Rδε will be reduced to to δr(τ) = Rδε cos(τ/R) at the

bottom. In terms of the boundary time t,

7



However	  

•  Ini5al	  condi5on	  dependence	  rapidly	  
disappear.	  	  we	  called	  it	  “syncroniza5on”.	  	  

!

! " #

"

#

!

Figure 3: Holographic correspondence of the expansion in 4d and the falling in 5d. From the boundary

point of view, the front part ‘1’ is freely streaming while the inner part ‘3’ sees medium effects. From the

bulk point of view: the lower part ‘1’ falls freely while the upper part ‘3’ sees the AdS black hole geometry.

Birkhoff’s theorem tells that whether the inner part is really black hole or not is not an issue. Thus the

inner part ‘3’ feels that it is in thermal equilibrium.

r =
εR

√

(εt/R)2 + 1
= R2/t − (R/t)3/2ε2 + O(t−5), (14)

so that the initial condition dependence ( that is the ε dependence) disappears rapidly as time goes

on. We believe that this focusing effect plays an important role in the initial formation of the black

hole geometry. So eq. (14) can be thought to describe the front surface of the fireball which is not

equilibrated.

After reaching bottom (IR region) the droplet will spread and flatten to make a pancake. For

late time falling objects, such a stack of mass on the IR brane generates a black hole geometry due

to Birkhoff’s theorem. See Fig. 3 and its capture. The particles inside the front surface, experience

the interaction of a medium and the expansion in the center of the fireball is dual to the falling of

a particle in the AdS black hole background.

In the next subsection, we will consider the case with fundamental fields (quarks).

2.3 With quarks: creation of closed string

Now if we have particles in the fundamental color representations in addition to the ones in the

adjoint color representation, we need to introduce probe branes in bulk [21]. A heavy meson is a

quark and antiquark connected by a string deep in AdS. The scattering of such mesons could be

8



Dic5onary	  in	  Poincare	  Patch	  

p = r0
mvx�
1− v2x

E = r0
m�
1− v2x

No5ce	  that	  p,	  E	  are	  conserved	  one.	  	  v_x	  	  are	  language	  of	  Bulk.	  	  
The	  radial	  velocity	  goes	  to	  0	  unlike	  the	  global	  coordinate.	  
It	  is	  clear	  that	  r_0	  is	  the	  	  parameter	  which	  sets	  the	  energy	  scale.	  	  	  

This	  is	  polchinski-‐strassler	  ansatz.	  	  



Q11.	  Shock	  wave	  approach.	  

•  Chesler+	  Yaffe,	  Gubser,….	  	  
•  Good	  in	  mimicking	  the	  boosted	  beam,	  which	  
look	  like	  pancake,	  collision.	  	  

•  Intui5vely,	  shock	  wave	  originally	  was	  used	  to	  
make	  black	  hole/brane	  in	  real	  space	  rather	  
than	  ads	  space	  by	  t’Hoou,	  Giddings,	  …	  	  

•  Par5cle	  crea5on	  does	  not	  do	  any	  role.	  	  


