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A Superconductive Model

Increasingly over the past decade, studying the black hole equivalents of strongly correlated
forms of matter has yielded groundbreaking results, such as a new equation for the viscosity of
strongly interacting fluids and a better grasp of interactions between quarks and gluons, which

are particles found in the nuclei of atoms.

Now, Gary Horowitz, a string theorist at UC-
Santa Barbara, and Jorge Santos, a post-
doctoral researcher in Horowitz's group,
have applied the holographic duality to
cuprates. They derived a formula for the
conductivity of the metals, which are
approximately 2-D, by studying related
properties of what may be their counterpart
in 3-D: an electrically charged, peculiarly
shaped black hole.

The work took numerical virtuosity. In
cuprates, a swarm of strongly correlated
electrons moves through a fixed lattice of
atoms. Modeling the metals with the
holographic duality therefore required
working the equivalent of a lattice into the
structure of the corresponding black hole by
giving it a corrugated outer surface, or
horizon.

Gary Horowitz, right, a physics professor at
UC-Santa Barbara, and Jorge Santos, a post-
doctoral researcher in Horowitz's group, have
modeled strange materials called cuprates as
peculiarly shaped black holes in higher
dimensions. (Photo: Courtesy of Gary

Horowitz)



Gauge/gravity duality can reproduce many
properties of condensed matter systems, even
In the limit where the bulk is described by
classical general relativity:

1) Fermi surfaces

2) Non-Fermi liquids

3) Superconducting phase transitions
4) ...

It is not clear why it is working so well.



Can one do more than reproduce qualitative
features of condensed matter systems?

Can gauge/gravity duality provide a
guantitative explanation of some mysterious
property of real materials?

We will argue that the answer is yes!



Many previous applications have assumed
translational symmetry. But:

Momentum conservation + nonzero charge
density => Infinite DC conductivity

Can have effective momentum nonconservation
In a probe approximation (Karch, O’'Bannon, 2007)
or by adding a lattice.



Plan: Calculate the optical conductivity of a
simple holographic conductor and
superconductor with lattice included.

A perfect lattice still has infinite conductivity.
So we work at nonzero T and include

dissipation. (Earlier work by: Kachru et al; Maeda et
al; Hartnoll and Hofman; Zaanen et al, Siopsis et al,
Flauger et al)

Main result: We will find surprising similarities
to the optical conductivity of the cuprates.



Simple model of a conductor

Suppose electrons in a metal satisfy

d
m= = eE —m-—
dt T
If there are n electrons per unit volume, the
current density is J = nev. Letting E(t) = Ee’ot,
find J = o E, with o

U(w) - 1 —wwr

where K=ne?/m. This is the Drude model.



KT Kwr?

Re(o) = 1+ (w7)?’

Note:
(1) For wr>1, |o|~ K/w

(2) In the limit 7 — oo :
Re(o) x 6(w), Im(o) = K/w

This can be derived more generally
from Kramers-Kronig relation.



Our gravity model

We start with just Einstein-Maxwell theory:
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This is the simplest context to describe a
conductor. We require the metric to be
asymptotically anti-de Sitter (AdS)

—dt? + dz? + dy? + d2?
22

ds® =




Want finite temperature: Add black hole

Want finite density: Add charge to the black
hole. The asymptotic form of A is

Ay = p— pz+ 0(z%)

U is the chemical potential and p is the charge
density in the dual theory.



Introduce the lattice by making the chemical
potential be a periodic function:

pu(x) = |1+ Agcos(kox)]

We numerically find solutions with smooth
horizons that are static and translationally
iInvariant in one direction.



Solutions are rippled
charged black holes.

o

Charge density for |
Ay = "2, kg =2, |
T/u = .055




Conductivity

To compute the optical conductivity using linear
response, we perturb the solution

Juv = Guv + 0Guw, A, = Au + 04,
Boundary conditions:

iIngoing waves at the horizon
0g,,, normalizable at infinity
OA,~ O(z), OA,= e“[E/iw +Jz+..]

inducec! current



Using Ohm’s law, J = oE, the optical
conductivity is given by

5 . O0F,.(x, 2)
oW, ) = o OF . (x, 2)

Since we impose a homogeneous electric
field, we are interested in the homogeneous
part of the conductivity o(w).



Review: optical conductivity with no lattice
(T/p = .115)
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Re(o)

The low frequency conductivity takes the simple

Drude form: K
o(w) = ——

1 — wwT
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Intermediate frequency shows scaling

regime: B
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Lines show 4 different temperatures:
033 <T/u <.055



lo(w)| (kS/cm)

Comparison with the cuprates
(van der Marel, et al 2003)
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What happens in the
superconducting regime?

We now add a charged scalar field to our action:
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Gubser (2008) argued that at low temperatures,
charged black holes would have nonzero .

Hartnoll, Herzog, G.H. (2008) showed this was
dual to a superconductor (in homogeneous case).



The scalar field has mass m2 = -2/L2, since for
this choice, its asymptotic behavior is simple:

® = z¢1 + %o + O(2°)
This is dual to a dimension 2 charged scalar

operator O with source ¢, and <O> = ¢..
We set ¢, = 0.

For electrically charged solutions with only A,
nonzero, the phase of ® must be constant.



We keep the same boundary conditions on A,
as before:

pl) = i |14 Ag cos(ko)]

Start with previous rippled charged black holes
with @ = 0 and lower T. When do they become
unstable?

Onset of instability corresponds to a static
normalizable mode of the scalar field.

T, depends on the charge e of ®. Larger e
makes it easier to condense @ giving higher T._.



Critical temperature as function of charge
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Having found T_, we
now find solutions for ®+0
T < T.numerically.

These are hairy,
rippled, charged black
holes.

From the asymptotic behavior of ¢ we read off
the condensate as a function of temperature.



Condensate as a function of temperature
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In the homogeneous case, the zero
temperature limit is known to take the form

dr?
gor?(—logr)

ds® = r*(—dt* + dx;dz") -

and & = 2(—logr)/? nearr=0.

With the lattice, the scalar field becomes more
homogeneous on the horizon at low T, and
S ~ T24 independent of the lattice amplitude.



We again perturb these black holes as before
and compute the conductivity as a function of
frequency.

Find that curves at small w are well fit by

adding a pole to the Drude formula
W 1 —wwr
/- \
Superfluid Normal
component component

The lattice does not destroy superconductivity
(Siopsis et al, 2012; lizuka and Maeda, 2012)
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The dashed red line through p,, is a fit to:

Pn = a + be /T

with A=4T,

This is like BCS with thermally excited
guasiparticles but:

(1) The gap A is much larger, and comparable
to what is seen in the cuprates.

(2) Some of the spectral weight remains
uncondensed even at T = 0 (this is also
true of the cuprates).



The relaxation time rises quickly as the

temperature drops:
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The scattering
rate drops
rapidly below T,
another feature
of the cuprates.



Intermediate frequency conductivity again
shows the same power law:
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Coefficient B and
exponent 2/3 are
independent of T
and identical to
normal phase.
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The Ferrell-Glover-Tinkham sum rule states:

©.©
T
/ dwRelon (w) — os(w)] = ~p,
0+ / \ 2
normal superconducting
phase phase

Does this hold in our gravitational model?






For T < T, Re[o]is reduced over a range
of w extending up to the chemical potential.

This is also true for the cuprates, but not for
conventional superconductors. In BCS,
Re[o] is reduced over a much smaller
range of frequency: 2A=3.5 T, << p.



Resonances

At larger frequencies, the optical conductivity
has resonances. In the bulk, this is due to
quasinormal modes of the charged black hole.

Quasinormal modes: modes that are ingoing at
the horizon and normalizable at infinity. Only
exist for a discrete set of complex frequencies.

They correspond to poles in retarded Green’s
functions (Son and Starinets, 2002).



One can determine the quasinormal mode
frequency by fitting

_ GRw) 1 atbw—w)
 Gw W W — Wy

o(w) =

One finds:

wo /i = 1.48 — 0.42i



Preliminary results on a full 2D lattice (T > T)
show very similar results to 1D lattice.

s

H

The optical
conductivity in each
lattice direction is
nearly identical to the
1D results.




Our simple gravity model reproduces
many properties of cuprates:

Drude peak at low frequency

Power law fall-off w2 at intermediate w
Rapid decrease in scattering rate below T,
Gap2A=8T,

Normal component doesn’'t vanishat T =0

Sum rule holds only if one includes
frequencies of order chemical potential



But key differences remain

* Our superconductor is s-wave, not d-wave

* Our power law has a constant off-set C



