Dispersion relations of Nambu-Goldstone modes at finite temperature and density

Yoshimasa Hidaka (RIKEN)

Based on YH, Phys. Rev. Lett. 110, 091601 (2013), 1203.1494 [hep-th], Hayata, YH, 1406.6271 [hep-th]

Low energy excitations Why important? Without knowledge details of systems,

one can predict many things: dispersion relations, low-energy theorem,...

Bloch T^{3/2} law,

Holtzberg, McGuire, M'ethfessel, Suits, J. Appl. Phys. 35,1033 (1964)

Solid argon from Kittel and Kroemer (1980) 22.23 17.78 K-J mol⁻¹ 13.33 Ĩ E. capacity, 8.89 Heat 4.44 1.33 2.66 3.99 5.32 6.65 7.98 T^3

Debye T^3 law, ...

Chiral condensate

 $\overline{q}q\rangle_{T}$

Spontaneous symmetry breaking For fields $F[\phi]$ $F[\phi]$ ϕ Degeneracy of grand states For spins random

aligned

Elasticity

For crystal

Free energy $F = \frac{1}{2} (\partial_i \pi^a)^2 + \cdots$

What is the NG mode?

Nambu('60), Goldstone(61), Nambu, Jona-Lasinio('61)

charge densities are slow:

 $\partial_t n_a(t, \boldsymbol{x}) = -\partial_i j_a^i(t, \boldsymbol{x})$

ex) in medium $j_a^i = \Gamma \partial_i n_a$ Diffusion equation $\partial_t n_a(t, \mathbf{x}) = -\Gamma \partial_i^2 n_a(t, \mathbf{x})$

When SSB occurs, the charge density and the local operator are canonically conjugate (I N Ambu ('04) $\langle [iQ_a, \pi_b(x)] \rangle \neq 0$ $\partial_t \pi_a = cn_a$ $\partial_t n_a = b \partial_i^2 \pi_a$

Example in relativistic systems

Approximate symmetry of QCD $SU(2)_L \times SU(2)_R \rightarrow SU(2)_V$

Three broken generators Three NG modes: Pions π^+, π^-, π^0 Dispersion relation $\omega = \sqrt{k^2 + m_\pi^2}$

Example of NG modes

Superfluid phonon

broken of number Broken generator:

One phonon

$$\omega \sim |m{k}|$$

()

Magnon

Broken of rotation Two broken generators S_x, S_y one magnon $\omega \sim k^2$ # and dispersion are different from relativistic ones

Nambu-Goldstone theorem

Nambu ('60), Goldstone (61), Nambu, Jona-Lasinio ('61) Goldstone, Salam, Weinberg ('62)

For Lorentz invariant vacuum Spontaneous breaking of global symmetry

of broken symmetry = # of NG modes Dispersion relation $\omega = c |\mathbf{k}|$

Generalization Nielsen - Chadha ('76) $N_{\text{type-I}} + 2N_{\text{type-II}} \ge \overline{N_{\text{BS}}}$ Type-I: $\omega \propto k^{2n+1}$ Type-II: $\omega \propto k^{2n}$ Schafer, Son, Stephanov, Toublan, and Verbaarschot $\langle [iQ_a, Q_b] \rangle = 0$ $N_{\rm NG} = N_{\rm BS}$ ('01) Nambu ('04) $\langle [iQ_a, Q_b] \rangle \neq 0 \longrightarrow (Q_a, Q_b)$ canonical conjugate Watanabe - Brauner ('11) $N_{\rm BS} - N_{\rm NG} \leq \frac{1}{2} \operatorname{rank} \langle [iQ_a, Q_b] \rangle$

Recent progress Effective Lagrangian method Watanabe, Murayama ('12)

Mori's projection operator method YH ('12)

•
$$N_{\rm BS} - N_{\rm NG} = \frac{1}{2} \operatorname{rank} \langle [iQ_a, Q_b] \rangle$$

• $N_{\rm type-I} + 2N_{\rm type-II} = N_{\rm BS}$
• $N_{\rm type-II} = \frac{1}{2} \operatorname{rank} \langle [iQ_a, Q_b] \rangle$

Recent progress Effective Lagrangian method Watanabe, Murayama ('12)

Mori's projection operator method YH ('12)

•
$$N_{\rm BS} - N_{\rm NG} = \frac{1}{2} \operatorname{rank} \langle [iQ_a, Q_b] \rangle$$

• $N_{\rm type-A} + 2N_{\rm type-B} = N_{\rm BS}$
• $N_{\rm type-B} = \frac{1}{2} \operatorname{rank} \langle [iQ_a, Q_b] \rangle$

Two type of excitations

gravity g

Two type of excitations

 $\operatorname{gravity} g$

Type-A Harmonic oscillation $\omega \sim \sqrt{g}$ **Type-B** Precession

 $\omega \sim g$

Recent Progress

Watanabe, Murayama ('12), YH ('12)

NG modes associated with spontaneous breaking of internal symmetry can be classified by two types:

Classification

Expectation value of commutation relations

	Broken charges		Local operators	
	Q^A_b	Q^B_b	ϕ^A_i	ϕ^B_i
Type-A Q^A_a	0	0	$\langle [iQ_a^A, \phi_i^A] \rangle \neq 0$	$\langle [iQ_a^A, \phi_i^B] \rangle \neq 0$
Type-B Q^B_a	0	$\langle [iQ_a^B, Q_b^B] \rangle \neq 0$	0	$\langle [iQ_a^B, \phi_i^B] \rangle \neq 0$

 $\langle [iQ_a^B, \phi_i^B] \rangle \neq 0 \quad \phi_i^B$ becomes massive.

"Almost NG modes"

Effective Lagrangian approach: Kapustin ('12), Karasawa, Gongyo ('14)

The number of Type-B pairs $N_{\text{type-B}} = \frac{1}{2} \operatorname{rank} \langle [iQ_a^B, Q_b^B] \rangle = \frac{1}{2} \operatorname{rank} \langle [iQ_a, Q_b] \rangle$ The number of Type-A pairs $N_{\text{type-A}} = N_{\text{BS}} - 2N_{\text{type-B}}$ The number of Type-B fields. $\operatorname{rank} \langle [iQ_a, \phi_i] \rangle - N_{\text{type-A}}$

•
$$N_{\text{type-A}} + 2N_{\text{type-B}} = N_{\text{BS}}$$

• $N_{\text{BS}} - N_{\text{NG}} = \frac{1}{2} \text{rank} \langle [iQ_a, Q_b] \rangle$
• $N_{\text{gapped}} = \frac{1}{2} \left(\text{rank} \langle [iQ_a, \phi_i] \rangle - N_{\text{type-A}} \right)$

Examples of Type-B NG modes

	$N_{\rm BS}$	$N_{\rm type-A}$	$N_{\rm type-B}$	$\frac{1}{2}$ rank $\langle [iQ_a, Q_b] \rangle$	$N_{\rm type-A} + 2N_{\rm type-B}$
Spin wave in ferromanget O(3)→O(2)	2	0	1		2
NG modes in Kaon condensed CFL SU(2)xSU(1)	3	1	1		3
Kelvin waves in vortex translation	2	0	1	-1	2
nonrelativistic massive C U(1)x	2	0	1	-1	2

 $N_{\text{type-A}} + 2N_{\text{type-B}} = N_{\text{BS}} \quad N_{\text{BS}} - N_{\text{NG}} = \frac{1}{2} \text{rank} \langle [iQ_a, Q_b] \rangle$

Question:

What is the relation between type-A (B) and Type-I (II) dispersion relation?

Generalized Langevin equation

formal derivation: Mori ('65)

$$\partial_t A_n = \{A_n, F[A]\}_P - \Gamma_{nm} \frac{\partial F}{\partial A_m} + \xi_n$$

Free energy:F[A]Poisson bracket: $\{A_n, A_m\}_P \equiv -i\langle [A_n, A_m] \rangle$ Dissipation term: Γ_{nm} Noise term: ξ_n

First, we neglect dissipation effect, i.e. Γ=0.

Type-A NG mo

$$F = \frac{\chi_n^{-1}}{2}n^2 + \frac{\rho}{2}(\nabla \pi)^2 + \cdots$$

$$\langle [iQ, \pi] \rangle = 1, \langle [iQ, n] \rangle = 0$$
with $Q = \int d^3xn$

Equations of motion $\partial_t \phi = \chi_n^{-1} n$ $\omega = \partial_t n = \rho \nabla^2 \phi$ Type

 $\omega = \pm \sqrt{\chi^{-1}\rho}k$ **Type-A = Type-I**

Type-B NG mode

$$F = \rho \frac{1}{2} (\nabla n_1)^2 + \rho \frac{1}{2} (\nabla n_2)^2$$

$$\langle [iQ_1, n_2] \rangle = -\langle [iQ_2, n_1] \rangle = c$$

Dissipation effect: Type-A $\partial_t A_n = \{A_n, F[A]\}_P - \Gamma_{nm} \frac{\partial F}{\partial A_m} + \xi_n$ $F = \frac{\chi_n^{-1}}{2}n^2 + \frac{1}{2}(\nabla \pi)^2 + \cdots$ -Kubo formula- $\Gamma_{\pi\pi} = \int_{0}^{\infty} dt \int_{0}^{\beta} d\tau \int d^{3}x \langle \partial_{t}\pi(t - i\tau, \boldsymbol{x}) \partial_{t}\pi(0, \boldsymbol{0}) \rangle \equiv \gamma$ $\Gamma_{nn} = k^2 \int_0^\infty dt \int_0^\rho d\tau \int d^3x \langle j^i(t - i\tau, \boldsymbol{x}) j^i(0, \boldsymbol{0}) \rangle \equiv k^2 \sigma$ Equations $\partial_t \pi = \chi_n^{-1} n - \gamma \rho \nabla^2 \pi + \xi_\pi$

of motion $\partial_t n = \rho \nabla^2 \pi + \sigma \chi_n^{-1} \nabla^2 n + \xi_n$ $\omega = \pm \sqrt{\chi^{-1}\rho} k - i\Gamma k^2$ $\Gamma = (\sigma \chi_n^{-1} + \gamma \rho)/2$

$$\begin{aligned} \mathbf{Dissipation\ effect:\ Type-B}\\ \partial_t A_n &= \{A_n, F[A]\}_P - \Gamma_{nm} \frac{\partial F}{\partial A_m} + \xi_n\\ F &= \rho \frac{1}{2} (\nabla n_1)^2 + \rho \frac{1}{2} (\nabla n_2)^2\\ \mathbf{Kubo\ formula}\\ \Gamma_{n_a n_a} &= k^2 \int_0^\infty dt \int_0^\beta d\tau \int d^3x \langle j_a^i(t - i\tau, \mathbf{x}) j_b^j(0, \mathbf{0}) \rangle \equiv k^2 \sigma \end{aligned}$$

Equations $\partial_t n_1 = c\rho \nabla^2 n_2 - \sigma \rho (\nabla^2)^2 n_1 + \xi_1$ of motion $\partial_t n_2 = -c\rho \nabla^2 n_1 - \sigma \rho (\nabla^2)^2 n_2 + \xi_2$

 $\omega = \pm c\rho k^2 - i\sigma\rho k^4$

SSB with a small breaking term $H = H_0 + \epsilon V_{\text{small explicit breaking term}}$

Type-A: $\partial_t \phi = \chi_n^{-1} n$ $w \equiv \frac{\delta}{\delta\phi} \langle [iQ, V] \rangle$ $\partial_t n = \sigma \nabla \phi$ $w_a^{\ b} \equiv \frac{\delta}{\delta n_b} \langle [iQ_a, V] \rangle$ Type-B: $\partial_t n_a = \epsilon \rho \epsilon_a^b N_b^2 n_b$ Gap of Pseudo NG modes Type-A: $m^2 = \epsilon \chi^{-1} w$ Ex) pions Type-B: $[m^2]_a^b = \epsilon^2 \omega_a^c \omega_c^b$ Ex) magnon in an external magnetic field cf.) No higher corrections if the explicit breaking term is proportional to a charge. Nicolis, Piazza ('12), ('13) Watanabe, Brauner, Murayama ('13)

Summary For SSB of internal symmetries

Independent elastic variable= N_{BS} $\bullet N_{\text{type-B}} = \frac{1}{2} \text{rank} \langle [iQ_a, Q_b] \rangle$ $ON_{type-A} = N_{BS} - N_{type-B}$ $ON_{\text{gapped}} = \frac{1}{2} \left(\text{rank} \langle [iQ_a, \phi_i] \rangle - N_{\text{type-A}} \right)$ The second derivative term in the effective Lagrangian Karasawa, Gongyo('14) Type-A (Type-I): $\omega = ak - ibk^2$ Type-B (Type-II): $\omega = a'k^2 - ib'k^4$

Spacetime breaking and dispersion Ex) Liquid crystal **Nematic phase:** rotation $O(3) \rightarrow O(2)$ $N_{\rm BS} = N_{\rm EV} = 2$ $L_i(x) = \epsilon_{ijk} x^j T^{0k}(x)$ i = 1, 2Dispersion relation: $\omega = ak^2 + ibk^2$ Hosino, Nakano ('82) Real and imaginary parts are the same order (damped oscillation) In case a = 0, (overdamping) Ex) Capillary wave (ripplon) cf. Takeuchi, Kasamatsu ('13) Effective Lagrangian: Watanabe, Murayama ('14) $\frac{1}{V}\langle [P_z,N]
angle
eq 0$ Type-B $\omega \sim k^{3/2}$