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In the Mott insulating phase we find the first resonant
peak for all data sets close to the calculated value of U. A
second peak appears at !1:91" 0:04# times the energy of
the first resonance, somewhat smaller than the value of 2
reported in [1]. This resonance might be attributed to
defects where lattice sites with n $ 1 atom next to sites
with n $ 2 atoms are being excited. For the 1D system
and in the dimensional crossover regime [Figs. 2(a) and
2(b)] a much weaker resonance appears at !2:60" 0:05#
times the energy of the first resonance, which could

indicate higher order processes of two atoms tunneling
simultaneously. In Fig. 3(a) we plot the rms width of the
first resonance in the excitation spectrum of the Mott
insulating phase when fitted by a Gaussian. In Fig. 3(b)
we show the ratio of the amplitudes of the second and the
first peaks. Apparently, in the 1D system the first peak is
wider and the second peak more pronounced as compared
to the 3D situation, which could be an indication of
increased fluctuations in 1D systems.

Compared to the superfluid properties the coherence
properties of the system provide complementary infor-
mation about the state of the gas. They are probed by
studying the matter wave interference pattern [1,21]. Here
we first prepare the array of 1D systems as above but do
not apply our excitation scheme. Instead, after holding the
atoms at the final lattice depth for th $ 30 ms, we in-
crease Vax rapidly (<40 !s) to about 25ER and then
abruptly switch off all optical and magnetic trapping
potentials. This procedure projects the different initial
configurations onto the same Bloch state. To extract the
number of coherent atoms Ncoh from the interference
pattern, the peaks [22] at 0 !hk, "2 !hk, and "4 !hk are fitted
by Gaussians [Fig. 4(b)]. Incoherent atoms give rise to a
broad Gaussian background which dominates for higher
Vax;0. Taking this fit as a measure of the number of in-
coherent atoms Nincoh, we calculate the coherent fraction
fc $ !Ncoh#=!Ncoh % Nincoh#. As shown in Fig. 4(a), fc de-
creases slowly to zero for increasing values of U=J and
appears to be almost independent of the dimensionality.
This coincides with the prediction that for strongly inter-
acting Bose gases in optical lattices the superfluid fraction
can be significantly different from the coherent fraction,
and that the decrease of fc is not a sufficient signature of
entering the Mott insulating phase [23]. In Fig. 4(c) we
plot the width of the central peak of the interference
pattern, which is a measure of the coherence length of
the gas. An increasing width is a good indicator for the
presence of a Mott insulating phase since even a small
Mott insulating domain reduces the coherence length of
the sample, as elucidated in numerical calculations [24].
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FIG. 3 (color online). (a) Width of the first resonance peak in
the spectrum of the Mott insulator. (b) Ratio of the amplitudes
of the second and the first peaks of the spectrum of the Mott
insulator. The error bars mark the error of the Gaussian fits.

50

100

150

200

4 (2.3)
6 (4.6)
8 (8.4)
10 (14)
12 (23)
14 (36)

0 1 2 3 4 5 6

Potential
      Depth
          [ER]

        (U / J)

F
W

H
M

 [µ
m

]

Modulation Frequency [kHz]

(a)  1D

50

100

150

200

4 (1.8)
6 (3.4)
8 (6.0)
10 (9.6)

12 (14)
14 (20)

0 1 2 3 4 5 6

Potential
      Depth
          [ER]

        (U / J)

F
W

H
M

 [µ
m

]

Modulation Frequency [kHz]

(b)  1D - 3D 
     crossover

50

100

8 (1.3)
 10 (2.6)

12 (4.9)
14 (8.7)

16 (15)
18 (24)

0 1 2 3 4 5 6

Potential
      Depth
          [ER]

        (U / J)

F
W

H
M

 [µ
m

]

Modulation Frequency [kHz]

(c)  3D

FIG. 2 (color online). The measured excitation spectrum of
an array of 1D gases (V? $ 30ER) is shown in (a) for different
values of Vax;0. The interaction ratios U=J given in brackets are
calculated numerically using a band structure model in the
tight-binding approximation [9]. Spectrum (c) shows the super-
fluid to Mott insulator transition in the 3D case (V? $ Vax;0).
The crossover region between the one- and the three-
dimensional system (V? $ 20ER) is shown in (b).
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expected to diverge at low frequencies, if the probe in use couples
longitudinally to the order parameter2,4,5,9 (for example to the real part
of Y, if the equilibrium value of Y was chosen along the real axis), as is
the case for neutron scattering. If, instead, the coupling is rotationally
invariant (for example through coupling to jYj2), as expected for
lattice modulation, such a divergence could be avoided and the

response is expected to scale as n3 at low frequencies3,6,9,17.
Combining this result with the scaling dimensions of the response
function for a rotationally symmetric perturbation coupling to jYj2,
we expect the low-frequency response to be proportional to
(1 2 j/jc)

22n3 (ref. 9 and Methods). The experimentally observed sig-
nal is consistent with this scaling at the ‘base’ of the absorption feature
(Fig. 4). This indicates that the low-frequency part is dominated by
only a few in-trap eigenmodes, which approximately show the generic
scaling of the homogeneous system for a response function describing
coupling to jYj2.

In the intermediate-frequency regime, it remains a challenge to
construct a first-principles analytical treatment of the in-trap system
including all relevant decay and coupling processes. Lacking such a
theory, we constructed a heuristic model combining the discrete spec-
trum from the Gutzwiller approach (Fig. 3a) with the line shape for a
homogeneous system based on an O(N) field theory in two dimen-
sions, calculated in the large-N limit3,6 (Methods). An implicit assump-
tion of this approach is a continuum of phase modes, which is
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Figure 3 | Theory of in-trap response. a, A diagonalization of the trapped
system in a Gutzwiller approximation shows a discrete spectrum of amplitude-
like eigenmodes. Shown on the vertical axis is the strength of the response to a
modulation of j. Eigenmodes of phase type are not shown (Methods) and n0,G

denotes the gap as calculated in the Gutzwiller approximation. a.u., arbitrary
units. b, In-trap superfluid density distribution for the four amplitude modes
with the lowest frequencies, as labelled in a. In contrast to the superfluid
density, the total density of the system stays almost constant (not shown).
c, Discrete amplitude mode spectrum for various couplings j/jc. Each red circle
corresponds to a single eigenmode, with the intensity of the colour being
proportional to the line strength. The gap frequency of the lowest-lying mode
follows the prediction for commensurate filling (solid line; same as in Fig. 2a)
until a rounding off takes place close to the critical point due to the finite size of
the system. d, Comparison of the experimental response at V0 5 9.5Er (blue
circles and connecting blue line; error bars, s.e.m.) with a 2 3 2 cluster mean-
field simulation (grey line and shaded area) and a heuristic model (dashed line;
for details see text and Methods). The simulation was done for V0 5 9.5Er (grey
line) and for V0 5 (1 6 0.02) 3 9.5Er (shaded grey area), to account for the
experimental uncertainty in the lattice depth, and predicts the energy
absorption per particle DE.
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prediction (1 2 j/jc)

22n3 (Methods). Shown is the temperature response
rescaled with (1 2 j/jc)

2 for V0 5 10Er (grey), 9.5Er (black), 9Er (green), 8.5Er

(blue) and 8Er (red) as a function of the modulation frequency. The black line is
a fit of the form anb with a fitted exponent b 5 2.9(5). The inset shows the same
data points without rescaling, for comparison. Error bars, s.e.m.
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Figure 2 | Softening of the Higgs mode. a, The fitted gap values hn0/U
(circles) show a characteristic softening close to the critical point in quantitative
agreement with analytic predictions for the Higgs and the Mott gap (solid line
and dashed line, respectively; see text). Horizontal and vertical error bars
denote the experimental uncertainty of the lattice depths and the fit error for the
centre frequency of the error function, respectively (Methods). Vertical dashed
lines denote the widths of the fitted error function and characterize the
sharpness of the spectral onset. The blue shading highlights the superfluid

region. b, Temperature response to lattice modulation (circles and connecting
blue line) and fit with an error function (solid black line) for the three different
points labelled in a. As the coupling j approaches the critical value jc, the change
in the gap values to lower frequencies is clearly visible (from panel 1 to panel 3).
Vertical dashed lines mark the frequency U/h corresponding to the on-site
interaction. Each data point results from an average of the temperatures over
,50 experimental runs. Error bars, s.e.m.
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In the Mott insulating phase we find the first resonant
peak for all data sets close to the calculated value of U. A
second peak appears at !1:91" 0:04# times the energy of
the first resonance, somewhat smaller than the value of 2
reported in [1]. This resonance might be attributed to
defects where lattice sites with n $ 1 atom next to sites
with n $ 2 atoms are being excited. For the 1D system
and in the dimensional crossover regime [Figs. 2(a) and
2(b)] a much weaker resonance appears at !2:60" 0:05#
times the energy of the first resonance, which could

indicate higher order processes of two atoms tunneling
simultaneously. In Fig. 3(a) we plot the rms width of the
first resonance in the excitation spectrum of the Mott
insulating phase when fitted by a Gaussian. In Fig. 3(b)
we show the ratio of the amplitudes of the second and the
first peaks. Apparently, in the 1D system the first peak is
wider and the second peak more pronounced as compared
to the 3D situation, which could be an indication of
increased fluctuations in 1D systems.

Compared to the superfluid properties the coherence
properties of the system provide complementary infor-
mation about the state of the gas. They are probed by
studying the matter wave interference pattern [1,21]. Here
we first prepare the array of 1D systems as above but do
not apply our excitation scheme. Instead, after holding the
atoms at the final lattice depth for th $ 30 ms, we in-
crease Vax rapidly (<40 !s) to about 25ER and then
abruptly switch off all optical and magnetic trapping
potentials. This procedure projects the different initial
configurations onto the same Bloch state. To extract the
number of coherent atoms Ncoh from the interference
pattern, the peaks [22] at 0 !hk, "2 !hk, and "4 !hk are fitted
by Gaussians [Fig. 4(b)]. Incoherent atoms give rise to a
broad Gaussian background which dominates for higher
Vax;0. Taking this fit as a measure of the number of in-
coherent atoms Nincoh, we calculate the coherent fraction
fc $ !Ncoh#=!Ncoh % Nincoh#. As shown in Fig. 4(a), fc de-
creases slowly to zero for increasing values of U=J and
appears to be almost independent of the dimensionality.
This coincides with the prediction that for strongly inter-
acting Bose gases in optical lattices the superfluid fraction
can be significantly different from the coherent fraction,
and that the decrease of fc is not a sufficient signature of
entering the Mott insulating phase [23]. In Fig. 4(c) we
plot the width of the central peak of the interference
pattern, which is a measure of the coherence length of
the gas. An increasing width is a good indicator for the
presence of a Mott insulating phase since even a small
Mott insulating domain reduces the coherence length of
the sample, as elucidated in numerical calculations [24].
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FIG. 3 (color online). (a) Width of the first resonance peak in
the spectrum of the Mott insulator. (b) Ratio of the amplitudes
of the second and the first peaks of the spectrum of the Mott
insulator. The error bars mark the error of the Gaussian fits.
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FIG. 2 (color online). The measured excitation spectrum of
an array of 1D gases (V? $ 30ER) is shown in (a) for different
values of Vax;0. The interaction ratios U=J given in brackets are
calculated numerically using a band structure model in the
tight-binding approximation [9]. Spectrum (c) shows the super-
fluid to Mott insulator transition in the 3D case (V? $ Vax;0).
The crossover region between the one- and the three-
dimensional system (V? $ 20ER) is shown in (b).
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expected to diverge at low frequencies, if the probe in use couples
longitudinally to the order parameter2,4,5,9 (for example to the real part
of Y, if the equilibrium value of Y was chosen along the real axis), as is
the case for neutron scattering. If, instead, the coupling is rotationally
invariant (for example through coupling to jYj2), as expected for
lattice modulation, such a divergence could be avoided and the

response is expected to scale as n3 at low frequencies3,6,9,17.
Combining this result with the scaling dimensions of the response
function for a rotationally symmetric perturbation coupling to jYj2,
we expect the low-frequency response to be proportional to
(1 2 j/jc)

22n3 (ref. 9 and Methods). The experimentally observed sig-
nal is consistent with this scaling at the ‘base’ of the absorption feature
(Fig. 4). This indicates that the low-frequency part is dominated by
only a few in-trap eigenmodes, which approximately show the generic
scaling of the homogeneous system for a response function describing
coupling to jYj2.

In the intermediate-frequency regime, it remains a challenge to
construct a first-principles analytical treatment of the in-trap system
including all relevant decay and coupling processes. Lacking such a
theory, we constructed a heuristic model combining the discrete spec-
trum from the Gutzwiller approach (Fig. 3a) with the line shape for a
homogeneous system based on an O(N) field theory in two dimen-
sions, calculated in the large-N limit3,6 (Methods). An implicit assump-
tion of this approach is a continuum of phase modes, which is
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Figure 3 | Theory of in-trap response. a, A diagonalization of the trapped
system in a Gutzwiller approximation shows a discrete spectrum of amplitude-
like eigenmodes. Shown on the vertical axis is the strength of the response to a
modulation of j. Eigenmodes of phase type are not shown (Methods) and n0,G

denotes the gap as calculated in the Gutzwiller approximation. a.u., arbitrary
units. b, In-trap superfluid density distribution for the four amplitude modes
with the lowest frequencies, as labelled in a. In contrast to the superfluid
density, the total density of the system stays almost constant (not shown).
c, Discrete amplitude mode spectrum for various couplings j/jc. Each red circle
corresponds to a single eigenmode, with the intensity of the colour being
proportional to the line strength. The gap frequency of the lowest-lying mode
follows the prediction for commensurate filling (solid line; same as in Fig. 2a)
until a rounding off takes place close to the critical point due to the finite size of
the system. d, Comparison of the experimental response at V0 5 9.5Er (blue
circles and connecting blue line; error bars, s.e.m.) with a 2 3 2 cluster mean-
field simulation (grey line and shaded area) and a heuristic model (dashed line;
for details see text and Methods). The simulation was done for V0 5 9.5Er (grey
line) and for V0 5 (1 6 0.02) 3 9.5Er (shaded grey area), to account for the
experimental uncertainty in the lattice depth, and predicts the energy
absorption per particle DE.
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response in the superfluid regime shows a scaling compatible with the
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2 for V0 5 10Er (grey), 9.5Er (black), 9Er (green), 8.5Er

(blue) and 8Er (red) as a function of the modulation frequency. The black line is
a fit of the form anb with a fitted exponent b 5 2.9(5). The inset shows the same
data points without rescaling, for comparison. Error bars, s.e.m.
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Figure 2 | Softening of the Higgs mode. a, The fitted gap values hn0/U
(circles) show a characteristic softening close to the critical point in quantitative
agreement with analytic predictions for the Higgs and the Mott gap (solid line
and dashed line, respectively; see text). Horizontal and vertical error bars
denote the experimental uncertainty of the lattice depths and the fit error for the
centre frequency of the error function, respectively (Methods). Vertical dashed
lines denote the widths of the fitted error function and characterize the
sharpness of the spectral onset. The blue shading highlights the superfluid

region. b, Temperature response to lattice modulation (circles and connecting
blue line) and fit with an error function (solid black line) for the three different
points labelled in a. As the coupling j approaches the critical value jc, the change
in the gap values to lower frequencies is clearly visible (from panel 1 to panel 3).
Vertical dashed lines mark the frequency U/h corresponding to the on-site
interaction. Each data point results from an average of the temperatures over
,50 experimental runs. Error bars, s.e.m.
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In the Mott insulating phase we find the first resonant
peak for all data sets close to the calculated value of U. A
second peak appears at !1:91" 0:04# times the energy of
the first resonance, somewhat smaller than the value of 2
reported in [1]. This resonance might be attributed to
defects where lattice sites with n $ 1 atom next to sites
with n $ 2 atoms are being excited. For the 1D system
and in the dimensional crossover regime [Figs. 2(a) and
2(b)] a much weaker resonance appears at !2:60" 0:05#
times the energy of the first resonance, which could

indicate higher order processes of two atoms tunneling
simultaneously. In Fig. 3(a) we plot the rms width of the
first resonance in the excitation spectrum of the Mott
insulating phase when fitted by a Gaussian. In Fig. 3(b)
we show the ratio of the amplitudes of the second and the
first peaks. Apparently, in the 1D system the first peak is
wider and the second peak more pronounced as compared
to the 3D situation, which could be an indication of
increased fluctuations in 1D systems.

Compared to the superfluid properties the coherence
properties of the system provide complementary infor-
mation about the state of the gas. They are probed by
studying the matter wave interference pattern [1,21]. Here
we first prepare the array of 1D systems as above but do
not apply our excitation scheme. Instead, after holding the
atoms at the final lattice depth for th $ 30 ms, we in-
crease Vax rapidly (<40 !s) to about 25ER and then
abruptly switch off all optical and magnetic trapping
potentials. This procedure projects the different initial
configurations onto the same Bloch state. To extract the
number of coherent atoms Ncoh from the interference
pattern, the peaks [22] at 0 !hk, "2 !hk, and "4 !hk are fitted
by Gaussians [Fig. 4(b)]. Incoherent atoms give rise to a
broad Gaussian background which dominates for higher
Vax;0. Taking this fit as a measure of the number of in-
coherent atoms Nincoh, we calculate the coherent fraction
fc $ !Ncoh#=!Ncoh % Nincoh#. As shown in Fig. 4(a), fc de-
creases slowly to zero for increasing values of U=J and
appears to be almost independent of the dimensionality.
This coincides with the prediction that for strongly inter-
acting Bose gases in optical lattices the superfluid fraction
can be significantly different from the coherent fraction,
and that the decrease of fc is not a sufficient signature of
entering the Mott insulating phase [23]. In Fig. 4(c) we
plot the width of the central peak of the interference
pattern, which is a measure of the coherence length of
the gas. An increasing width is a good indicator for the
presence of a Mott insulating phase since even a small
Mott insulating domain reduces the coherence length of
the sample, as elucidated in numerical calculations [24].
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FIG. 3 (color online). (a) Width of the first resonance peak in
the spectrum of the Mott insulator. (b) Ratio of the amplitudes
of the second and the first peaks of the spectrum of the Mott
insulator. The error bars mark the error of the Gaussian fits.
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FIG. 2 (color online). The measured excitation spectrum of
an array of 1D gases (V? $ 30ER) is shown in (a) for different
values of Vax;0. The interaction ratios U=J given in brackets are
calculated numerically using a band structure model in the
tight-binding approximation [9]. Spectrum (c) shows the super-
fluid to Mott insulator transition in the 3D case (V? $ Vax;0).
The crossover region between the one- and the three-
dimensional system (V? $ 20ER) is shown in (b).
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expected to diverge at low frequencies, if the probe in use couples
longitudinally to the order parameter2,4,5,9 (for example to the real part
of Y, if the equilibrium value of Y was chosen along the real axis), as is
the case for neutron scattering. If, instead, the coupling is rotationally
invariant (for example through coupling to jYj2), as expected for
lattice modulation, such a divergence could be avoided and the

response is expected to scale as n3 at low frequencies3,6,9,17.
Combining this result with the scaling dimensions of the response
function for a rotationally symmetric perturbation coupling to jYj2,
we expect the low-frequency response to be proportional to
(1 2 j/jc)

22n3 (ref. 9 and Methods). The experimentally observed sig-
nal is consistent with this scaling at the ‘base’ of the absorption feature
(Fig. 4). This indicates that the low-frequency part is dominated by
only a few in-trap eigenmodes, which approximately show the generic
scaling of the homogeneous system for a response function describing
coupling to jYj2.

In the intermediate-frequency regime, it remains a challenge to
construct a first-principles analytical treatment of the in-trap system
including all relevant decay and coupling processes. Lacking such a
theory, we constructed a heuristic model combining the discrete spec-
trum from the Gutzwiller approach (Fig. 3a) with the line shape for a
homogeneous system based on an O(N) field theory in two dimen-
sions, calculated in the large-N limit3,6 (Methods). An implicit assump-
tion of this approach is a continuum of phase modes, which is
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||Sebastian Huber Condensed matter theory and quantum optics 3

The starting point

In the Mott insulating phase we find the first resonant
peak for all data sets close to the calculated value of U. A
second peak appears at !1:91" 0:04# times the energy of
the first resonance, somewhat smaller than the value of 2
reported in [1]. This resonance might be attributed to
defects where lattice sites with n $ 1 atom next to sites
with n $ 2 atoms are being excited. For the 1D system
and in the dimensional crossover regime [Figs. 2(a) and
2(b)] a much weaker resonance appears at !2:60" 0:05#
times the energy of the first resonance, which could

indicate higher order processes of two atoms tunneling
simultaneously. In Fig. 3(a) we plot the rms width of the
first resonance in the excitation spectrum of the Mott
insulating phase when fitted by a Gaussian. In Fig. 3(b)
we show the ratio of the amplitudes of the second and the
first peaks. Apparently, in the 1D system the first peak is
wider and the second peak more pronounced as compared
to the 3D situation, which could be an indication of
increased fluctuations in 1D systems.

Compared to the superfluid properties the coherence
properties of the system provide complementary infor-
mation about the state of the gas. They are probed by
studying the matter wave interference pattern [1,21]. Here
we first prepare the array of 1D systems as above but do
not apply our excitation scheme. Instead, after holding the
atoms at the final lattice depth for th $ 30 ms, we in-
crease Vax rapidly (<40 !s) to about 25ER and then
abruptly switch off all optical and magnetic trapping
potentials. This procedure projects the different initial
configurations onto the same Bloch state. To extract the
number of coherent atoms Ncoh from the interference
pattern, the peaks [22] at 0 !hk, "2 !hk, and "4 !hk are fitted
by Gaussians [Fig. 4(b)]. Incoherent atoms give rise to a
broad Gaussian background which dominates for higher
Vax;0. Taking this fit as a measure of the number of in-
coherent atoms Nincoh, we calculate the coherent fraction
fc $ !Ncoh#=!Ncoh % Nincoh#. As shown in Fig. 4(a), fc de-
creases slowly to zero for increasing values of U=J and
appears to be almost independent of the dimensionality.
This coincides with the prediction that for strongly inter-
acting Bose gases in optical lattices the superfluid fraction
can be significantly different from the coherent fraction,
and that the decrease of fc is not a sufficient signature of
entering the Mott insulating phase [23]. In Fig. 4(c) we
plot the width of the central peak of the interference
pattern, which is a measure of the coherence length of
the gas. An increasing width is a good indicator for the
presence of a Mott insulating phase since even a small
Mott insulating domain reduces the coherence length of
the sample, as elucidated in numerical calculations [24].

10 20 30 40
0 %

25 %

50 %

75 %

100 %
(b)

A
m

pl
itu

de
 R

at
io

U / J
10 20 30 40

0

200

400

600

800

R
es

on
an

ce
 1

 R
M

S
 W

id
th

 [H
z]

U / J

 1D
 1D-3D

         crossover
 3D

(a)

FIG. 3 (color online). (a) Width of the first resonance peak in
the spectrum of the Mott insulator. (b) Ratio of the amplitudes
of the second and the first peaks of the spectrum of the Mott
insulator. The error bars mark the error of the Gaussian fits.
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FIG. 2 (color online). The measured excitation spectrum of
an array of 1D gases (V? $ 30ER) is shown in (a) for different
values of Vax;0. The interaction ratios U=J given in brackets are
calculated numerically using a band structure model in the
tight-binding approximation [9]. Spectrum (c) shows the super-
fluid to Mott insulator transition in the 3D case (V? $ Vax;0).
The crossover region between the one- and the three-
dimensional system (V? $ 20ER) is shown in (b).
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||Sebastian Huber Condensed matter theory and quantum optics 3

The starting point

In the Mott insulating phase we find the first resonant
peak for all data sets close to the calculated value of U. A
second peak appears at !1:91" 0:04# times the energy of
the first resonance, somewhat smaller than the value of 2
reported in [1]. This resonance might be attributed to
defects where lattice sites with n $ 1 atom next to sites
with n $ 2 atoms are being excited. For the 1D system
and in the dimensional crossover regime [Figs. 2(a) and
2(b)] a much weaker resonance appears at !2:60" 0:05#
times the energy of the first resonance, which could

indicate higher order processes of two atoms tunneling
simultaneously. In Fig. 3(a) we plot the rms width of the
first resonance in the excitation spectrum of the Mott
insulating phase when fitted by a Gaussian. In Fig. 3(b)
we show the ratio of the amplitudes of the second and the
first peaks. Apparently, in the 1D system the first peak is
wider and the second peak more pronounced as compared
to the 3D situation, which could be an indication of
increased fluctuations in 1D systems.

Compared to the superfluid properties the coherence
properties of the system provide complementary infor-
mation about the state of the gas. They are probed by
studying the matter wave interference pattern [1,21]. Here
we first prepare the array of 1D systems as above but do
not apply our excitation scheme. Instead, after holding the
atoms at the final lattice depth for th $ 30 ms, we in-
crease Vax rapidly (<40 !s) to about 25ER and then
abruptly switch off all optical and magnetic trapping
potentials. This procedure projects the different initial
configurations onto the same Bloch state. To extract the
number of coherent atoms Ncoh from the interference
pattern, the peaks [22] at 0 !hk, "2 !hk, and "4 !hk are fitted
by Gaussians [Fig. 4(b)]. Incoherent atoms give rise to a
broad Gaussian background which dominates for higher
Vax;0. Taking this fit as a measure of the number of in-
coherent atoms Nincoh, we calculate the coherent fraction
fc $ !Ncoh#=!Ncoh % Nincoh#. As shown in Fig. 4(a), fc de-
creases slowly to zero for increasing values of U=J and
appears to be almost independent of the dimensionality.
This coincides with the prediction that for strongly inter-
acting Bose gases in optical lattices the superfluid fraction
can be significantly different from the coherent fraction,
and that the decrease of fc is not a sufficient signature of
entering the Mott insulating phase [23]. In Fig. 4(c) we
plot the width of the central peak of the interference
pattern, which is a measure of the coherence length of
the gas. An increasing width is a good indicator for the
presence of a Mott insulating phase since even a small
Mott insulating domain reduces the coherence length of
the sample, as elucidated in numerical calculations [24].
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FIG. 3 (color online). (a) Width of the first resonance peak in
the spectrum of the Mott insulator. (b) Ratio of the amplitudes
of the second and the first peaks of the spectrum of the Mott
insulator. The error bars mark the error of the Gaussian fits.
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FIG. 2 (color online). The measured excitation spectrum of
an array of 1D gases (V? $ 30ER) is shown in (a) for different
values of Vax;0. The interaction ratios U=J given in brackets are
calculated numerically using a band structure model in the
tight-binding approximation [9]. Spectrum (c) shows the super-
fluid to Mott insulator transition in the 3D case (V? $ Vax;0).
The crossover region between the one- and the three-
dimensional system (V? $ 20ER) is shown in (b).
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The system: the Bose Hubbard model
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Excitations: Microscopic description I

In the Mott insulating phase we find the first resonant
peak for all data sets close to the calculated value of U. A
second peak appears at !1:91" 0:04# times the energy of
the first resonance, somewhat smaller than the value of 2
reported in [1]. This resonance might be attributed to
defects where lattice sites with n $ 1 atom next to sites
with n $ 2 atoms are being excited. For the 1D system
and in the dimensional crossover regime [Figs. 2(a) and
2(b)] a much weaker resonance appears at !2:60" 0:05#
times the energy of the first resonance, which could

indicate higher order processes of two atoms tunneling
simultaneously. In Fig. 3(a) we plot the rms width of the
first resonance in the excitation spectrum of the Mott
insulating phase when fitted by a Gaussian. In Fig. 3(b)
we show the ratio of the amplitudes of the second and the
first peaks. Apparently, in the 1D system the first peak is
wider and the second peak more pronounced as compared
to the 3D situation, which could be an indication of
increased fluctuations in 1D systems.

Compared to the superfluid properties the coherence
properties of the system provide complementary infor-
mation about the state of the gas. They are probed by
studying the matter wave interference pattern [1,21]. Here
we first prepare the array of 1D systems as above but do
not apply our excitation scheme. Instead, after holding the
atoms at the final lattice depth for th $ 30 ms, we in-
crease Vax rapidly (<40 !s) to about 25ER and then
abruptly switch off all optical and magnetic trapping
potentials. This procedure projects the different initial
configurations onto the same Bloch state. To extract the
number of coherent atoms Ncoh from the interference
pattern, the peaks [22] at 0 !hk, "2 !hk, and "4 !hk are fitted
by Gaussians [Fig. 4(b)]. Incoherent atoms give rise to a
broad Gaussian background which dominates for higher
Vax;0. Taking this fit as a measure of the number of in-
coherent atoms Nincoh, we calculate the coherent fraction
fc $ !Ncoh#=!Ncoh % Nincoh#. As shown in Fig. 4(a), fc de-
creases slowly to zero for increasing values of U=J and
appears to be almost independent of the dimensionality.
This coincides with the prediction that for strongly inter-
acting Bose gases in optical lattices the superfluid fraction
can be significantly different from the coherent fraction,
and that the decrease of fc is not a sufficient signature of
entering the Mott insulating phase [23]. In Fig. 4(c) we
plot the width of the central peak of the interference
pattern, which is a measure of the coherence length of
the gas. An increasing width is a good indicator for the
presence of a Mott insulating phase since even a small
Mott insulating domain reduces the coherence length of
the sample, as elucidated in numerical calculations [24].
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FIG. 3 (color online). (a) Width of the first resonance peak in
the spectrum of the Mott insulator. (b) Ratio of the amplitudes
of the second and the first peaks of the spectrum of the Mott
insulator. The error bars mark the error of the Gaussian fits.
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FIG. 2 (color online). The measured excitation spectrum of
an array of 1D gases (V? $ 30ER) is shown in (a) for different
values of Vax;0. The interaction ratios U=J given in brackets are
calculated numerically using a band structure model in the
tight-binding approximation [9]. Spectrum (c) shows the super-
fluid to Mott insulator transition in the 3D case (V? $ Vax;0).
The crossover region between the one- and the three-
dimensional system (V? $ 20ER) is shown in (b).
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Excitations: Microscopic description I

In the Mott insulating phase we find the first resonant
peak for all data sets close to the calculated value of U. A
second peak appears at !1:91" 0:04# times the energy of
the first resonance, somewhat smaller than the value of 2
reported in [1]. This resonance might be attributed to
defects where lattice sites with n $ 1 atom next to sites
with n $ 2 atoms are being excited. For the 1D system
and in the dimensional crossover regime [Figs. 2(a) and
2(b)] a much weaker resonance appears at !2:60" 0:05#
times the energy of the first resonance, which could

indicate higher order processes of two atoms tunneling
simultaneously. In Fig. 3(a) we plot the rms width of the
first resonance in the excitation spectrum of the Mott
insulating phase when fitted by a Gaussian. In Fig. 3(b)
we show the ratio of the amplitudes of the second and the
first peaks. Apparently, in the 1D system the first peak is
wider and the second peak more pronounced as compared
to the 3D situation, which could be an indication of
increased fluctuations in 1D systems.

Compared to the superfluid properties the coherence
properties of the system provide complementary infor-
mation about the state of the gas. They are probed by
studying the matter wave interference pattern [1,21]. Here
we first prepare the array of 1D systems as above but do
not apply our excitation scheme. Instead, after holding the
atoms at the final lattice depth for th $ 30 ms, we in-
crease Vax rapidly (<40 !s) to about 25ER and then
abruptly switch off all optical and magnetic trapping
potentials. This procedure projects the different initial
configurations onto the same Bloch state. To extract the
number of coherent atoms Ncoh from the interference
pattern, the peaks [22] at 0 !hk, "2 !hk, and "4 !hk are fitted
by Gaussians [Fig. 4(b)]. Incoherent atoms give rise to a
broad Gaussian background which dominates for higher
Vax;0. Taking this fit as a measure of the number of in-
coherent atoms Nincoh, we calculate the coherent fraction
fc $ !Ncoh#=!Ncoh % Nincoh#. As shown in Fig. 4(a), fc de-
creases slowly to zero for increasing values of U=J and
appears to be almost independent of the dimensionality.
This coincides with the prediction that for strongly inter-
acting Bose gases in optical lattices the superfluid fraction
can be significantly different from the coherent fraction,
and that the decrease of fc is not a sufficient signature of
entering the Mott insulating phase [23]. In Fig. 4(c) we
plot the width of the central peak of the interference
pattern, which is a measure of the coherence length of
the gas. An increasing width is a good indicator for the
presence of a Mott insulating phase since even a small
Mott insulating domain reduces the coherence length of
the sample, as elucidated in numerical calculations [24].
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FIG. 3 (color online). (a) Width of the first resonance peak in
the spectrum of the Mott insulator. (b) Ratio of the amplitudes
of the second and the first peaks of the spectrum of the Mott
insulator. The error bars mark the error of the Gaussian fits.
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FIG. 2 (color online). The measured excitation spectrum of
an array of 1D gases (V? $ 30ER) is shown in (a) for different
values of Vax;0. The interaction ratios U=J given in brackets are
calculated numerically using a band structure model in the
tight-binding approximation [9]. Spectrum (c) shows the super-
fluid to Mott insulator transition in the 3D case (V? $ Vax;0).
The crossover region between the one- and the three-
dimensional system (V? $ 20ER) is shown in (b).
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Excitations: Microscopic description I

In the Mott insulating phase we find the first resonant
peak for all data sets close to the calculated value of U. A
second peak appears at !1:91" 0:04# times the energy of
the first resonance, somewhat smaller than the value of 2
reported in [1]. This resonance might be attributed to
defects where lattice sites with n $ 1 atom next to sites
with n $ 2 atoms are being excited. For the 1D system
and in the dimensional crossover regime [Figs. 2(a) and
2(b)] a much weaker resonance appears at !2:60" 0:05#
times the energy of the first resonance, which could

indicate higher order processes of two atoms tunneling
simultaneously. In Fig. 3(a) we plot the rms width of the
first resonance in the excitation spectrum of the Mott
insulating phase when fitted by a Gaussian. In Fig. 3(b)
we show the ratio of the amplitudes of the second and the
first peaks. Apparently, in the 1D system the first peak is
wider and the second peak more pronounced as compared
to the 3D situation, which could be an indication of
increased fluctuations in 1D systems.

Compared to the superfluid properties the coherence
properties of the system provide complementary infor-
mation about the state of the gas. They are probed by
studying the matter wave interference pattern [1,21]. Here
we first prepare the array of 1D systems as above but do
not apply our excitation scheme. Instead, after holding the
atoms at the final lattice depth for th $ 30 ms, we in-
crease Vax rapidly (<40 !s) to about 25ER and then
abruptly switch off all optical and magnetic trapping
potentials. This procedure projects the different initial
configurations onto the same Bloch state. To extract the
number of coherent atoms Ncoh from the interference
pattern, the peaks [22] at 0 !hk, "2 !hk, and "4 !hk are fitted
by Gaussians [Fig. 4(b)]. Incoherent atoms give rise to a
broad Gaussian background which dominates for higher
Vax;0. Taking this fit as a measure of the number of in-
coherent atoms Nincoh, we calculate the coherent fraction
fc $ !Ncoh#=!Ncoh % Nincoh#. As shown in Fig. 4(a), fc de-
creases slowly to zero for increasing values of U=J and
appears to be almost independent of the dimensionality.
This coincides with the prediction that for strongly inter-
acting Bose gases in optical lattices the superfluid fraction
can be significantly different from the coherent fraction,
and that the decrease of fc is not a sufficient signature of
entering the Mott insulating phase [23]. In Fig. 4(c) we
plot the width of the central peak of the interference
pattern, which is a measure of the coherence length of
the gas. An increasing width is a good indicator for the
presence of a Mott insulating phase since even a small
Mott insulating domain reduces the coherence length of
the sample, as elucidated in numerical calculations [24].
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FIG. 3 (color online). (a) Width of the first resonance peak in
the spectrum of the Mott insulator. (b) Ratio of the amplitudes
of the second and the first peaks of the spectrum of the Mott
insulator. The error bars mark the error of the Gaussian fits.
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FIG. 2 (color online). The measured excitation spectrum of
an array of 1D gases (V? $ 30ER) is shown in (a) for different
values of Vax;0. The interaction ratios U=J given in brackets are
calculated numerically using a band structure model in the
tight-binding approximation [9]. Spectrum (c) shows the super-
fluid to Mott insulator transition in the 3D case (V? $ Vax;0).
The crossover region between the one- and the three-
dimensional system (V? $ 20ER) is shown in (b).
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Excitations: Microscopic description I

In the Mott insulating phase we find the first resonant
peak for all data sets close to the calculated value of U. A
second peak appears at !1:91" 0:04# times the energy of
the first resonance, somewhat smaller than the value of 2
reported in [1]. This resonance might be attributed to
defects where lattice sites with n $ 1 atom next to sites
with n $ 2 atoms are being excited. For the 1D system
and in the dimensional crossover regime [Figs. 2(a) and
2(b)] a much weaker resonance appears at !2:60" 0:05#
times the energy of the first resonance, which could

indicate higher order processes of two atoms tunneling
simultaneously. In Fig. 3(a) we plot the rms width of the
first resonance in the excitation spectrum of the Mott
insulating phase when fitted by a Gaussian. In Fig. 3(b)
we show the ratio of the amplitudes of the second and the
first peaks. Apparently, in the 1D system the first peak is
wider and the second peak more pronounced as compared
to the 3D situation, which could be an indication of
increased fluctuations in 1D systems.

Compared to the superfluid properties the coherence
properties of the system provide complementary infor-
mation about the state of the gas. They are probed by
studying the matter wave interference pattern [1,21]. Here
we first prepare the array of 1D systems as above but do
not apply our excitation scheme. Instead, after holding the
atoms at the final lattice depth for th $ 30 ms, we in-
crease Vax rapidly (<40 !s) to about 25ER and then
abruptly switch off all optical and magnetic trapping
potentials. This procedure projects the different initial
configurations onto the same Bloch state. To extract the
number of coherent atoms Ncoh from the interference
pattern, the peaks [22] at 0 !hk, "2 !hk, and "4 !hk are fitted
by Gaussians [Fig. 4(b)]. Incoherent atoms give rise to a
broad Gaussian background which dominates for higher
Vax;0. Taking this fit as a measure of the number of in-
coherent atoms Nincoh, we calculate the coherent fraction
fc $ !Ncoh#=!Ncoh % Nincoh#. As shown in Fig. 4(a), fc de-
creases slowly to zero for increasing values of U=J and
appears to be almost independent of the dimensionality.
This coincides with the prediction that for strongly inter-
acting Bose gases in optical lattices the superfluid fraction
can be significantly different from the coherent fraction,
and that the decrease of fc is not a sufficient signature of
entering the Mott insulating phase [23]. In Fig. 4(c) we
plot the width of the central peak of the interference
pattern, which is a measure of the coherence length of
the gas. An increasing width is a good indicator for the
presence of a Mott insulating phase since even a small
Mott insulating domain reduces the coherence length of
the sample, as elucidated in numerical calculations [24].
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FIG. 3 (color online). (a) Width of the first resonance peak in
the spectrum of the Mott insulator. (b) Ratio of the amplitudes
of the second and the first peaks of the spectrum of the Mott
insulator. The error bars mark the error of the Gaussian fits.
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FIG. 2 (color online). The measured excitation spectrum of
an array of 1D gases (V? $ 30ER) is shown in (a) for different
values of Vax;0. The interaction ratios U=J given in brackets are
calculated numerically using a band structure model in the
tight-binding approximation [9]. Spectrum (c) shows the super-
fluid to Mott insulator transition in the 3D case (V? $ Vax;0).
The crossover region between the one- and the three-
dimensional system (V? $ 20ER) is shown in (b).
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Excitations: Microscopic description II
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Excitations: Microscopic description III
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Excitation: Long-wavelength theory
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Where is the emergent physics relativistic?
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Experiments?

In the Mott insulating phase we find the first resonant
peak for all data sets close to the calculated value of U. A
second peak appears at !1:91" 0:04# times the energy of
the first resonance, somewhat smaller than the value of 2
reported in [1]. This resonance might be attributed to
defects where lattice sites with n $ 1 atom next to sites
with n $ 2 atoms are being excited. For the 1D system
and in the dimensional crossover regime [Figs. 2(a) and
2(b)] a much weaker resonance appears at !2:60" 0:05#
times the energy of the first resonance, which could

indicate higher order processes of two atoms tunneling
simultaneously. In Fig. 3(a) we plot the rms width of the
first resonance in the excitation spectrum of the Mott
insulating phase when fitted by a Gaussian. In Fig. 3(b)
we show the ratio of the amplitudes of the second and the
first peaks. Apparently, in the 1D system the first peak is
wider and the second peak more pronounced as compared
to the 3D situation, which could be an indication of
increased fluctuations in 1D systems.

Compared to the superfluid properties the coherence
properties of the system provide complementary infor-
mation about the state of the gas. They are probed by
studying the matter wave interference pattern [1,21]. Here
we first prepare the array of 1D systems as above but do
not apply our excitation scheme. Instead, after holding the
atoms at the final lattice depth for th $ 30 ms, we in-
crease Vax rapidly (<40 !s) to about 25ER and then
abruptly switch off all optical and magnetic trapping
potentials. This procedure projects the different initial
configurations onto the same Bloch state. To extract the
number of coherent atoms Ncoh from the interference
pattern, the peaks [22] at 0 !hk, "2 !hk, and "4 !hk are fitted
by Gaussians [Fig. 4(b)]. Incoherent atoms give rise to a
broad Gaussian background which dominates for higher
Vax;0. Taking this fit as a measure of the number of in-
coherent atoms Nincoh, we calculate the coherent fraction
fc $ !Ncoh#=!Ncoh % Nincoh#. As shown in Fig. 4(a), fc de-
creases slowly to zero for increasing values of U=J and
appears to be almost independent of the dimensionality.
This coincides with the prediction that for strongly inter-
acting Bose gases in optical lattices the superfluid fraction
can be significantly different from the coherent fraction,
and that the decrease of fc is not a sufficient signature of
entering the Mott insulating phase [23]. In Fig. 4(c) we
plot the width of the central peak of the interference
pattern, which is a measure of the coherence length of
the gas. An increasing width is a good indicator for the
presence of a Mott insulating phase since even a small
Mott insulating domain reduces the coherence length of
the sample, as elucidated in numerical calculations [24].
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FIG. 3 (color online). (a) Width of the first resonance peak in
the spectrum of the Mott insulator. (b) Ratio of the amplitudes
of the second and the first peaks of the spectrum of the Mott
insulator. The error bars mark the error of the Gaussian fits.
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FIG. 2 (color online). The measured excitation spectrum of
an array of 1D gases (V? $ 30ER) is shown in (a) for different
values of Vax;0. The interaction ratios U=J given in brackets are
calculated numerically using a band structure model in the
tight-binding approximation [9]. Spectrum (c) shows the super-
fluid to Mott insulator transition in the 3D case (V? $ Vax;0).
The crossover region between the one- and the three-
dimensional system (V? $ 20ER) is shown in (b).
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Experiments?

In the Mott insulating phase we find the first resonant
peak for all data sets close to the calculated value of U. A
second peak appears at !1:91" 0:04# times the energy of
the first resonance, somewhat smaller than the value of 2
reported in [1]. This resonance might be attributed to
defects where lattice sites with n $ 1 atom next to sites
with n $ 2 atoms are being excited. For the 1D system
and in the dimensional crossover regime [Figs. 2(a) and
2(b)] a much weaker resonance appears at !2:60" 0:05#
times the energy of the first resonance, which could

indicate higher order processes of two atoms tunneling
simultaneously. In Fig. 3(a) we plot the rms width of the
first resonance in the excitation spectrum of the Mott
insulating phase when fitted by a Gaussian. In Fig. 3(b)
we show the ratio of the amplitudes of the second and the
first peaks. Apparently, in the 1D system the first peak is
wider and the second peak more pronounced as compared
to the 3D situation, which could be an indication of
increased fluctuations in 1D systems.

Compared to the superfluid properties the coherence
properties of the system provide complementary infor-
mation about the state of the gas. They are probed by
studying the matter wave interference pattern [1,21]. Here
we first prepare the array of 1D systems as above but do
not apply our excitation scheme. Instead, after holding the
atoms at the final lattice depth for th $ 30 ms, we in-
crease Vax rapidly (<40 !s) to about 25ER and then
abruptly switch off all optical and magnetic trapping
potentials. This procedure projects the different initial
configurations onto the same Bloch state. To extract the
number of coherent atoms Ncoh from the interference
pattern, the peaks [22] at 0 !hk, "2 !hk, and "4 !hk are fitted
by Gaussians [Fig. 4(b)]. Incoherent atoms give rise to a
broad Gaussian background which dominates for higher
Vax;0. Taking this fit as a measure of the number of in-
coherent atoms Nincoh, we calculate the coherent fraction
fc $ !Ncoh#=!Ncoh % Nincoh#. As shown in Fig. 4(a), fc de-
creases slowly to zero for increasing values of U=J and
appears to be almost independent of the dimensionality.
This coincides with the prediction that for strongly inter-
acting Bose gases in optical lattices the superfluid fraction
can be significantly different from the coherent fraction,
and that the decrease of fc is not a sufficient signature of
entering the Mott insulating phase [23]. In Fig. 4(c) we
plot the width of the central peak of the interference
pattern, which is a measure of the coherence length of
the gas. An increasing width is a good indicator for the
presence of a Mott insulating phase since even a small
Mott insulating domain reduces the coherence length of
the sample, as elucidated in numerical calculations [24].
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FIG. 3 (color online). (a) Width of the first resonance peak in
the spectrum of the Mott insulator. (b) Ratio of the amplitudes
of the second and the first peaks of the spectrum of the Mott
insulator. The error bars mark the error of the Gaussian fits.
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FIG. 2 (color online). The measured excitation spectrum of
an array of 1D gases (V? $ 30ER) is shown in (a) for different
values of Vax;0. The interaction ratios U=J given in brackets are
calculated numerically using a band structure model in the
tight-binding approximation [9]. Spectrum (c) shows the super-
fluid to Mott insulator transition in the 3D case (V? $ Vax;0).
The crossover region between the one- and the three-
dimensional system (V? $ 20ER) is shown in (b).
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More models: more amplitude modes
{Ti, T, U(1)} {Ti, T, U(1)}
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Chiral Bosonic Mott Insulator on the Frustrated Triangular Lattice
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We study the superfluid and insulating phases of interacting bosons on the triangular lattice with an inverted
dispersion, corresponding to frustrated hopping between sites. The resulting single-particle dispersion has mul-
tiple minima at nonzero wavevectors in momentum space, in contrast to the unique zero-wavevector minimum of
the unfrustrated problem. As a consequence, the superfluid phase is unstable against developing additonal chiral
order that breaks time reversal (T ) and parity (P) symmetries by forming a condensate at nonzero wavevector.
We demonstrate that the loss of superfluidity can lead to an even more exotic phase, the chiral Mott insulator,
with nontrivial current order that breaks T ,P . These results are obtained via variational estimates, as well as
a combination of bosonization and DMRG of triangular ladders, which taken together permit a fairly complete
characterization of the phase diagram. We discuss the relevance of these phases to optical lattice experiments,
as well as signatures of chiral symmetry breaking in time-of-flight images.

The Mott insulating phase of ultracold atoms in an opti-
cal lattice is the simplest example of a ground state of un-
condensed bosons and, to date, the only one demonstrated
experimentally [1]. This phase however is not intrinsically
quantum-mechanical as it can be adiabatically connected to a
“classical” state of decoupled sites with definite occupation.
Therefore, it is natural to ask how bosons can insulate while
retaining non-trivial quantum correlations [2] under realistic
conditions. A compelling setting where this question may be
addressed is in optical lattice systems that realize complex su-
perfluid states [3–5]. In these experiments, a special band
dispersion – achieved via meta-stable occupation of higher
bands [3, 4] or by rapid lattice modulation [5] – leads to con-
densation at finite non-trivial momenta. The resulting super-
fluids spontaneously break time reversal and crystalline space
group symmetries. The possibility of nontrivial insulating be-
havior then turns on the manner in which superfluidity is lost
as the lattice depth is increased at fixed, integer filling.

In one route, all symmetries are restored simultaneously
and the system transitions directly to a featureless Mott insula-
tor. A more natural and intriguing possibility, however, is that
time reversal symmetry remains broken across the superfluid
transition as U(1) phase symmetry is restored. This scenario
implies the existence of a correlated time reversal-breaking
insulator: a chiral Mott insulator. Time reversal symmetry is
restored only for a deeper lattice, via a second transition.

A similar scenario was proposed some time ago for the clas-
sical, temperature-tuned transition from a two dimensional
time-reversal breaking superfluid to a thermal gas [6]. Monte
Carlo simulations show that while superfluidity is lost at the
usual Berezinskii-Kosterlitz-Thouless (BKT) transition, time
reversal symmetry is restored only at a higher temperature
Ising transition. The intermediate chiral liquid phase is the
classical analogue of a chiral Mott insulator. Since the two
dimensional classical problem is formally equivalent to a one
dimensional quantum system at zero temperature it is natural
to expect that a chiral Mott ground state can be stabilized, at
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FIG. 1. Bosons on the Frustrated Triangular Lattice. (a) Lat-
tice, coordinate system and sample current pattern in the �MI; (b)
single-particle dispersion ⇠k, with minima at the K,K0 points of
the BZ; (c) Variational mean-field phase diagram showing �SF, �MI
and MI phases tuned by the on site repulsion U and nearest neighbor
repulsion V ; (d) Momentum distribution hn̂ki for the chiral phases.

least in one dimension. Indeed, Dhar et. al. [7, 8] examined
just such a state on a two-leg square ladder. A closely related
gapped spin-current state was recently considered as a candi-
date for the 1/3 magnetization plateau of a highly anisotropic
triangular antiferromagnet [9]. In spite of this recent activity,
whether a chiral Mott phase can exist in an isotropic system
in two or higher dimensions remains open.

Here, we answer this question in the affirmative, by inves-
tigating an interacting boson model with a positive nearest-
neighbor hopping amplitude t on the triangular lattice. Be-
cause of the positive hopping, the band minima are at the in-
equivalent momenta K and K 0

= �K at the corners of the
hexagonal Brillouin zone (BZ). A condensate established at
either of these momenta breaks symmetry under time reversal,
parity, and 60

�
rotations, while preserving the discrete lattice

translational symmetry: it is a chiral superfluid. We map out
the phase diagram of this model in Fig. 1 as a function of inter-
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We study the superfluid and insulating phases of interacting bosons on the triangular lattice with an inverted
dispersion, corresponding to frustrated hopping between sites. The resulting single-particle dispersion has mul-
tiple minima at nonzero wavevectors in momentum space, in contrast to the unique zero-wavevector minimum of
the unfrustrated problem. As a consequence, the superfluid phase is unstable against developing additonal chiral
order that breaks time reversal (T ) and parity (P) symmetries by forming a condensate at nonzero wavevector.
We demonstrate that the loss of superfluidity can lead to an even more exotic phase, the chiral Mott insulator,
with nontrivial current order that breaks T ,P . These results are obtained via variational estimates, as well as
a combination of bosonization and DMRG of triangular ladders, which taken together permit a fairly complete
characterization of the phase diagram. We discuss the relevance of these phases to optical lattice experiments,
as well as signatures of chiral symmetry breaking in time-of-flight images.

The Mott insulating phase of ultracold atoms in an opti-
cal lattice is the simplest example of a ground state of un-
condensed bosons and, to date, the only one demonstrated
experimentally [1]. This phase however is not intrinsically
quantum-mechanical as it can be adiabatically connected to a
“classical” state of decoupled sites with definite occupation.
Therefore, it is natural to ask how bosons can insulate while
retaining non-trivial quantum correlations [2] under realistic
conditions. A compelling setting where this question may be
addressed is in optical lattice systems that realize complex su-
perfluid states [3–5]. In these experiments, a special band
dispersion – achieved via meta-stable occupation of higher
bands [3, 4] or by rapid lattice modulation [5] – leads to con-
densation at finite non-trivial momenta. The resulting super-
fluids spontaneously break time reversal and crystalline space
group symmetries. The possibility of nontrivial insulating be-
havior then turns on the manner in which superfluidity is lost
as the lattice depth is increased at fixed, integer filling.

In one route, all symmetries are restored simultaneously
and the system transitions directly to a featureless Mott insula-
tor. A more natural and intriguing possibility, however, is that
time reversal symmetry remains broken across the superfluid
transition as U(1) phase symmetry is restored. This scenario
implies the existence of a correlated time reversal-breaking
insulator: a chiral Mott insulator. Time reversal symmetry is
restored only for a deeper lattice, via a second transition.

A similar scenario was proposed some time ago for the clas-
sical, temperature-tuned transition from a two dimensional
time-reversal breaking superfluid to a thermal gas [6]. Monte
Carlo simulations show that while superfluidity is lost at the
usual Berezinskii-Kosterlitz-Thouless (BKT) transition, time
reversal symmetry is restored only at a higher temperature
Ising transition. The intermediate chiral liquid phase is the
classical analogue of a chiral Mott insulator. Since the two
dimensional classical problem is formally equivalent to a one
dimensional quantum system at zero temperature it is natural
to expect that a chiral Mott ground state can be stabilized, at
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least in one dimension. Indeed, Dhar et. al. [7, 8] examined
just such a state on a two-leg square ladder. A closely related
gapped spin-current state was recently considered as a candi-
date for the 1/3 magnetization plateau of a highly anisotropic
triangular antiferromagnet [9]. In spite of this recent activity,
whether a chiral Mott phase can exist in an isotropic system
in two or higher dimensions remains open.

Here, we answer this question in the affirmative, by inves-
tigating an interacting boson model with a positive nearest-
neighbor hopping amplitude t on the triangular lattice. Be-
cause of the positive hopping, the band minima are at the in-
equivalent momenta K and K 0

= �K at the corners of the
hexagonal Brillouin zone (BZ). A condensate established at
either of these momenta breaks symmetry under time reversal,
parity, and 60

�
rotations, while preserving the discrete lattice

translational symmetry: it is a chiral superfluid. We map out
the phase diagram of this model in Fig. 1 as a function of inter-
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We study the superfluid and insulating phases of interacting bosons on the triangular lattice with an inverted
dispersion, corresponding to frustrated hopping between sites. The resulting single-particle dispersion has mul-
tiple minima at nonzero wavevectors in momentum space, in contrast to the unique zero-wavevector minimum of
the unfrustrated problem. As a consequence, the superfluid phase is unstable against developing additonal chiral
order that breaks time reversal (T ) and parity (P) symmetries by forming a condensate at nonzero wavevector.
We demonstrate that the loss of superfluidity can lead to an even more exotic phase, the chiral Mott insulator,
with nontrivial current order that breaks T ,P . These results are obtained via variational estimates, as well as
a combination of bosonization and DMRG of triangular ladders, which taken together permit a fairly complete
characterization of the phase diagram. We discuss the relevance of these phases to optical lattice experiments,
as well as signatures of chiral symmetry breaking in time-of-flight images.

The Mott insulating phase of ultracold atoms in an opti-
cal lattice is the simplest example of a ground state of un-
condensed bosons and, to date, the only one demonstrated
experimentally [1]. This phase however is not intrinsically
quantum-mechanical as it can be adiabatically connected to a
“classical” state of decoupled sites with definite occupation.
Therefore, it is natural to ask how bosons can insulate while
retaining non-trivial quantum correlations [2] under realistic
conditions. A compelling setting where this question may be
addressed is in optical lattice systems that realize complex su-
perfluid states [3–5]. In these experiments, a special band
dispersion – achieved via meta-stable occupation of higher
bands [3, 4] or by rapid lattice modulation [5] – leads to con-
densation at finite non-trivial momenta. The resulting super-
fluids spontaneously break time reversal and crystalline space
group symmetries. The possibility of nontrivial insulating be-
havior then turns on the manner in which superfluidity is lost
as the lattice depth is increased at fixed, integer filling.

In one route, all symmetries are restored simultaneously
and the system transitions directly to a featureless Mott insula-
tor. A more natural and intriguing possibility, however, is that
time reversal symmetry remains broken across the superfluid
transition as U(1) phase symmetry is restored. This scenario
implies the existence of a correlated time reversal-breaking
insulator: a chiral Mott insulator. Time reversal symmetry is
restored only for a deeper lattice, via a second transition.

A similar scenario was proposed some time ago for the clas-
sical, temperature-tuned transition from a two dimensional
time-reversal breaking superfluid to a thermal gas [6]. Monte
Carlo simulations show that while superfluidity is lost at the
usual Berezinskii-Kosterlitz-Thouless (BKT) transition, time
reversal symmetry is restored only at a higher temperature
Ising transition. The intermediate chiral liquid phase is the
classical analogue of a chiral Mott insulator. Since the two
dimensional classical problem is formally equivalent to a one
dimensional quantum system at zero temperature it is natural
to expect that a chiral Mott ground state can be stabilized, at
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least in one dimension. Indeed, Dhar et. al. [7, 8] examined
just such a state on a two-leg square ladder. A closely related
gapped spin-current state was recently considered as a candi-
date for the 1/3 magnetization plateau of a highly anisotropic
triangular antiferromagnet [9]. In spite of this recent activity,
whether a chiral Mott phase can exist in an isotropic system
in two or higher dimensions remains open.

Here, we answer this question in the affirmative, by inves-
tigating an interacting boson model with a positive nearest-
neighbor hopping amplitude t on the triangular lattice. Be-
cause of the positive hopping, the band minima are at the in-
equivalent momenta K and K 0

= �K at the corners of the
hexagonal Brillouin zone (BZ). A condensate established at
either of these momenta breaks symmetry under time reversal,
parity, and 60
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rotations, while preserving the discrete lattice

translational symmetry: it is a chiral superfluid. We map out
the phase diagram of this model in Fig. 1 as a function of inter-
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We study the superfluid and insulating phases of interacting bosons on the triangular lattice with an inverted
dispersion, corresponding to frustrated hopping between sites. The resulting single-particle dispersion has mul-
tiple minima at nonzero wavevectors in momentum space, in contrast to the unique zero-wavevector minimum of
the unfrustrated problem. As a consequence, the superfluid phase is unstable against developing additonal chiral
order that breaks time reversal (T ) and parity (P) symmetries by forming a condensate at nonzero wavevector.
We demonstrate that the loss of superfluidity can lead to an even more exotic phase, the chiral Mott insulator,
with nontrivial current order that breaks T ,P . These results are obtained via variational estimates, as well as
a combination of bosonization and DMRG of triangular ladders, which taken together permit a fairly complete
characterization of the phase diagram. We discuss the relevance of these phases to optical lattice experiments,
as well as signatures of chiral symmetry breaking in time-of-flight images.

The Mott insulating phase of ultracold atoms in an opti-
cal lattice is the simplest example of a ground state of un-
condensed bosons and, to date, the only one demonstrated
experimentally [1]. This phase however is not intrinsically
quantum-mechanical as it can be adiabatically connected to a
“classical” state of decoupled sites with definite occupation.
Therefore, it is natural to ask how bosons can insulate while
retaining non-trivial quantum correlations [2] under realistic
conditions. A compelling setting where this question may be
addressed is in optical lattice systems that realize complex su-
perfluid states [3–5]. In these experiments, a special band
dispersion – achieved via meta-stable occupation of higher
bands [3, 4] or by rapid lattice modulation [5] – leads to con-
densation at finite non-trivial momenta. The resulting super-
fluids spontaneously break time reversal and crystalline space
group symmetries. The possibility of nontrivial insulating be-
havior then turns on the manner in which superfluidity is lost
as the lattice depth is increased at fixed, integer filling.

In one route, all symmetries are restored simultaneously
and the system transitions directly to a featureless Mott insula-
tor. A more natural and intriguing possibility, however, is that
time reversal symmetry remains broken across the superfluid
transition as U(1) phase symmetry is restored. This scenario
implies the existence of a correlated time reversal-breaking
insulator: a chiral Mott insulator. Time reversal symmetry is
restored only for a deeper lattice, via a second transition.

A similar scenario was proposed some time ago for the clas-
sical, temperature-tuned transition from a two dimensional
time-reversal breaking superfluid to a thermal gas [6]. Monte
Carlo simulations show that while superfluidity is lost at the
usual Berezinskii-Kosterlitz-Thouless (BKT) transition, time
reversal symmetry is restored only at a higher temperature
Ising transition. The intermediate chiral liquid phase is the
classical analogue of a chiral Mott insulator. Since the two
dimensional classical problem is formally equivalent to a one
dimensional quantum system at zero temperature it is natural
to expect that a chiral Mott ground state can be stabilized, at
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least in one dimension. Indeed, Dhar et. al. [7, 8] examined
just such a state on a two-leg square ladder. A closely related
gapped spin-current state was recently considered as a candi-
date for the 1/3 magnetization plateau of a highly anisotropic
triangular antiferromagnet [9]. In spite of this recent activity,
whether a chiral Mott phase can exist in an isotropic system
in two or higher dimensions remains open.

Here, we answer this question in the affirmative, by inves-
tigating an interacting boson model with a positive nearest-
neighbor hopping amplitude t on the triangular lattice. Be-
cause of the positive hopping, the band minima are at the in-
equivalent momenta K and K 0

= �K at the corners of the
hexagonal Brillouin zone (BZ). A condensate established at
either of these momenta breaks symmetry under time reversal,
parity, and 60
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▪ Cold atoms host and amplitude mode close to the 
superfluid to Mott transition. 

▪ One can understand this mode in the framework of an 
emergent “Higgs” particle. 

▪ By (time-) modulating the distance to the critical point one 
should be able to excite this mode. 

▪ The emergent Lorentz invariance has a profound impact 
on the low energy behaviour of the system. 

Conclusions
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▪ Stability of the cold-atoms Higgs mode 
▪ Can one measure this mode unambiguously 
▪ Hall conductivity in the presence of more broken 

symmetries: super-solids 
▪ Chiral Mott insulator: good microscopic understanding of 

the mode softening

(Once) Open questions


