Transmission and reflection properties of Nambu-Goldstone modes

Yusuke Kato (Dept. Basic Science, The University of Tokyo)

collaborator: Shohei Watabe (Dept. Physics, Tokyo University of Science)
Yoji Ohashi (Dept. Physics, Keio University)

Nambu-Goldstone modes in condensed matter physics

From "Basic notions of condensed matter physics "(P. W. Anderson)

TABLE I: MASTER TABLE OF BROKEN-SYMMETRY PHENOMENA

	Phenomenon	High Phase	Low Phase	Order Parameter (constant of motion)		Order-Paran Dimensional T→0		Common Transition Type (Can Always Be First Order	"Goldstone Bosons" (or "Higgs" Bosons)	Fluctuations	Collective Hydrody- namic Modes	Generalized Rigidity Phenomenon	Long-Range Forces Due to General . Rigidity	Singularities
	Ferroelec- tricity (Pyroelec- tricity)	Non-Polar crystal	Polar crystal	P	(no)		1 or 3	2nd or 1st nearly 2nd	no (optical phonons)	Soft Modes	No	Ferroelectric hysteresis	No	Domain walls (thin)
	Ferromag- netism	Paramagnet	Ferromagnet	→ M	(yes)	1,often ≈ 3	1 or 3	2nd (time reversal)	Spin waves, one branch $\omega \propto k^2 (+ \text{const})$	Spin waves	No ?	Permanent magnetism: hysteresis	Suhl-Nakamura	Domain walls (very mobile, = 3 dim.)
•	Antiferro- magnetism	Paramagnet	Antiferro- magnet	→ M _{sublattice}	(no)	1,often ≈ 3	1 or 3	2nd (or first)	Spin waves, 2 branches $\omega \propto \sqrt{k^2 + \text{const}}$ ("Fermions" in metal case?		No?	subtle effects in A.F. resonance	Suhi-Nakamura	Domain walls
	Supercon- ductivity	Normal Metal	Super- conductor	$\langle \psi_{\sigma}^* \psi_{-\sigma}^* \rangle$ = Fe	(no)	2	2	2nd (Gauge; no 3rd order terms)	no (plasmons)	diffusive fluctuations of gap	Mostly not	super conductivity	No: Penetration depth	Flux lines (or normal domains in Type I)
•	He II	Normal liquid	Super- fluid	(ψ)	(no)	2	2	2nd (Gauge; no 3rd order terms)	phonons (1 branch)	diffusive fluctuations of ⟨ψ⟩	2nd sound, espe- cially	super- fluidity	Yes, vortex lines unscreened	vortex lines
	Crystal	liquid	solid	ρ _G , all G on rec lattice	(no)	3(2 orient, 1 phase) at least	3	1st	yes: 3 kinds 2 transverse 1 longitudin		2nd sound in solid, etc.	rigidity	Yes: clasticity effects	disloca- tions, grain boundaries, points (vacancles, interstitials)

Recent progress in Nambu-Goldstone modes

Counting rule, dispersion in non-relativistic case:
 Nambu(04)

```
Watanabe-Brauner(11),
Watanabe-Murayama(12), Hidaka(12),
```

 Generalization (in the presence of topological defects): Nitta-Kobayashi-Takahashi (13,14)

Tunneling phenomena

In real materials, there are *extrinsic* objects (impurities, interstitials and...), which can scatter the Nambu-Goldstone modes.

As a simple scattering(collision) process, we discuss transmission-reflection property of collective modes against a potential barrier in superfluid, Heisenberg magnets and phonon.

Transmission-reflection property of Bogoliubov mode in weakly interacting Bosons

Gross-Pitaevskii equation for condensate wave function Ψ

Kovrhizhin2001, Kagan et al 2003

$$(H_0 + g|\Psi|^2)\Psi = 0, \quad H_0 = -\frac{\hbar^2 \nabla^2}{2m} - \mu$$

Bogoliubov equation for wave functions of excitations u, v

$$\begin{pmatrix} H_0 + 2g|\Psi|^2 & -g(\Psi)^2 \\ g(\Psi^*)^2 & -H_0 - 2g|\Psi|^2 \end{pmatrix} \begin{pmatrix} u(x) \\ v(x) \end{pmatrix} = \epsilon \begin{pmatrix} u(x) \\ v(x) \end{pmatrix}$$

$$|\Psi(x)|$$

Transmission-reflection property of Bogoliubov mode in weakly interacting Bosons

Gross-Pitaevskii equation for condensate wave function Ψ

$$(H_0 + g|\Psi(\underline{x})|^2 + \underline{V(x)})\Psi(x) = 0, \ H_0 = -\frac{\hbar^2 \nabla^2}{2m} - \mu$$

Bogoliubov equation for wave function of excitations u, v

Kovrhizhin2001, Kagan et al 2003 Danshita et al. 05, 06 Danshita-Tsuchiya. 07

Kato et al. 08 Ohashi-Tsuchiya 08

Tsuchiya-Ohashi 08

Takahashi-Kato 09

Watabe et al. 11, 12

$$\begin{pmatrix} H_0 + 2g|\Psi(\underline{x})|^2 + \underline{V(x)} & -g(\Psi(\underline{x}))^2 \\ g(\Psi^*(x))^2 & -H_0 - 2g|\Psi(\underline{x})|^2 - \underline{V(x)} \end{pmatrix} \begin{pmatrix} u(x) \\ v(x) \end{pmatrix} = \epsilon \begin{pmatrix} u(x) \\ v(x) \end{pmatrix}$$

Anomalous Tunneling effect (Kovrizhin 2001, Kagan et al 2003). 05, 06

= Perfect transmission in low energy limit

07
Kato et al. 08
Ohashi-Tsuchiya 08
Tsuchiya-Ohashi 08
Takahashi-Kato 09
Watabe et al. 11, 12

Danshita-Tsuchiya.

Single particle in quantum mechanics

Key to proof "Fetter's solution" (Fetter1972)

When
$$\varepsilon \to 0$$
 $\left(\begin{array}{c} u(r) \\ v(r) \end{array} \right) = \left(\begin{array}{c} \Psi(r) \\ \Psi^*(r) \end{array} \right)$ yields a solution of Bogoliubov eq.

"u,v→Ψ" scenario

$$\lim_{\epsilon o 0} inom{u}{v} \propto inom{\Psi}{\Psi^*}$$
 Perfect transmission in low energy limit

$$\{H_0(\mathbf{r}) + g|\Psi(\mathbf{r})|^2\}\Psi(\mathbf{r}) = 0$$
 $H_0(\mathbf{r}) = -\frac{\hbar^2}{2m}\nabla^2 + V_{\text{ext}}(\mathbf{r}) - \mu$

Gross-Pitaevskii equation

$$\begin{pmatrix} H_0(\mathbf{r}) + 2g|\Psi(\mathbf{r})|^2 & -g[\Psi(\mathbf{r})]^2 \\ g[\Psi^*(\mathbf{r})]^2 & -H_0(\mathbf{r}) - 2g|\Psi(\mathbf{r})|^2 \end{pmatrix} \begin{pmatrix} u_i(\mathbf{r}) \\ v_i(\mathbf{r}) \end{pmatrix} = \varepsilon_i \begin{pmatrix} u_i(\mathbf{r}) \\ v_i(\mathbf{r}) \end{pmatrix}$$

Bogoliubov equation for $u_i(\mathbf{r}), v_i(\mathbf{r})$

Q.

• Is anomalous tunneling *specific* to Bogoliubov mode in *superfluids*?

Α.

 Our conclusion: Anomalous tunneling is a common property of Nambu-Goldstone modes under potentials preserving a continuous symmetry.

Anomalous Tunneling in Spin wave in Heisenberg models

Transmission of spin wave in classical Heisenberg ferromagnet (3D)

Transmission of spin wave in classical Heisenberg antiferromagnet(A-type:3D)

Transmission of spin wave in classical Heisenberg antiferromagnet(G-type:3D)

Direction of Incident wave

Transmission of spin wave in classical Heisenberg antiferromagnet(G'-type; 2D)

Short Discussion I

In the presence of weak bonds,
 spin symmetries of Hamiltonian and ground
 state are the same as those in bulk.

Nambu-Goldstone modes exist.

Perfect transmission occurs in long-wavelength limit.

Short Discussion II

(perfect reflection in Ferro and A-type Antiferro in the presence of local **B**)

 spin symmetry of Hamiltonian G reduces from SO(3) to SO(2) (spin rotation around the axis parallel to local B)

Spin symmetries H of ground states in Ferromagnet and A-type antiferromagnet are the same as those of Hamiltonian (i.e. G=H)

⇒ No spontaneous symmetry breaking, No Nambu-Goldstone modes

Hamiltonian and GS are invariant w. r. t. spin rotation

Short Discussion III

(perfect transmission in G-type Antiferro in the presence of local **B**)

 spin symmetry of Hamiltonian G is SO(2) (spin rotation around the axis parallel to local B)

GS in G-type antiferro is not invariant w. r. t. the spin rotation (i.e. G/H=SO(2))

⇒SO(2) symmetry broken spontaneously, a Nambu-Goldstone mode exists

Hamiltonian is invariant but GS is not w. r. t. rotation

More Discussion in terms of conservation law

Simplest case: phonon

Lagrangian:

$$\mathcal{L} = \frac{m(x)}{2} \left(\frac{\partial u(x,t)}{\partial t} \right)^2 - \frac{c(x)}{2} \left(\frac{\partial u(x,t)}{\partial x} \right)^2 - \frac{V(x)u(x,t)^2}{2}$$

Note that the spatial dependent m(x) and c(x) do not break the translational invariance of \mathcal{L} with $u(x) \to u(x) + a$ while the presence of V(x) does.

Eq. of Motion:

)u(x).

$$\frac{\partial}{\partial t} \left(m(x) \frac{\partial u(x,t)}{\partial t} \right) + \frac{\partial}{\partial x} \left(- \left(c(x) \frac{\partial u(x,t)}{\partial x} \right) \right) = -V(x) u(x)$$
"charge"
"current"

which expresses the conservation of Noether current when V(x) = 0.

Setting
$$u(x,t) = u_k(x) \exp(-i\omega t)$$
,

$$\frac{d}{dx}\left(c(x)\frac{du_k(x)}{dx}\right) = (-\omega^2 m(x) + V(x))u_k(x), \text{ with } \omega = (c/m)^{\frac{1}{2}}k, k > 0$$

$$\frac{\partial j(x)}{\partial x} = \begin{cases} O(\omega^2) = O(k^2), \ V(x) = 0\\ O(1), \qquad V(x) \neq 0 \end{cases}$$

$$u'_{k}(x_{1}) = u'_{k}(x_{2}) + \frac{1}{c} \int_{x_{2}}^{x_{1}} (-\omega^{2} m(x') + V(x')) u_{k}(x') dx'$$

$$u_{k}(x_{1}) = u_{k}(x_{2}) + I_{c} u'_{k}(x_{2}) \qquad I_{c} = \left(\int_{x_{2}}^{x_{1}} \frac{cdx'}{c(x')}\right)$$

$$+ \int_{x_{2}}^{x_{1}} \left(\frac{1}{c(x')} \int_{x_{2}}^{x'} (-\omega^{2} m(x'') + V(x'')) u_{k}(x'') dx''\right) dx'$$

When
$$V(x) = 0$$
,
$$u_k(x_1) = u_k(x_2) + O(k)$$
$$u'_k(x_1) = u'_k(x_2) + O(k^2)$$
$$t(k \to 0) = 1$$

When
$$V(x) \neq 0$$
, $u_k(x_1) = u_k(x_2) + O(1)$ $t(k \to 0) = 0$ $u'_k(x_1) = u'_k(x_2) + O(1)$

Short Summary (perfect transmission of phonon)

- Existence/absence of Noether current (Conservation law)
- ➤ Long-wavelength(small k)

$$\frac{\partial j(x)}{\partial x} = \begin{cases} \frac{O(\omega^2) = O(k^2), \ V(x) = 0}{O(1), \ V(x) \neq 0} \end{cases}$$

$$\frac{t(k \to 0) = 1}{t(k \to 0) = 0} \qquad V(x) = 0$$

Note: Constancy of Noether current is crucial for perfect transmission

Ferro spin wave1

Eq. of Motion:

$$\frac{\partial S(x,t)}{\partial t} = -\frac{\partial}{\partial x} \left(a^2 J(x) \frac{\partial}{\partial x} S(x,t) \right) \times S(x,t) + B(x) \times S(x,t)$$

Linearization (spin wave approximation) $\left(\frac{\partial S(r,t)}{\partial t} = S(r,t) \times \nabla^2 S(r,t)\right)$

$$S_j(t) = \sqrt{S^2 - (\delta S_j(t))^2} e_z + \delta S_j(t) \sim S e_z + \delta S_j(t) \qquad \mbox{Landau-Lifshitz} \\ \mbox{eq.}$$

Eq. of Motion of spin wave

$$\frac{\partial}{\partial t} \left(i\delta S^{+}(x,t) \right) + \frac{\partial}{\partial x} \left(a^{2}SJ(x) \frac{\partial}{\partial x} \delta S^{+}(x,t) \right) = B(x)\delta S^{+}(x,t)$$
"charge" "current" "source"

has the form of conservation law when B=0

Ferro spin wave2

phonon	ferromagnetic spin wave					
	Setting $\delta S^+(x,t) = S^+(x,\omega) \exp(-i\omega t)$					
$\frac{d}{dx} \left(\underline{c(x)} \frac{du_k(x)}{dx} \right) = (V(x) - \omega^2 m(x)) u_k(x)$ $= (\underline{V(x)} - O(k^2)) u_k(x)$	$\frac{\partial}{\partial x} \left(\underline{a^2 S J(x)} \frac{\partial}{\partial x} S^+(x, \omega) \right) = (B(x) - \omega) S^+(x, \omega)$ $= \left(\underline{B(x)} - O(k^2) \right) S^+(x; \omega)$					
$\omega = (c/m)^{\frac{1}{2}} k $ linear dispersion in bulk	$\omega = JSk^2$ quadratic dispersion in bulk					
Order parameter; not conserved	Order parameter; conserved quantity					

Conclusion:

- ➤ The results on BECs and Heisenberg model strongly suggest that anomalous tunneling inherent to Nambu-Goldstone modes in symmetry broken states.
- ➤ Perfect transmission of Nambu-Goldstone mode resulting from the spontaneously breaking of symmetry G occurs when the potential of scatterer preserves a continuous symmetry.
- Perfect transmission can be attributed to constancy of Noether currents at low energy limit.