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 Particle	  physics:	  	  	  Higgs	  boson	  

Condensed	  matter	  physics:	  	  superconductors,	  superfluids,	  
	  	  	  	  magnet,	  semiconductor,	  nano-‐materials,	  etc.	  	  

Cold	  atoms:	  	  superfluid-‐Mott	  transition	  etc.	  	  

1.  Introduction 



Non-‐Abelian	  gauge	  potential	  	  

Example	  



Non-‐Abelian	  gauge	  potential	  	  

Cold	  atoms	  :	  	  spin-‐orbit	  coupling	   Nature	  471,	  83	  (2011)	  

2.  Higgs in cold atoms 



Cold atoms :  SO coupling 

Berry	  gauge	  potential	  

Effective	  gauge	  potential	  

F.J. Huang, Q.H. Chen, W.M. Liu, Phys. Rev. A 89, 033624 (2014) 



SO coupling in cold atoms 

The	  relation	  between	  SO	  coupling	  and	  Higgs	  
excitations	  	  in	  cold	  atoms	  	  

The	  equation	  of	  motion	  of	  spin	  



Decomposition	  of	  gauge	  potential	  	  



The	  sphere	  surface	  of	  gauge	  potential	  

FIG. 2. Sphere surface of SU(2) gauge potential A0. (a) At initial time t = 0, basic 
vectors of gauge potentialσx (0), σy (0), and σz(0) point to certain directions. The 
direction vector (red arrow) σ(0) points to A. (b) After time t, basic vectors 
change toσx (t ), σy (t ), and σz(t ) directions. The direction vectorσ(t ) changes 
along with basic vectors and points to B. If path AB is a parallel transportation, 
A0 reduces to an Abelian gauge potential. �



Higgs excitations in gauge potential 
Artificial	  gauge	  potential	  	  



Decomposition	  of	  gauge	  potential	  	  

Hamiltonian	  



The	  relation	  between	  excited	  mass	  and	  spin	  Hall	  currents	  

The	  spin	  down	  current	  is	  suppressed	  by	  the	  increase	  of	  the	  
excited	  mass,	  while	  the	  spin	  up	  current	  grows	  slightly.	  



	  The	  evolution	  of	  atomic	  density	  profile	  

Evolution of atomic density profile from time t=0 ms to t=4ms and t=9ms. The spin 
down current is suppressed, the spin up current grows slightly. The up and down 
figures correspond to the ratios MB/m∗=2.2 and MB/m∗=2.8. 



FIG. 1:  Scheme for generating SOC in atomic gas. Two counter-
propagating laser beams couple two spin states by a resonant two photon 
Raman transition: an atom in a spin-up (↑) state is excited to a virtual level 
by absorbing a photon from left beam,  flips to spin-down (↓) state by 
emitting another photon into right beam. The lasers are detuned by a 
frequency δ from an excited multiplet. 



40K:  Jing Zhang, Phys. Rev. Lett. 109, 095301 (2012) 



6Li:  M. W. Zwierlein, Phys. Rev. Lett. 109, 095302 (2012) 



X.L. Yu, S.S. Zhang, W.M. Liu, Phys. Rev. A 87, 043633 (2013) 

3.  Normal state 



FIG. 1. Feynman diagrams for self-energy of SOC Fermi liquid in presence 
of s-wave interaction. The Feynman rules are defined under the helicity 
bases. The labels s and r denote helicity index. The self-energy is 
calculated within framework of random phase approximation. 



The quasi-particle lifetimeτs = 1/Γs 

The renormalized factor 

The effective mass 

The spectral function 



FIG. 2. The inverse of lifetimeτs for 40K atoms as a function of momentum 
k in vicinity of Fermi surface. The lifetime of quasi-particle is enhanced 
due to presence of SOC. 



FIG. 3. Renormalization factor Zs as a function of scattering length as and 
SOC strengthγ with  same parameters as in Fig. 2. 



FIG. 4. Effective mass m*/m as a function of scattering length as and SOC 
strengthγ with same parameters as in Fig. 2. 



FIG. 5. Zero temperature spectral function A(k,ω) at different values of (k 
− ks )/kF are shown in panels (a) and (b). Panels (c) and (d) are density 
plots of spectral functions for same parameters. 



The parameters: the number of atoms is 104, kR=h/λ,λ=773 nm, γ= 0.5, trap 
frequency ωz=2π×400 Hz, as=32a0, a0 is Bohr radius. The unit ωF=h×0.21 
MHz, (k − k±1)/kF=0.01. 



S.S. Zhang, X.L. Yu, J.W. Ye, W.M. Liu, Phys. Rev. A 87, 063623 (2013) 

4.  Collective modes 



FIG. 1. (a) and (c) plot energy spectrum in presence of SOC with different 
fillings. The thick black horizonal line denotes level of chemical potential. 
(b) and (d) show Fermi surfaces and the associated spin textures 
corresponding to (a) and (c). 



FIG. 2. Particle-hole continuum of SOC Fermi gas forγ=0.5. The red region 
surrounded by thick black lines represents inter-band particle-hole continuum. 
The region surrounded by dashed yellow lines represents continuum of intra-
band particle-hole excitations with helicity +1, the blue region filled with vertical 
lines with helicity −1. The points a,b,c, d correspond to momenta 2kR, 2k+1, 2κkF, 
2k−1, where static susceptibility function exhibits singular behaviors. 



FIG. 3.  The speed of zero sound as a function of s-wave scattering length 
mg (a)  and SOC strength λ(b), the number of 40K atoms is about 104, 
kR=2π/λ,λ=773 nm,γ=0.5, trapping frequencies (ω⊥,ωz)=2π × (10,400) Hz, 
as=2.70a0, a0 is Bohr radius. The corresponding dimensionless interaction 
strength mg is about 3.0, which is less than critical valueπ. 



FIG. 4. The energy gaps for gapped modes as functions of dimensionless 
interaction strength mg in (a), SOC strength γ in (b). For (a), the energy 
gaps are close to edge of particle-hole continuum for mg/π<0.5. For (b), 
the red and blue dashed lines starting fromγ=0 are approximations in Eqs. 
(31) and (33),  the black dashed line starting from γ=1 are boundary of 
particle-hole continuum at q=0. 



FIG. 5. The collective excitations for SOCγ=0.01 and 0.5. The transverse, 
longitudinal, and perpendicular spin excitations are labeled by T, L, Z. S 
denotes zero sound mode. These collective modes disappear in particle-
hole continuum. The red region denotes spin sector of particle-hole 
continuum and the blue region denotes density sector. 



S.S. Zhang, J.W. Ye, W.M. Liu,  arXiv:1403.7031 

5.  Itinerant ferromagnetism 



FIG. 1  (a) Critical interaction strength kFac
s to itinerant ferromagnetism as 

a function of SOC strengthγ=kR/kF . (b) The density of statesρ(ϵ) in units of 
2mkR at chemical potentialµ. The green dashed line denotesµ=0 as shown 
by inset. 



FIG. 2 (a) Collective modes and particle-hole excitation in paramagnet 
side at γ=0.2, as=0.9ac

s. (b) Finite temperature quantum-classical 
crossovers near paramagnet to FM transition. r is tuning parameter of 
transition. The line T∼r3/2 (T∼r) indicates quantum to classical crossover of 
two transverse modes (one longitudinal mode). The line between regime 
III and IV are given by T∼(|r|/u)3/4 due to irrelevant coupling u. 



FIG. 3. The topological Lifshitz phase transition tuned by magnetizationζ, 
two fermi surfaces change into one nearζ∼0.3. Fermionic spectrum ξks 
(upper panel) and Fermi surfaces (down panel) at SOCγ=0.74 atζ=0.1 for 
(a),(d),ζ=0.5 for (b),(e),ζ=3 for (c),(f). The spectrum has a rotational 
symmetry about kz axes. Black arrows show spin polarization. 



FIG. 4. The collective modes and intra-band (“−” helicity) particle-hole 
excitation spectrum along qz direction (green regimes) near saturation 
limitζ≫1. (a) dense density case and (b) dilute density case. Due to its 
very high energy, inter-band one is outside plotrange. 



R.Y. Liao, Y.X. Yu, W.M. Liu, Phys. Rev. Lett. 108, 080406 (2012) 

5.  Tricritical point 



FIG. 1. Iso-energy surface (Ek±=0.8EF) for quasi-particle excitation 
spectrum at unitarity where 1/kFas=0 at T=0: (a) h=0,λ=0.125vF; (b) h=0, 
λ=0.25vF; (c) h=0.1EF,λ=0.125vF; (d) h=0.1EF,λ=0.25vF. The red dashed 
line is plotted for Ek-, the blue solid line is for Ek+, the green dash-
dotted circle is for a spherical isoenergy surface. 



FIG. 2 Upper panel: Finite-temperature phase diagram as a function of T 
and h at 1/kFas=-1 (BCS side). There are four phases: N state, PS state, 
SF state, magnetized superfluid (SFM). Above tricritical point,transition 
line separating broken-symmetry state (SFM) and symmetric state (N) 
is of second order. Below tricritical point (TP), it changes to the first 
order. Lower panel: evolution of tricritical point (Ttri/TF, htri/EF) as a 
function of SOC strength λ. 

00.050.10.150.200.040.080.12h/EFT/TF  00.020.040.060.0550.060.0650.07h/vFTtri/TF00.020.040.060.130.1350.140.1450.15h/vFhtri/EFh=0.00vFh=0.02vFh=0.04vFh=0.05vFPSNTPSFSFM



FIG. 3. Finite-temperature phase diagram in plane of T and P at 1/kFas=-1. 
The inset shows corresponding polarization Ptri for  tricritical point as a 
function of SOC strength λ. The phase SF is along the line of P=0. The 
notation is the same as in Fig. 2. 



FIG. 4. Left: The polarization P as a function of magnetic field h for 
various SOC strengthλat zero temperature at unitarity. Right: The 
critical temperature for balanced superfluid at unitarity; Tc0 is 
calculated from mean field theory, Tcg is calculated by taking account 
of Nozieres-Schmitt-Rind correction. 



FIG. 5. The momentum distribution nkσ and correlation function C↑↓(k) at 
unitarity at zero temperature with SOC strengthλ=0.2vF for two typical 
polarizations: P=0.7 (left) and P=0.9 (right). 



Y.X. Yu, J.W. Ye, W.M. Liu, Scientific Reports 3, 3476 (2013) 

6.  Higgs in cavity 



Figure 1 | (a) N atoms are placed on anti-nodes of a cavity. u is repulsive 
qubit-qubit interaction which can be tuned to reduce critical coupling gc. 
(b) The analytical Mandel factor QM (red) against exact diagonalization 
result (blue) at N=3. It is a number squeezed state inside superradiant 
phase. �



Figure 2 | The exact diagonalization results of energy levels E measured by 
subtracting ground-state energy versus g/gc at resonance ωa=ω b with N=5 atoms. 
Different colors of energy curves correspond to several smallest numbers of total 
excitations number P=a+a + b+b. The dashed vertical lines correspond to critical 
values of g where number of total excitations P in ground state increases by one. �



Figure 3 | (a) The analytical Goldstone mode at α=-1/2, EG=D(g)=2ωaG2/NEH2 (red 
line) are contrasted with ED result EG=E0P+1 – E0P (blue lines) at N=5,3,2,1. It is 
remarkable that the analytical result can even map out broad peaks at small P in 
the ED results very precisely. (b) The analytical spectral weight (red) of the 
Goldstone mode CG against the ED result (blue) at N=3.�



Figure 4 | (a) The analytical relation Eo=EH +EG (EH in red line) is satisfied by ED 
optical mode Eo=E1P+1 –E0P (blue lines) at N=3 except at first few steps. (b) The 
analytical spectral weight (red) of optical mode Co against ED result (blue) at N=3.�



Figure 5 | (a) The analytical Higgs energy EH (red) against exact diagonalization 
result EH=EP1 - EP0 (blue) at N=3. (b) The analytical spectral spectral weight CH 
(red) for the Higgs mode against the exact diagonalization result (blue) at N=3.�
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