Fluctuating Charge Density Waves in Cuprate Superconductors

Fahad Mahmood¹, Darius Torchinsky¹, Anthony Bollinger², Ivan Božović² and Nuh Gedik¹ ¹Department of Physics, MIT, ²Brookhaven National Laboratory

International Workshop on Higgs Modes in Condensed Matter & Quantum Gases 2014

- \rightarrow Background: Possible CDW order in the cuprates
- \rightarrow Ultrafast measurement of CDW collective excitations
- \rightarrow CDW excitations in LSCO thin films
- \rightarrow Lifetime of CDW fluctuations
- \rightarrow Related work in YBCO
- \rightarrow Conclusion

- ightarrow Background: Possible CDW order in the cuprates
- \rightarrow Ultrafast measurement of CDW collective excitations
- \rightarrow CDW excitations in LSCO thin films
- \rightarrow Lifetime of CDW fluctuations
- \rightarrow Related work in YBCO
- \rightarrow Conclusion

Cuprates – Possible CDW order

- Specific or general behavior?
- Relationship b/w CDW & High-Tc ?
- Time scale for fluctuations?
- How to observe?

Gedik group

CDW fluctuations in LSCO

Tranquada et. al. Nature 375, 561–563 (1995)

T. Wu et. al. Nature 477, 191–194 (2011)

CDW fluctuations in YBCO and NdBCO

CDW fluctuations in BSCCO

REXS - UD15K STM - UD15K dl/dV(24mV) А High Counts Low 5 nm ► 20K E dl/dV-FT o 300 K High 0.2 0.4 0.0 |**Q**_{||}| (r.l.u.) в Low Ó 1 Cu-L, REXS F Peak area FT amplitude 0 932 0.2 0.4 930 934 0.0 |Q,| (r.l.u.) hv (eV)

Bi2201

Comin et. al. Science 343, 390 (2014)

Bi2212

Gedik group

 \rightarrow Background: Possible CDW order in the cuprates

- \rightarrow Ultrafast measurement of CDW collective excitations
- \rightarrow CDW excitations in LSCO thin films
- \rightarrow Lifetime of CDW fluctuations
- \rightarrow Related work in YBCO
- \rightarrow Conclusion

CDW Excitations

Gedik group

CDW Excitations - Ultrafast Measurements

CDW Excitations - Ultrafast Measurements

Phason – Transient Grating (TG) Spectroscopy

Gedik group

 \rightarrow Background: Possible CDW order in the cuprates

- \rightarrow Ultrafast measurement of CDW collective excitations
- ightarrow CDW excitations in LSCO thin films
- \rightarrow Lifetime of CDW fluctuations
- \rightarrow Related work in YBCO
- \rightarrow Conclusion

Amplitudon Dynamics

Oscillations in the PP reflectivity transients

Underdoped LSCO p = 0.10 T_c = 26 K

- Seen both above & below T_c
- Persist up to 100 K

Amplitudon Dynamics

Extracting dynamic parameters

Phason Dynamics

Additional component in the TG response

Phason Dynamics

Confirm detection of phason

Similar behavior of 'A' and 'P' --> suggests presence of phason

Extract phason lifetime --> study damping with temperature

- \rightarrow Background: Possible CDW order in the cuprates
- → Ultrafast measurement of CDW collective excitations
- \rightarrow CDW excitations in LSCO thin films
- \rightarrow Lifetime of CDW fluctuations
- \rightarrow Related work in YBCO
- \rightarrow Conclusion

Phason Dynamics

Phason damping --> CDW fluctuations

Phason Dynamics

Phason damping --> CDW fluctuations

Relationship with High-Tc?

Optimally Doped (x = 0.16) Sample

Fluctuating CDW seems to compete with superconductivity

Similar results for overdoped (x = 0.33) sample

- \rightarrow Background: Possible CDW order in the cuprates
- \rightarrow Ultrafast measurement of CDW collective excitations
- \rightarrow CDW excitations in LSCO thin films
- \rightarrow Lifetime of CDW fluctuations
- \rightarrow Related work in YBCO
- \rightarrow Conclusion

CDW amplitudon in YBCO

Delay (ps)

Ghirenghelli et. al. Science 337, 821-825 (2012)

- CDW in YBCO using RXS
- Amplitude mode using PP from T = 5 K to T_{CDW} = 105 K
- *f* ~ 1.8 THz
- Similar results for p = 0.12 & p = 0.13

Hinton et. al. PRB 88, 060508 (2013)

CDW amplitudon in YBCO & LSCO

Behavior with temperature

Gedik group

CDW amplitudon in YBCO & LSCO

Detailed calculations by Sachdev group: arXiv:1402.0875

- \rightarrow Background: Possible CDW order in the cuprates
- \rightarrow Ultrafast measurement of CDW collective excitations
- \rightarrow CDW excitations in LSCO thin films
- \rightarrow Lifetime of CDW fluctuations
- \rightarrow Related work in YBCO

\rightarrow Conclusion

Conclusion

Selective probing of amplitudon & phason --> Measure Fluctuating CDW lifetime

- Absence of CDW excitations in optimally & over doped sample
- Indicates a competition scenario between SC & CDW order
- Amplitudon also observed in YBCO --> repuslive interaction b/w SC & CDW orders

Acknowledgements

R

Prof. Nuh Gedik

Dr. Darius Torchinsky

Dr. Ivan Božović

DOKH*K*N

NATIONAL LABORATORY

EN

Dr. Anthony Bollinger

Nature Materials 12, 387-391 (2013)

