

Max Planck Institute for Solid State Research

### Density-Matrix Theory for high-Tc superconductors in non-equilibrium: Higgs mode and pairing glue

#### **Dirk Manske**

#### co-workers and papers:

 A. Knorr (TU Berlin), DM, PRB 77, 180509 (R) (2008)
 A. Schnyder (MPI Stuttgart), A. Avella (Uni Salerno), DM, PRB 84, 214513 (2011)
 Exp.: M. Rübhausen + team (Uni Hamburg), DM, PRL 102, 177004 (2009)
 A. Schnyder, A. Akbari (MPI Stuttgart), I. Eremin (Uni Bochum), DM, EPL 101, 17002 (2013)
 G. Uhrig + team, DM, arXiv:1309.7318, PRB 2014 *YITP@Kyoto, June 24th, 2014*

Dirk Manske

# **Phase diagram (hole-doped)**





für Festkörperforschung

Dirk Manske

# **Pairing due to phonons**



Planck-Ing



pairing interaction is determined by  $V_{eff} = \alpha_{k,k'}^2 F(\omega)$ Eliashberg equations yield  $\Delta(\omega)$  and tunneling density of states

$$rac{N_T(\omega)}{N(0)} = \operatorname{Re}\left[rac{\omega}{\sqrt{\omega^2 - \Delta^2(\omega)}}
ight]$$

D.J. Scalapino, J.R. Schrieffer, J.W. Wilkins PR 148, 148 (1966)

irk Manske

# **Coupling of holes to spin excitations**





#### □Cooper-pairing is controlled by spin excitations:

Ornstein-Zernicke form for the spin susceptibility ( $\mathbf{Q} = (\pi, \pi)$ ), parameters from NMR (Millis, Monien, Pines (PRB 1989))

$$\chi(\mathbf{q},\omega) = \frac{\chi_\mathbf{Q}}{1+\xi^2(\mathbf{q}-\mathbf{Q})^2 - i\frac{\omega}{\omega_{sf}}}$$

leads with  $g = U_{eff} = U$ 

$$V_{eff}({f q},\omega)=g^2\,\chi({f q},\omega)$$

 $\implies$  high- $T_c$  and d-wave is possible

Microscopic approach: e.g. FLEX (Scalapino, Bickers, Manske), Spin-Fermion (Chubukov. ...), ...

irk Mansk

#### **FLEX (3rd generation): method and applications**



für Festkörperforschung

| SOLID-STATE PHYSICS<br>D. Manske<br>Theory of<br>Unconventional<br>Superconductors                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 202<br>STMP<br>Manske              | SPRINGER TRACTS                                                                                     |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|-----------------------------------------------------------------------------------------------------|
| This book presents a theory for unconven-<br>tional superconductivity driven by spin exci-<br>tations. Using the Hubbard Hamiltonian and<br>a self-consistent treatment of the spin excita-<br>tions, the interplay between magnetism and<br>superconductivity in various unconventional<br>superconductors is discussed. In particular,<br>the monograph applies this theory for<br>Cooper-pairing due to the exchange of spin<br>fluctuations to the case of singlet pairing in<br>hole- and electron-doped high- <i>Tc</i> supercon-<br>ductors, and to triplet pairing in Sr <sub>2</sub> RuO <sub>4</sub> .<br>Within the framework of a generalized<br>Eliashberg-like treatment, calculations of<br>both many normal and superconducting<br>properties as well as elementary excitations<br>are performed. The results are related to the<br>phase diagrams of the materials which<br>reflect the interaction between magnetism<br>and superconductivity. | Theory of Unconventional Supercond | Theory of<br>Unconventional<br>Superconductors<br>Cooper-Pairing<br>Mediated by<br>Spin Excitations |
| ISBN 3-540-21229-9<br>9-783540-212294<br>> springeronline.com                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | uctors                             | S Springer                                                                                          |

published 2004

oirk Mansko

### Idea: analysis of the elementary excitations



für Festkörperforschung

$$\omega(\mathbf{k}) = \epsilon_{\mathbf{k}} + \mathsf{Re} \ \Sigma(\mathbf{k}, \omega)$$



structure in Re  $\Sigma(\mathbf{k}, \omega)$ ?

□ feedback on *χ*(**q**, *ω*)?
□ doping dependence?

Dirk Manske



# **Fingerprints of the glue?**



# Strength of the spin-fluctuation-mediated pairing interaction in a high-temperature superconductor

T. Dahm<sup>1</sup>, V. Hinkov<sup>2</sup>, S. V. Borisenko<sup>3</sup>, A. A. Kordyuk<sup>3</sup>, V. B. Zabolotnyy<sup>3</sup>, J. Fink<sup>3,4</sup>, B. Büchner<sup>3</sup>, D. J. Scalapino<sup>5</sup>, W. Hanke<sup>6</sup> and B. Keimer<sup>2</sup>\*

□ simultaneous explanation of the resonance peak and kinks is possible

 $\rightarrow$  extract U  $\approx$  2eV (high Tc is possible)



VERG

MOMENTUM, P.

bandwidth

**Dirk Manske** 



#### Content

<u>Motivation</u>: how does the superconducting condensate response? Role of phonons?

<u>Theory</u>: Equations of motion for coherent dynamics, quantum kinetic equations in the nonadiabatic regime (DMT)

<u>Results</u>: order parameter (Higgs) oscillations
 role of electron-phonon coupling
 coherent phonons vs. phonon bath
 multi-band effects



# Motivation I: pump-probe spectroscopy



Two kinds of information can be extracted:

- Time domain: conductivity change  $\Delta \sigma$ , depending on time delay  $\Delta t$
- Energy domain: change in the conductivity spectra





### Motivation II: time-resolved ARPES (1)

PRL 99, 197001 (2007)

PHYSICAL REVIEW LETTERS

week ending 9 NOVEMBER 2007

**Dirk Manske** 

# $\label{eq:constraint} \begin{array}{l} \mbox{Ultrafast Electron Relaxation in Superconducting $Bi_2Sr_2CaCu_2O_{8+\delta}$} \\ \mbox{by Time-Resolved Photoelectron Spectroscopy} \end{array}$

L. Perfetti,<sup>1</sup> P. A. Loukakos,<sup>1</sup> M. Lisowski,<sup>1</sup> U. Bovensiepen,<sup>1</sup> H. Eisaki,<sup>2</sup> and M. Wolf<sup>1</sup> <sup>1</sup>Fachbereich Physik, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany <sup>2</sup>AIST Tsukuba Central 2, 1-1-1 Umenzono, Tsukuba, Ibaraki 305-8568, Japan (Received 18 April 2007; published 9 November 2007)

- Hot electrons dissipate on 2 distinct time scales: 110fs and 2ps
- Only 10-20 % of the total lattice modes dominate the coupling strength
- (averaged) electron-phonon coupling  $\lambda < 0.25$





## Motivation III: time-resolved ARPES (2)



 Observation of coherent phonons in EuFe<sub>2</sub>As<sub>2</sub>

#### PRL 108, 097002 (2012)

J. Fink and co-workers



#### Motivation IV: glue of high-Tc cuprates?





#### Two different models for the description of time-resolved experiments:

- "effective models":  $\mu^*, T^*$  model [PRB 67, 214506 (2003)]: describe excited quasiparticle distribution as equilibrium distribution with new temperatature  $T^*$  / chemical potential  $\mu^*$
- rate equations [PRL 95, 147002 (2005)]:
   equations of motion for quasiparticle (n) and phonon (N) distributions:

$$\frac{d n}{d t} = I_0 + \eta N - Rn^2, \qquad \text{w}$$

$$\frac{d N}{d t} = J_0 - \eta \frac{N}{2} + \frac{R n^2}{2} - \gamma (N - N_0) \qquad \text{d}$$

with phenomenological parameters for pair-breaking, recombination, and phonon decay



#### Microscopic approach:

$$\begin{split} H &= \sum_{\mathbf{k}s} \epsilon_{\mathbf{k}} c_{\mathbf{k}s}^{+} c_{\mathbf{k}s} + \sum_{\mathbf{k}} \left( \Delta_{\mathbf{k}} c_{\mathbf{k}\uparrow}^{+} c_{-\mathbf{k}\downarrow}^{+} + \mathbf{c.c} \right) \\ &- \frac{e\hbar}{m} \sum_{\mathbf{k}qs} (\mathbf{k} \cdot \mathbf{A}_{\mathbf{q}}) c_{\mathbf{k}+\frac{\mathbf{q}}{2}s}^{+} c_{\mathbf{k}-\frac{\mathbf{q}}{2}s} + \frac{e^{2}}{2m} \sum_{\mathbf{k}qs} (\mathbf{A}_{\mathbf{q}-\mathbf{k}} \cdot \mathbf{A}_{\mathbf{q}}) c_{\mathbf{k}s}^{+} c_{\mathbf{k}s} \\ &+ \sum_{\mathbf{q}j} \hbar \omega_{\mathbf{q}j} \left( b_{\mathbf{q}j}^{+} b_{\mathbf{q}j} + \frac{1}{2} \right) + \sum_{\mathbf{p}j\mathbf{k}s} \left( g_{\mathbf{p}\mathbf{k}js} (b_{-\mathbf{p}j}^{+} + b_{\mathbf{p}j}) c_{\mathbf{k}+\mathbf{p},s}^{+} c_{\mathbf{k}s} + \mathbf{c.c.} \right) \end{split}$$

with 
$$\Delta_{\bf k} = \sum_{{\bf k}'} V_{{\bf k}{\bf k}'} \langle c_{-{\bf k}'\downarrow} c_{{\bf k}'\uparrow} \rangle$$

we consider: (a) tetragonal lattice
(b) tight-binding band structure, e.g. from Kordyuk *et al*. ('03)
(c) *s*- or *d*-wave order parameter



#### DMT: Calculation of coherent dynamics

Superconducting state: Bogoliubov transformation

$$\alpha_{\mathbf{k}}^{\dagger} = u_{\mathbf{k}}c_{\mathbf{k}\uparrow}^{\dagger} + v_{\mathbf{k}}^{*}c_{-\mathbf{k}\downarrow} \qquad \beta_{\mathbf{k}}^{\dagger} = u_{\mathbf{k}}c_{-\mathbf{k}\downarrow}^{\dagger} - v_{\mathbf{k}}^{*}c_{\mathbf{k}\uparrow}$$

$$\Delta_{\boldsymbol{k}} = \sum_{\boldsymbol{k}} W_{\boldsymbol{k},\boldsymbol{k}'} \left[ u_{\boldsymbol{k}'} v_{\boldsymbol{k}'} \left( 1 - \left\langle \alpha_{\boldsymbol{k}'}^{\dagger} \alpha_{\boldsymbol{k}'} \right\rangle - \left\langle \beta_{\boldsymbol{k}'}^{\dagger} \beta_{\boldsymbol{k}'} \right\rangle \right) + u_{\boldsymbol{k}'}^2 \left\langle \beta_{\boldsymbol{k}'} \alpha_{\boldsymbol{k}'} \right\rangle - v_{\boldsymbol{k}'}^2 \left\langle \alpha_{\boldsymbol{k}'}^{\dagger} \beta_{\boldsymbol{k}'}^{\dagger} \right\rangle \right]$$

All quantities of interest can be expressed in terms of these four dynamical variables

$$\left\langle \alpha_{\boldsymbol{k}}^{\dagger} \alpha_{\boldsymbol{k}'} \right\rangle (t), \quad \left\langle \beta_{\boldsymbol{k}}^{\dagger} \beta_{\boldsymbol{k}'} \right\rangle (t), \quad \left\langle \alpha_{\boldsymbol{k}}^{\dagger} \beta_{\boldsymbol{k}'}^{\dagger} \right\rangle (t), \quad \left\langle \alpha_{\boldsymbol{k}} \beta_{\boldsymbol{k}'} \right\rangle (t)$$

For example, current density:

$$\boldsymbol{j}(\boldsymbol{q},\omega) \simeq \frac{e\hbar}{mV} \sum_{\boldsymbol{k}} \boldsymbol{k} \Big[ \left\langle \alpha_{\boldsymbol{k}}^{\dagger} \alpha_{\boldsymbol{k}+\boldsymbol{q}} \right\rangle - \left\langle \beta_{\boldsymbol{k}+\boldsymbol{q}}^{\dagger} \beta_{\boldsymbol{k}} \right\rangle + \boldsymbol{k} \cdot \boldsymbol{q} \frac{\hbar^2 |\Delta_1|}{2m \left(E_{\boldsymbol{k}}^2\right)} \left( \left\langle \alpha_{\boldsymbol{k}}^{\dagger} \beta_{\boldsymbol{k}+\boldsymbol{q}}^{\dagger} \right\rangle + \left\langle \alpha_{\boldsymbol{k}+\boldsymbol{q}} \beta_{\boldsymbol{k}} \right\rangle \right) \Big]$$

Density-matrix theory:

$$\frac{d}{dt}\left(c_{\boldsymbol{k}_{1}}^{\dagger}c_{\boldsymbol{k}_{2}}\right) = \frac{i}{\hbar}\left[H, c_{\boldsymbol{k}_{1}}^{\dagger}c_{\boldsymbol{k}_{2}}\right] + \frac{\partial}{\partial t}\left(c_{\boldsymbol{k}_{1}}^{\dagger}c_{\boldsymbol{k}_{2}}\right)$$



yields equations of motions for the above four expectation values

# Results



Max Planck Institute for Solid State Research

# Case I: single band no phonons



-20

0

20

Delay Time  $\Delta t$  [fs]

40

60

-60

-40

100

80



#### Order parameter oscillations: 2 regimes



Non-adiabatic regime: gap continues to oscillate (Higgs) even when the pump pulse has been switched off long ago  $(\Delta(t=\infty) = \Delta_{\infty})$ 



#### Analytic solution possible



**Dirk Manske** 



#### Intensity dependence





### Quasiparticle occupations: no oscillations



• Peak position(s) related to pump energy



### Probe spectra: no oscillations (well known)



Pauli blocking

• Gap oscillations cannot be perceived by means of a simple probe specrum

See also: Papenkort, Axt, and Kuhn, PRB '07



Max Planck Institute for Solid State Research

# Case II: single band, coherent phonons <b> ≠ 0

Role of $\tau_p \dots$ pulse duration $\tau_{ph} \dots$ phonon periodand $\tau_{\Delta} \dots$  $\tau_{\Delta} \dots$ dynamical time scale  $\sim h/(2|\Delta|)$ ?



#### Density-Matrix Formalism

#### No bath approximation $\rightarrow$ Cluster expansion: coupling of phonon-assisted quantities such as

$$\langle \alpha_{\mathbf{k}+\mathbf{q}} \beta_{\mathbf{k}} b_{\mathbf{q}j} \rangle(t) \quad \text{and} \quad \langle \alpha_{\mathbf{k}_1+\mathbf{q}}^+ \alpha_{\mathbf{k}_2} (b_{-\mathbf{q}j}^+ + b_{\mathbf{q}j}) \rangle$$

→ solve numerically 6 Boltzmann-like equations

Phonon equations for 
$$B_{\boldsymbol{q}} = \langle b_{\boldsymbol{q}} \rangle$$
 and  $B_{-\boldsymbol{q}}^* = \langle b_{-\boldsymbol{q}}^\dagger \rangle$   

$$\frac{d}{dt}B_{\boldsymbol{p}} = -i\omega_{\boldsymbol{p}}B_{\boldsymbol{p}} - \frac{i}{\hbar}g_{\boldsymbol{p}}\mathcal{F}(t)$$

$$\mathcal{F}(t) = \sum_{\boldsymbol{k}} \left[ M_{\boldsymbol{k},\boldsymbol{p}}^+ \left( \langle \alpha_{\boldsymbol{k}+\boldsymbol{p}}\beta_{\boldsymbol{k}} \rangle - \langle \alpha_{\boldsymbol{k}}^\dagger \beta_{\boldsymbol{k}+\boldsymbol{p}}^\dagger \rangle \right) \right]$$

$$+L_{\boldsymbol{k},\boldsymbol{p}}^- \left( \langle \alpha_{\boldsymbol{k}}^\dagger \alpha_{\boldsymbol{k}+\boldsymbol{p}} \rangle + \langle \beta_{\boldsymbol{k}+\boldsymbol{p}}^\dagger \beta_{\boldsymbol{k}} \rangle \right) \right]$$

$$\frac{M_{\boldsymbol{k},\boldsymbol{p}}^+ = v_{\boldsymbol{k}}u_{\boldsymbol{k}+\boldsymbol{p}} + u_{\boldsymbol{k}}v_{\boldsymbol{k}+\boldsymbol{p}}}{M_{\boldsymbol{k}+\boldsymbol{p}}^+ - u_{\boldsymbol{k}}v_{\boldsymbol{k}+\boldsymbol{p}}}$$



### Phonon amplitude: Adiabatic regime $\tau_p > \tau_{\Delta}$ , $\tau_{ph}$



 $\tau_p$  = 20000fs  $\Delta$  = 1.35

only transient effect,
 <u>no</u> coupling to Higgs
 oscillations

• Creation of coherent phonons possible for  $\tau_{ph} < \tau_{\Delta} < < \tau_{p}$ • Inclusion of incoherent phonons would lead to damping



#### Crossover to non-adiabatic regime



• Occurence of Quantum beats:  $|2\Delta_{\infty}/\hbar - \omega_{\rm ph}| \ll \omega_{\rm ph}$ 



#### Non-adiabatic regime $\tau_p < \tau_{\Delta}$



Coherent phonons are resonantly enhanced



• off-resonant:  $2\Delta_{\infty} = 1.7$  and 2.3meV

• resonant:  $2\Delta_{\infty} = 2.0 \text{meV} = \omega_{\text{ph}}$ 

 tune the order parameter oscillations exactly to resonance
 by adjusting the integrated
 pump intensity

PRB 84, 214513 (2011)



#### Order parameter oscillations: theory





#### Order parameter oscillations: Experiment (1)

PRL 111, 057002 (2013)

#### Higgs Amplitude Mode in the BCS Superconductors Nb<sub>1-x</sub>Ti<sub>x</sub>N Induced by Terahertz Pulse Excitation



• s-wave superconductor, non-adiabatic regime

- oscillation frequency in excellent accordance with asymptotic gap value
- collective Higgs mode detected

Ryo Shimano and co-workers, University of Tokyo



### Order parameter oscillations: Experiment (2)



Search or A

**PNAS 2013** 

**Condensed Matter > Superconductivity** 

#### Direct observation of real-time oscillations of the Cooper-pairs condensate in a high-Tc superconductor

B. Mansart, J. Lorenzana, M. Scarongella, M. Chergui, F. Carbone

Pump-probe optical spectroscopy of LSCO (Tc = 40 K); 1.55 eV laser

Oscillations observed with period of same order as  $\tau_{\Delta} \sim h/(2 |\Delta|)$ 





Max Planck Institute for Solid State Research

# Case III: single band, phonons in equilibrium <b> = 0 (bath approximation)

**Motivation: time-resolved Raman scattering** 



#### apply Markovian approximation (energy conservation), then:

$$\partial_{t} \langle \alpha_{\mathbf{k}}^{+} \alpha_{\mathbf{k}} \rangle = -\frac{ie}{m} \mathbf{k} \cdot \mathbf{A}_{\mathbf{q}} M_{\mathbf{k}\mathbf{q}} \left( \langle \alpha_{\mathbf{k}} \beta_{\mathbf{k}} \rangle - \langle \alpha_{\mathbf{k}}^{+} \beta_{\mathbf{k}}^{+} \rangle \right) \\ + \sum_{\mathbf{q}j} \frac{\pi |g_{\mathbf{q}j}|^{2}}{\hbar^{2}} \left( \Gamma_{\mathbf{k}\mathbf{q}j}^{(1)} \langle \alpha_{\mathbf{k}}^{+} \alpha_{\mathbf{k}} \rangle (1 - \langle \alpha_{\mathbf{k}+\mathbf{q}}^{+} \alpha_{\mathbf{k}+\mathbf{q}} \rangle) \right) \\ - \Gamma_{\mathbf{k}\mathbf{q}j}^{(2)} \langle \alpha_{\mathbf{k}+\mathbf{q}}^{+} \alpha_{\mathbf{k}+\mathbf{q}} \rangle (1 - \langle \alpha_{\mathbf{k}}^{+} \alpha_{\mathbf{k}} \rangle) - \Gamma_{\mathbf{k}\mathbf{q}j}^{(3)} \langle \beta_{\mathbf{k}+\mathbf{q}}^{+} \beta_{\mathbf{k}+\mathbf{q}} \rangle \langle \alpha_{\mathbf{k}}^{+} \alpha_{\mathbf{k}} \rangle \right)$$
with  $M_{\mathbf{k}\mathbf{q}} = u_{\mathbf{k}+\mathbf{q}} v_{\mathbf{k}} - v_{\mathbf{k}+\mathbf{q}} u_{\mathbf{k}} \qquad L_{\mathbf{k}\mathbf{q}} = u_{\mathbf{k}+\mathbf{q}} u_{\mathbf{k}} + v_{\mathbf{k}+\mathbf{q}} v_{\mathbf{k}}$ 

$$\Gamma_{\mathbf{k}\mathbf{q}j}^{(1)} = (1 + n_{\mathbf{q}j}) u_{\mathbf{k}+\mathbf{q}} u_{\mathbf{k}} L_{\mathbf{k}\mathbf{q}} \delta(\omega_{\mathbf{k}+\mathbf{q}} - \omega_{\mathbf{k}} + \omega_{\mathbf{q}j})$$

$$\Gamma_{\mathbf{k}\mathbf{q}j}^{(2)} = n_{\mathbf{q}j} u_{\mathbf{k}+\mathbf{q}} u_{\mathbf{k}} L_{\mathbf{k}\mathbf{q}} \delta(\omega_{\mathbf{k}+\mathbf{q}} - \omega_{\mathbf{k}} - \omega_{\mathbf{q}j})$$

$$\Gamma_{\mathbf{k}\mathbf{q}j}^{(3)} = u_{\mathbf{k}+\mathbf{q}} v_{\mathbf{k}} M_{\mathbf{k}\mathbf{q}} \delta(\omega_{\mathbf{k}+\mathbf{q}} - \omega_{\mathbf{k}} + \omega_{\mathbf{q}j})$$



### Reminder: 'Conventional' Raman scattering





Bi2212, B<sub>1g</sub>-polarization





## Exp.: Time-resolved Raman scattering (II)

#### Bi2212, B<sub>1g</sub>-polarization



Phys. Rev. Lett. 102, 177004 (2009)



#### Comparison with experiment



Phys. Rev. Lett. 102, 177004 (2009)



#### • LDA calculation of the electron-phonon coupling strength

widely used assumptions:

- buckling mode  $\propto \cos^2(q_x/2) + \cos^2(q_y/2)$
- breathing mode  $\propto \sin^2(q_x/2) + \sin^2(q_y/2)$

R. Heid, K.-P- Bohnen, R. Zeyher, and D. Manske, Phys. Rev. Lett. 100, 137001 (2009)



# Momentum- and frequency-resolved coupling

Fermi surface Y Μ bonding antibonding chain × k\_=0.125 X Г

0.3

(y) y(k)

0.2

 $k_v = 1$ 

← bonding

k =k





Max Planck Institute for Solid State Research

# Case IV: 2 bands, no phonons



#### Density-Matrix Formalism

$$i\hbar\frac{d}{dt}\langle\alpha^{\dagger}_{\gamma'\mathbf{k}'}\alpha_{\gamma\mathbf{k}}\rangle = (\eta_{1\gamma\mathbf{k}} - \eta_{1\gamma'\mathbf{k}'})\langle\alpha^{\dagger}_{\gamma'\mathbf{k}'}\alpha_{\gamma\mathbf{k}}\rangle - \eta_{2\gamma\mathbf{k}}\langle\beta^{\dagger}_{\gamma\mathbf{k}}\alpha^{\dagger}_{\gamma'\mathbf{k}'}\rangle + \eta^{*}_{2\gamma'\mathbf{k}'}\langle\alpha_{\gamma\mathbf{k}}\beta_{\gamma'\mathbf{k}'}\rangle + \sum_{\gamma_{0},\mathbf{q}'=\pm\mathbf{q}_{0}} -\frac{2e\hbar}{m}\mathbf{k}\cdot\mathbf{A}_{\mathbf{q}'}\left(M^{+}_{\gamma\gamma_{0}\mathbf{k},\mathbf{k}-\mathbf{q}'}\langle\alpha^{\dagger}_{\gamma'\mathbf{k}'}\alpha_{\gamma_{0}\mathbf{k}-\mathbf{q}'}\rangle + L^{-}_{\gamma\gamma_{0}\mathbf{k},\mathbf{k}-\mathbf{q}'}\langle\beta^{\dagger}_{\gamma'\mathbf{k}-\mathbf{q}'}\alpha^{\dagger}_{\gamma_{0}\mathbf{k}'}\rangle\right) - M^{+}_{\gamma_{0}\gamma'\mathbf{k}'-\mathbf{q}',\mathbf{k}'}\langle\alpha^{\dagger}_{\gamma_{0}\mathbf{k}'+\mathbf{q}'}\alpha_{\gamma\mathbf{k}}\rangle - L^{-*}_{\gamma'\gamma_{0}\mathbf{k}',\mathbf{k}'+\mathbf{q}'}\langle\alpha_{\gamma\mathbf{k}}\beta_{\gamma_{0}\mathbf{k}'+\mathbf{q}'}\rangle + \sum_{\gamma_{0},\mathbf{q}'=\pm\mathbf{q}_{0};\ \mathbf{q}_{i}=0,\pm2\mathbf{q}_{0}} \frac{e^{2}}{2m}(\mathbf{A}_{\mathbf{q}'-\mathbf{q}_{i}}\cdot\mathbf{A}_{\mathbf{q}'})\times\left(M^{-}_{\gamma\gamma_{0}\mathbf{k},\mathbf{k}-\mathbf{q}'}\langle\alpha^{\dagger}_{\gamma'\mathbf{k}'}\alpha_{\gamma_{0}\mathbf{k}-\mathbf{q}'}\rangle + L^{+}_{\gamma\gamma_{0}\mathbf{k}-\mathbf{q}',\mathbf{k}}\langle\beta^{\dagger}_{\gamma'\mathbf{k}-\mathbf{q}'}\alpha^{\dagger}_{\gamma_{0}\mathbf{k}'}\rangle - M^{-}_{\gamma_{0}\gamma'\mathbf{k}'+\mathbf{q}',\mathbf{k}'}\langle\alpha^{\dagger}_{\gamma_{0}\mathbf{k}'+\mathbf{q}'}\alpha_{\gamma\mathbf{k}}\rangle - L^{+*}_{\gamma'\gamma_{0}\mathbf{k}',\mathbf{k}'+\mathbf{q}'}\langle\alpha_{\gamma\mathbf{k}}\beta_{\gamma_{0}\mathbf{k}'+\mathbf{q}'}\rangle \right)$$

$$\eta_{1\gamma\mathbf{k}} = \frac{\hat{\varepsilon}_{\gamma\mathbf{k}}\hat{\varepsilon}_{\gamma\mathbf{k}}^{\star} + Re[\Delta_{\gamma\mathbf{k}}^{*}\Delta_{\gamma\mathbf{k}}^{\star}]}{E_{\gamma\mathbf{k}}^{\star}} \qquad \qquad \eta_{2\gamma\mathbf{k}} = \Delta_{\gamma\mathbf{k}}^{\star} \left[\frac{\hat{\varepsilon}_{\gamma\mathbf{k}}Re\left[\frac{\Delta_{\gamma\mathbf{k}}}{\Delta_{\gamma\mathbf{k}}^{\star}}\right] - \hat{\varepsilon}_{\gamma\mathbf{k}}^{\star}}{E_{\gamma\mathbf{k}}^{\star}} + iIm\left[\frac{\Delta_{\gamma\mathbf{k}}}{\Delta_{\gamma\mathbf{k}}^{\star}}\right]\right]$$

#### → solve numerically 8 Boltzmann-like equations (still no phonons)



#### Multiband effects

$$\begin{split} \Delta_{\gamma\mathbf{k}} &= \sum_{\gamma'\mathbf{k}'} g_{\mathbf{k}\mathbf{k}'}^{\gamma\gamma'} \langle c_{\gamma'-\mathbf{k}'\downarrow} c_{\gamma'\mathbf{k}'\uparrow} \rangle \\ &= \sum_{\gamma'\mathbf{k}'} g_{\mathbf{k}\mathbf{k}'}^{\gamma\gamma'} \left[ u_{\gamma'\mathbf{k}'} v_{\gamma'\mathbf{k}'} (\langle \alpha^{\dagger}_{\gamma'\mathbf{k}'} \alpha_{\gamma'\mathbf{k}'} \rangle + \langle \beta^{\dagger}_{\gamma'\mathbf{k}'} \beta_{\gamma'\mathbf{k}'} \rangle - 1) \right. \\ &+ \left. u_{\gamma'\mathbf{k}'}^{2} \langle \beta_{\gamma'\mathbf{k}'} \alpha_{\gamma'\mathbf{k}'} \rangle + v_{\gamma'\mathbf{k}'}^{2} \langle \beta^{\dagger}_{\gamma'\mathbf{k}'} \alpha^{\dagger}_{\gamma'\mathbf{k}'} \rangle \right] \end{split}$$

Calculation for pnictides:  $g^{11} = 0 = g^{22}$  and  $g^{12} < 0$ 

$$\begin{aligned} \Delta^{l}(t) &| = |\Delta_{\infty}^{l}| + \sum_{l,l'} \left( a_{ll} + a_{ll'} \right) \frac{\cos(\omega_{1}t + \phi_{l})\cos(\omega_{2}t + \phi_{l})}{\sqrt{|\Delta_{\infty}^{l}|t}} \\ &+ \left( a_{ll} - a_{ll'} \right) \frac{\sin(\omega_{1}t + \phi_{l})\sin(\omega_{2}t + \phi_{l})}{\sqrt{|\Delta_{\infty}^{l}|t}} \end{aligned}$$



#### Order parameter oscillations (1): MgB<sub>2</sub>



Characteristic changes due to inter-band scattering:
 2 coupled harmonic oscillators

A. Akbari et al., EPL 101. 17002 (2013)



## Order parameter oscillations (2): pnictides ?



• Quantum beats are possible



#### Summary

Micoscopic theory for ultrafast dynamics in superconductors employing Density Matrix Theory: What happens after the pump pulse?

• case 1: no phonons, single band

 $\rightarrow$  OP oscillations in the non-adiabatic regime if  $\tau_p < \tau_{\Delta}$ 

- case 2: coherent phonons, single band
- $\rightarrow$  Quantum Beats and resonance effects if  $|2\Delta_{\infty}/\hbar \omega_{\rm ph}| \ll \omega_{\rm ph}$
- case 3: incoherent (bath) phonons, single band
- $\rightarrow$  Comparison with time-resolved Raman scattering
- case 4: no phonons, two bands
- $\rightarrow$  2 damped oscillators, quantum beats



#### Outlook

 consideration of non-centrosymmetric superconductors
 (E. Bauer and M. Sigrist (Eds.), 'Non-centrosymmetric superconductors', Lecture Notes in Physics <u>847</u>, Springer 2012)

 $\rightarrow$  Interdependence of singlet- and triplet-pairing

- light-induced superconductivity (A. Cavalleri, MPI)
- → Pumping pre-formed pairs (within Density-Matrix Theory)

 consideration of strong electron-electron interaction (together with T. Tohyama (Tokyo), 1D extended Hubbard model)

# END OF TALK



Max Planck Institute for Solid State Research

# Thank you!



Max Planck Institute for Solid State Research