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Phase diagram (hole-doped) 
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Theory I Theory II 



Pairing due to phonons 
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exp. 



Coupling of holes to spin excitations 
Dirk Manske 

Microscopic approach: e.g. FLEX (Scalapino, Bickers, Manske), 
Spin-Fermion (Chubukov. …) , … 



FLEX (3rd generation): method and applications 
Dirk Manske 

published 
2004 



Idea: analysis of the elementary excitations 
Dirk Manske 

from ARPES 

from INS, RIXS 



Fingerprints of the glue? 
Dirk Manske 

 
 simultaneous explanation of the resonance peak and kinks is 
possible 
 → extract U ≈ 2eV (high Tc is possible) 
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3 types of non-equilibrium experiments 
po

te
nt

ia
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optical control 

D. Fausti et al.,  
Science 331, 189 (2011) 

new transient ground state 

coherent excitation 

bandwidth 

coherent oscillation 

non-equilibrium spectroscopy 
recovery of the ground state 



Dirk Manske        

Content 

Motivation: how does the superconducting condensate 
response? Role of phonons? 

 

Theory: Equations of motion for coherent dynamics, quantum 
kinetic equations in the nonadiabatic regime (DMT) 

 

Results:  order parameter (Higgs) oscillations 

  role of electron-phonon coupling 

  coherent phonons vs. phonon bath 

  multi-band effects 
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Motivation I: pump-probe spectroscopy 

Two kinds of information can be 
extracted: 
 
• Time domain: conductivity change 
∆σ, depending on time delay ∆t 
 
• Energy domain: change in the 
conductivity spectra 

Bi2212 

R.A. Kaindl et al., PRB 72, 060510(R) (2005) 
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Motivation II: time-resolved ARPES (1) 

• Hot electrons dissipate on 2 distinct 
time scales: 110fs and 2ps 
 

• Only 10-20 % of the total lattice 
modes dominate the coupling strength 
 

• (averaged) electron-phonon 
coupling λ < 0.25 
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Motivation III: time-resolved ARPES (2) 

● Observation of 
coherent phonons 
in EuFe2As2 

PRL  108, 097002 (2012) 
J. Fink and co-workers 



Dirk Manske        

Motivation IV: glue of high-Tc cuprates? 
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Often used: effective theories 

Two different models for the description of time-resolved experiments: 
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Microscopic approach: 

we consider:  (a) tetragonal lattice 
  (b) tight-binding band structure, e.g. from Kordyuk et al. (‘03) 
  (c) s- or d-wave order parameter 

with 
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DMT: Calculation of coherent dynamics 
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Case I: single band 
no phonons 

Results 
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Calculating the superconductor’s response 

• Gaussian pump and 
probe pulses 

→ arriving at a closed set of differential equations 
(case I : no phonons) 

• Pulse duration will 
become important! 
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Order parameter oscillations: 2 regimes 

Non-adiabatic regime: gap continues to oscillate (Higgs) even when the 
pump pulse has been switched off long ago 

lead: 
2∆0 = 2.7mev 

(∆(t=∞) = ∆∞)  
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Analytic solution possible 

Yuzbashyan, Tsyplyatyev, Altshuler, PRL 2006 

∆∞  
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Intensity dependence 

Intensity 
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Quasiparticle occupations: no oscillations 

kF 
● Peak position(s) related to pump energy 
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Probe spectra: no oscillations (well known) 

Pauli blocking 

● Gap oscilllations cannot be 
perceived by means of a 
simple probe specrum 

See also: 
Papenkort, Axt, and Kuhn, PRB ‘07 
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Case II: single band, 
coherent phonons <b> ≠ 0 

Role of  τp … pulse duration 
 τph ... phonon period 
and τ∆ ... dynamical time scale ~h/(2|∆|) ?        
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Density-Matrix Formalism 

No bath approximation → Cluster expansion: 
coupling of phonon-assisted quantities such as 

and 

→ solve numerically 6 Boltzmann-like equations 

Phonon equations for and 
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Phonon amplitude: Adiabatic regime τp > τ∆ , τph  

τp = 20000fs 
∆ = 1.35 

pulse 

● Creation of coherent phonons possible for τph < τ∆  < < τp 
● Inclusion of incoherent phonons would lead to damping 

● only transient effect, 
no coupling to Higgs 
oscillations 
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Crossover to non-adiabatic regime 

ωph = 2.0 
    ∆ = 1.35 

● Occurence of Quantum beats: 
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Non-adiabatic regime τp < τ∆ 

 τp = 500fs 
   ∆= 1.35 

 
∆∞ = 0.85 

● Coherent phonons are resonantly enhanced 
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● off-resonant: 
2∆∞ = 1.7 and 2.3meV 

● resonant: 
2∆∞ = 2.0meV = ωph 

● tune the order parameter 
oscillations exactly to 
resonance 
by adjusting the integrated 
pump intensity 

PRB 84, 214513 (2011) 
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Order parameter oscillations: theory 

arXiv:1309.7318  
PRB, in press (2014) 
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Order parameter oscillations: Experiment (1) 

● s-wave superconductor, 
non-adiabatic regime 

● oscillation frequency in excellent 
accordance with asymptotic gap value 

● collective Higgs mode detected 

Ryo Shimano and co-workers, University of  Tokyo 
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Order parameter oscillations: Experiment (2) 

PNAS 2013 
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Case III:  single band, 
   phonons in equilibrium 
   <b> = 0 
   (bath approximation) 

Motivation: time-resolved Raman scattering  
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Density-Matrix Formalism (bath approximation) 

apply Markovian approximation (energy conservation), then: 

with 
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Reminder: ‘Conventional’ Raman scattering 
R

am
an

 in
te

ns
ity

 

transferred 
energy 

2 ∆0 

∼ω 

∼ω3 

A1g 
 B1g 
   B2g 

same spectra for 
A1g, B1g and B2g 

polarization dependence 

B1g  ∝  (cos kx  - cos ky) 
R. Hackl, D. Einzel et al. (1995) 

D. Manske et al. (PRB (RC)1997) 
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Exp.: Time-resolved Raman scattering (I) 

Bi2212, B1g-polarization 

Phys. Rev. Lett. 102, 177004 (2009) ∆t = 3ps 
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Exp.: Time-resolved Raman scattering (II) 

Bi2212, B1g-polarization 

Phys. Rev. Lett. 102, 177004 (2009) 
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Comparison with experiment 

• signatures of phonons 

Phys. Rev. Lett. 102, 177004 (2009) 

This image cannot currently be displayed.
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Compare with YBCO, bonding band 

widely used assumptions: 
• buckling mode  ∝  cos2(qx/2) + cos2(qy/2) 
• breathing mode  ∝  sin2(qx/2) + sin2(qy/2) 

• LDA calculation of the electron-phonon coupling strength 

R. Heid, K.-P- Bohnen, R. Zeyher, and D. Manske, Phys. Rev. Lett. 100, 137001 (2009) 

Kx 

Ky 
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Momentum- and frequency-resolved coupling 
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Case IV:  2 bands, 
   no phonons 
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Density-Matrix Formalism 

→ solve numerically 8 Boltzmann-like equations (still no phonons) 
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Multiband effects 

Calculation for pnictides: g11 = 0 = g22
 and g12 < 0 
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Order parameter oscillations (1): MgB2 

● Characteristic changes due to inter-band scattering: 
2 coupled harmonic oscillators A. Akbari et al., EPL 101. 17002 (2013) 
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Order parameter oscillations (2): pnictides ? 

● Quantum beats are possible 
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Summary 

●  case 1: no phonons, single band 
→ OP oscillations in the non-adiabatic regime if τp < τ∆ 

●  case 2: coherent phonons, single band 
→ Quantum Beats and resonance effects if  

●  case 3: incoherent (bath) phonons, single band 
→ Comparison with time-resolved Raman scattering 

Micoscopic theory for ultrafast dynamics in superconductors 
employing Density Matrix Theory: 
What happens after the pump pulse? 

●  case 4: no phonons, two bands 
→ 2 damped oscillators, quantum beats 
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Outlook 

●  light-induced superconductivity (A. Cavalleri, MPI) 
 
→ Pumping pre-formed pairs (within Density-Matrix Theory) 
 

●  consideration of non-centrosymmetric superconductors 
(E. Bauer and M. Sigrist (Eds.), ‘Non-centrosymmetric superconductors’, 
Lecture Notes in Physics 847, Springer 2012) 
 
→ Interdependence of singlet- and triplet-pairing 

●  consideration of strong electron-electron interaction 
(together with T. Tohyama (Tokyo), 1D extended Hubbard model) 
 



Max Planck Institute for Solid State Research 

Thank you! 

END OF TALK 
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