Kyoto, Feb. 12, 2014

Peculiar phenomena in the timedynamics of condensed matter systems undergoing symmetrybreaking transitions.

Jozef Stefan Institute, Ljubljana, Slovenia Nanocenter - Center of Excellence for Nanoscience and Nanotechnology University of Ljubljana, Dept. of Physics Jožef Stefan International Postgraduate School

European Research Council Established by the European Commission

K 🗄 N 🝕

PCC MINT

SHARNY

FRANCE

Experiments: (at JSI)

L. Stojchevska I. Vaskivskyi T. Mertelj P. Kusar R. Yusupov

Samples+: I. Fisher (Stanford) P. Sutar (JSI) L.Forro (EPFL) H.Berger (EPFL)

Lithography: D.Svetin (JSI)

Theory Serguei Brazovskii (Univ. Paris Sud Orsay)

Viktor Kabanov (JSI)

European Research Council Established by the European Commission

Our aim is to investigate trajectories of systems though symmetry-breaking transitions under **nonequilibrium conditions**, in real time.

Examples:

💪 : N 🛷

- HT Superconductors
- CDW transitions

Peculiar phenomena:

- Amplitude mode decay and creation from defect annihilation
- Coupling to collective modes from previous eons
- A transition to a **hidden** state: *IT*-TaS₂

 $\psi(t) = A(t)e^{i\phi(t)}$ (au_1 and au_2)

 $\psi(t) \simeq A(t) \ (\tau_1)$

Transitions... in time

The non-linear energy functional

T<T

The Landau non-linear energy functional originally written to describe a structural phase transition:

 $F = \alpha \Psi^2 + \beta \Psi^4 + H \Psi$ where $\alpha = \alpha_0 (T - T_c)$

leads to the Ginzburg-Landau equation for a superconductor:

 $F = F_0 + \alpha |\psi|^2 + \frac{\beta}{2} |\psi|^4 + \frac{1}{2m} |(-i\hbar\nabla - 2e\mathbf{A})\psi|^2 + \frac{|\mathbf{B}|^2}{2\mu_0}$

13, Number 16

PHYSICAL REVIEW LETTERS

19 October 1964

BROKEN SYMMETRIES AND THE MASSES OF GAUGE BOSONS

Peter W. Higgs Tait Institute of Mathematical Physics, University of Edinburgh, Edinburgh, Scotland (Received 31 August 1964)

Lagrangian density, includes K.E. term

$$L(\varphi) = \partial_{\mu}\varphi^*\partial^{\mu}\varphi - \alpha\varphi^*\varphi - \frac{\beta}{2}|\varphi^*\varphi|^2$$

J. Phys. A: Math. Gen., Vol. 9, No. 8, 1976. Printed in Great Britain. © 1976

Topology of cosmic domains and strings

T W B Kibble Blackett Laboratory, Imperial College, Prince Consort Road, Lond

2. The phase transition

Although our discussion will be quite general, for illustrative purposes it is convenient to have a specific example in mind. Let us consider an N-component real scalar field ϕ with a Lagrangian invariant under the orthogonal group O(N), and coupled in the usual way to $\frac{1}{2}N(N-1)$ vector fields represented by an antisymmetric matrix B_{μ} . We can take

$$L = \frac{1}{2} (D_{\mu} \phi)^2 - \frac{1}{8} g^2 (\phi^2 - \eta^2)^2 + \frac{1}{8} \operatorname{Tr}(B_{\mu\nu} B^{\mu\nu})$$
(1)

with

$$D_{\mu}\phi = \partial_{\mu}\phi - eB_{\mu}\phi$$
$$B_{\mu\nu} = \partial_{\nu}B_{\mu} - \partial_{\mu}B_{\nu} + e[B_{\mu}, B_{\nu}]$$

The time-dependent GLT

The energy of the system can be described in terms of a time-dependent Ginzburg-Landau functional[†]:

$$F = \alpha \Psi^2 + \beta \Psi^4 + H \Psi$$

where instead of the usual temperature dependence (*T* - *T_c*), the *first* term is <u>time-dependent</u>: $\alpha = [1 - \frac{T_e(t, \mathbf{r})}{T_c}]$

The equation of motion is obtained via the Euler-Lagrange theorem :

$$\frac{1}{\omega_0^2}\frac{\partial^2}{\partial t^2}A + \frac{\alpha}{\omega_0}\frac{\partial}{\partial t}A - (1-\eta)A + A^3 - \xi^2\frac{\partial^2}{\partial z^2}A = 0$$

The order parameter, $\psi(t) = A(t) e^{i\phi(t)}$

Yusupov et al, Nat Phys. (2010)

⁺ Phase fluctuations are assumed to be slow.

"The quench process"

"Cosmic Quench" experiments

"Cosmology in L⁴He", Zurek (1985)

Optical experiments :

- offer high temporal resolution (easily to 7 fs)
- flexibility in probe wavelengths (THz - UV)
- we can probe the symmetry of different states

Yusupov, R. *et al. Nat Phys* **6**, 681–684 (2010).

The response function is related to Ramanlike processes

Toda et al., arXiv:1311.4719

- 1. Kabanov, V., Demsar, J., Podobnik, B. & Mihailovic, D. Phys Rev B 59, 1497–1506 (1999).
- 2. Dvorsek, D. et al. Phys Rev B 66, 020510 (2002).
- 3. Mihailovic, D., et al,., J Phys-Condens Mat 25, 404206 (2013).

I. Photoinduced absorption (PIA):

1. Garrett, G., Albrecht, T., WHITAKER, J. & Merlin, R. *Phys Rev Lett* **77**, 3661–3664 (1996).

2. Stevens, T. E., Kuhl, J. & Merlin, R. *Phys Rev B* 65, 144304 (2002).

CRS and PIA probe processes can be distinguished by polarisation selection rules

🔍 🗄 📐 🖑

Time-dynamics of broken (rotational) symmetry in a high-Tc superconductor (Bi-2212-OP)

The D laser pulse is incident at t = 0.

Polarisation anisotropy changes with time

b(Bi-O)

🔸 🗄 🔪 💎 🍟 🤷

Laser vaporisation of the superconducting condensate

4.5N

Single particle (electron) energy relaxation via boson (phonon) emission

 $t_{\rm D} \sim 1 \text{ ps}$

Bosons destroy pairs, creating QPs The SC condensate is vaporised in less than I ps

- Kusar, P., Kabanov, V., Demsar, J. & Mertelj, T. Controlled Vaporization of the Superconducting Condensate in Cuprate Superconductors by Femtosecond Photoexcitation. *Phys Rev Lett* **101**, 227001 (2008).
- Stojchevska, L. *et al.* Mechanisms of nonthermal destruction of the superconducting state and melting of the charge-density-wave state by femtosecond laser pulses. *Phys Rev B* 84, 180507(R) (2011).

The quench through T_c

🔨 🔊 🔊 💎

erc

Higgs mode osc. period: $2\pi/\omega_H \sim 0.1 \text{ ps}$ Quench time: $\tau_Q = 0.1 \sim 30 \text{ ps}$ Ginzburg-Landau time: $\tau_{GL} = 1/\Delta_0 = 0.1 \simeq 5 \text{ ps}$ Recovery of the superconducting state measured by the amplitude of the transient reflectivity $A_s(t)$

No Higgs oscillations observed in $A_s(t)$!

수 후 🔪 🛷 🎽 🧕

Superconducting gap recovery: QP recombination time compared with reflectivity amplitude

Modelling of superconducting state recovery:

TDGL:

Photoexcited electron energy γ_{i} loss:

🔨 🔊 🔊 💎

$$\gamma_e T_e \frac{dT_e}{dt} = -\gamma_L (T_e - T_L) + P(t)$$

$$C_L(T)\frac{dT_L}{dt} = \gamma_L(T_e - T_L)$$

Basic TDGL equation: $\frac{\partial \psi}{\partial t} = \alpha_r(t, z)\psi - \psi |\psi|^2 + \nabla^2 \psi + \eta$

Boundary conditions: $\psi(0,z) = \begin{cases} 0 & , \mathcal{F}(z) > \mathcal{F}_T; \\ (1 - \frac{\mathcal{F}}{\mathcal{F}_T} e^{-z/\lambda})\sqrt{1 - T(0,z)/T_c} & , \mathcal{F}(z) < \mathcal{F}_T; \end{cases}$

Doesn't work very well!

🔨 i 🔪 🛷

erc

🔨 🕄 🐼 erc **+** G. E. Volovik, *Physica B* **280** 122-127 (2000).

Kibble-Zurek mechanism: Evidence for vortex formation and annihilation on 10 ps timescale

Laser spot size: $d = 60 \mu m$

laser beam

Coherence length: $\xi_{||} \simeq 2 nm$

Regions are causally unconnected and evolve independently after the quench which causes the formation of topological defects.

Vortices created in the quench annihilate on a timescale of 10-30 ps

D. Mihailovic, T. Mertelj, V.V. Kabanov, and S. Brazovskii, J Phys-Condens Mat 25, 404206 (2013).

<....N

erc

CDWs

For $\phi \ll 2\pi/\omega_{AM}$, $\psi(t) \simeq A(t)$

Detection of the onset of order in CDW systems: The elementary excitations

I. Detection of the gap through quasiparticle (fermionic) excitations

COMPLEX

Yusupov et al.,PRL **101**, 246402 (2008).

Coherent control and data processing using the Amplitude mode and Grover's superpositional search algorithm

APPLIED PHYSICS LETTERS

VOLUME 80, NUMBER 5

4 FEBRUARY 2002

Femtosecond data storage, processing, and search using collective excitations of a macroscopic quantum state

D. Mihailovic,^{a)} D. Dvorsek, V. V. Kabanov, and J. Demsar *Jozef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia*

The calculated optical response of the collective mode after a quench

The transient reflectivity $\Delta R/R$ after a quench at $\Delta t_{12}=0$

U S G G

Quasi-particle (Fermion) kinetics: gap recovery

The Real

The collective mode spectrum as a function of time after quench

The most obvious feature: oscillations of intensity of the collective mode

Order parameter calculation

The eq. of motion:

$$\frac{1}{\omega_0^2}\frac{\partial^2}{\partial t^2}A + \frac{\alpha}{\omega_0}\frac{\partial}{\partial t}A - (1-\eta)A + A^3 - \xi^2\frac{\partial^2}{\partial z^2}A = 0$$

Calculated A(z,t) after quench:

Experimental parameters:

ežet Steran Institute

$$\tau_{QP} = 650 \text{ fs}$$

 $\omega_0/2\pi = 2.18 \text{ THz}$
 $\eta = 2$
 $\alpha = 0.1$

Order parameter calculation

The eq. of motion:

$$\frac{1}{\omega_0^2}\frac{\partial^2}{\partial t^2}A + \frac{\alpha}{\omega_0}\frac{\partial}{\partial t}A - (1-\eta)A + A^3 - \xi^2\frac{\partial^2}{\partial z^2}A = 0$$

Calculated A(z,t) after quench:

Contraction in

1 DI K

Order parameter dynamics: theory vs. expt.

The first three picoseconds: Critical dynamics as $t \rightarrow t_c$

ISSUES NOT ADDRESSED:

Response selection rules: AM

has A symmetry only $t > t_c$

- coupling to other pre-existing collective modes (phonons)
- initial energy relaxation
- fluctuation phenomena

Incoherent topological defect dynamics: collective mode broadening for $\Delta t_{12} > 7$ ps

The collective mode linewidth reflects the presence of domain walls

Mertelj, T. *et al.* Incoherent Topological Defect Recombination Dynamics in TbTe_{3}. *Phys Rev Lett* **110**, 156401 (2013).

Related systems show (not so subtle) differences

The trajectory to a <u>hidden</u> state in *IT*-TaS₂

Stojchevska et al, Science **344**, 177 (2014).

What is a hidden state?

It is a state of matter which cannot be reached under ergodic conditions, by slowly changing *T*, *P*, *B*-field, etc.

Switching to a hidden state can be achieved by a **nonthermal process** which occurs under highly nonequilibrium conditions of the underlying vacuum

The importance of e-h (a)symmetry for creating photoinduced states

Just heating $(T_e^*=T_L^*=...)$. No doping.

The importance of e-h (a)symmetry for creating photoinduced states

The competing states of *IT*-TaS₂ under equilibrium conditions

Other nearby states in IT-TaS₂: Superconductivity under pressure, or Fe doping

Fe doping:

Li et al. EPL 2012

Sipos et al (Nat.Mat. 2008)

Switching to a hidden state in 1T-TaS₂ : Resistance change after a (single) 35 fs pulse

Reflectivity switching by (laser pulses

🔨 中 N 🍕

Switching only occurs for short pulses $\tau_L < 4 \text{ ps}$

Stojchevska et al, Science 344, 177 (2014).

IT-TaS₂: Collective mode switching

3 unusual characteristics of the hidden state

- I. Narrow collective mode peak implies long range order with no intermediate states, or inhomogeneity
- 2. Switching is achieved <u>only</u> with sub-5 ps pulses
- 3. Reproducible metal-Insulator bistability (not sample dependent)

🔨 形 N

Photo"doping" and ordering of voids

The addition of a h+ to the C structure annihilates a polaron, creating a defect.

The nearly-commensurate state of IT-TaS₂

McMillan (1975), Nakanishi et al (1977), Serguei Brazovskii, (2013)

domain walls (DW)

Free energy:

Insulating patches of polarons

ne

 n_h

Why is the H state so stable?

Line dislocation

Conclusions

Hidden states of matter

Stojchevska et al, Science **344**, 177 (2014). Yusupov, R. *et al. Nat Phys* **6**, 681 (2010). Mertelj, T. *et al. Phys Rev Lett* **110**, 156401 (2013). Mihailovic et al., J Phys-Condens Mat 25, 404206 (2013).