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Outline

- The Higgs mode in condensed matter

- How to see the Higgs  mode in 2d?

- Universal dynamics near quantum criticality

- Can the Higgs be seen through conductivity measurements?

- Amplitude mode in solid Helium 4?



Spontaneous Symmetry Breaking

Ubiquitous phenomenon in physics.   Order parameter !(",#) gets an 
expectation value.  Usually results in massless Goldstone bosons.

SSB - Ground state has less symmetry than the Hamiltonian

MAGNETS DENSITY  WAVESSUPERCONDUCTORS THE UNIVERSE

magnetization pair field Fourier mode Higgs field

physical system broken symmetry Goldstone bosons
ferromagnets spin rotational invariance spin waves

crystals, density waves translational invariance phonons and phasons
superfluids phase rotation invariance phonons
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Higgs mechanism vs Higgs boson

Amplitude and phase:

Gauged O(2)  theory :

L = 1
2 |(@µ + ieAµ) |2 �m2

�
 ⇤ � 1

�2 � 1
4Fµ⌫Fµ⌫

Gauge invariance: , ! e�i⇠  

✶  There is no ξ particle !

✶  The Higgs boson (η) has mass,                      ,  independent of e
✶   Photon becomes massive triplet
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Metal Superconductor 
Meissner Effect, 1933

persistent currents

Higgs mechanism, but where is the “Higgs boson”?

Higgs mechanism in condensed matter



Some experimental candidates

R. Sooryakumar et al., PRB (1981)

Superconducting 2H-NbSe2 

P. B. Littlewood and C. M. Varma, PRB (1982)

First observation of  
the Higgs mode?

Higgs (SC)

CDW

Higgs

of singlet and triplet states on each dimer bond: the QD
state is described by the singlet component (jsi), and the
properties of the RC phase by an additional triplet compo-
nent. For the pressure-induced QPT, the wave function j!ii
of a dimer may be written as

 j!ii ! "cos"jsi# sin"eiQAF$ri jtzi%; (2)

where " increases monotonically with pressure from 0 at
p ! pc to #=4 for perfect antiferromagnetism, QAF is the
ordering wave vector, and ri the position of dimer i. The
triplet mixing coefficient sin" is the sole parameter deter-
mining all the physical properties of the ordered state
(TN&p', ms&p' ! g$B sin"=

!!!
2

p
, !L&p'), and is specified

entirely by the pressure evolution of the superexchange
parameters. The emergence of the longitudinal mode is
contained naturally in this theoretical framework.

The problem of modeling hydrostatic pressure effects in
TlCuCl3 is underconstrained. We have fitted the data by
assuming both an increase of J2 (an interdimer coupling in
the a-c plane [4]) and a reduction of J. Either change in
isolation acts to close the gap and to alter the dispersion,
making this linear at the band minimum at the QPT, where
a perfectly SU(2)-symmetric system would have three spin
waves. The evolution of the mode gaps at p < pc, and the
ordered moment and longitudinal mode gap at p > pc, are
reproduced with the functional forms J&p' ! J&1# A0p#
B0p2', J2&p' ! J2&1# A2p# B2p2'. The exponents of
the transition are dictated by the linear terms, which were
taken as A2 ! (A0 ! 0:006 60 kbar(1, while the qua-
dratic coefficients B2 ! (B0 ! 0:001 09 kbar(2 were
also necessary to ensure an adequate fit.

Similarly, the anisotropic interactions required to ac-
count for the experimental observations may reside on
the dimer bonds, on the interdimer bonds, or on both. In
a minimal model where only J is anisotropic, one may

define uni- and biaxial anisotropy parameters Jxx and Jyz
by Jx ! J# Jxx, Jy;z ! J) Jyz. The conclusions obtained
using interdimer exchange anisotropy are qualitatively
identical. The excitation gaps are very sensitive to this
anisotropy, which can thus be deduced with extremely
high precision from the INS data. The low-pressure data
show two resolved mode energies, the best fit giving gaps
! ! 0:65 meV and 0.79 meV. The separation of the upper
mode (T2) is reproduced by an easy-plane, uniaxial anisot-
ropy Jxx ! 0:008J for pure intradimer anisotropy (J0xx !
(0:004J0 for pure interdimer anisotropy). At p > pc we
observe (a) one massive ‘‘spin-wave’’ (transverse, T2)
mode with gap ! ! 0:38 meV, (b) one nearly massless
transverse mode (T1) with fitted gap 0.023 meV, and (c) one
excitation which becomes higher-lying away from pc (L).
(a) The gap of T2 is in good agreement with the value 0.8%
( ( 0:4%) for the uniaxial anisotropy component deduced
at p < pc. (b) The data correspond to a biaxial anisotropy
of 0.002% ( ( 0:001%), a value impossible to resolve at
p < pc, and are more appropriately considered as setting
an effective upper limit on the possible mass of T1. (c) The
longitudinal mode shows a characteristic pressure evolu-
tion where the gap scales with the ordered moment and
Néel temperature, following precisely the parameter-free
curve in Fig. 4(b). The data for all pressures are described
by the same anisotropy, and its value is consistent with that
deduced from electron spin resonance measurements [12].

The field-induced QPT, because it involves a U(1)-
symmetric order parameter and quadratically dispersing
bosons, has been described as a Bose-Einstein condensa-
tion (BEC) of the single magnon mode which becomes
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FIG. 4 (color online). Longitudinal mode in the pressure-
controlled RC phase. (a) INS intensity as a function of energy
for predominantly longitudinal fluctuations (red peaks, Fig. 2)
measured at Q ! &0 4 0'. (b) Longitudinal mode gap !L&p': the
black curve obtained from the theoretical description has a
square-root form, !L&p' / &p( pc'1=2. (c) Integrated scattering
intensity, which is inversely proportional to the gap for p > pc.
(d) FWHM: here the black line is a guide to the eye, with fitted
exponent % ! 0:5) 0:1.
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FIG. 3 (color online). Summary of INS results for the gaps of
all three triplet excitations as functions of pressure at T !
1:85 K. Data for TN&p' from Ref. [5]. Modes L and T1 are
degenerate within experimental resolution at p < pc. Red sym-
bols show the longitudinal mode L at p > pc. Solid and dashed
lines are theoretical fits.

PRL 100, 205701 (2008) P H Y S I C A L R E V I E W L E T T E R S week ending
23 MAY 2008

205701-3

Antiferromagnetic TlCuCl3

Ch. Rüegg et al., PRL (2008)

Higgs mode softens at 
quantum phase transition



Charge density waves

Density modulation:
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FS pump-probe spectroscopy

phason

Higgs

HP

Y. Ren, Z. Xu, and G. Lüpke, J. Chem. Phys. 120, 4755 (2004)

One-dimensional CDW conductor K0.3MoO3 :

phason Higgs

probe probe



How to see the Higgs mode!
 in 2d?



The Higgs decay

(Nepomnyaschii)2 (1978) 
Sachdev (1999), Zwerger (2004)

d=2   Longitudinal response diverges at low frequency,  even at weak 
coupling!

The Higgs mode can decay into a pair of Goldstone bosons:
!

k

Higgs mode

Goldstone modes

�

⇡

d=3  Higgs decay rate is finite. As g→gc, Higgs mode becomes sharper and sharper 
Affleck and Wellman (1992)



infrared divergent in d=2

⇠ !�1

(Nepomnyaschii)2 (1978) 
Sachdev (1999), Zwerger (2004)

⇠ !3

infrared regular in d=2
Podolsky, Auerbach and Arovas, PRB  (2011)

Behavior of different response functions

scalar susceptibility

�scalar(!) = h|~�|2(!)|~�|2(�!)i

longitudinal susceptibility

�
long

(!) = h�
1

(!)�
1

(�!)i

large N results 
for g = 0.84 gc



Scalar: couples to the magnitude of the order parameter

Example: lattice depth modulation of bosons

H
probe

= u
ext

|~�|2

Longitudinal versus scalar measurements

Example: neutron scattering in an antiferromagnet.

Longitudinal: couples to order parameter as a vector

H
probe

= ~h
ext

· ~�



Why is the scalar response sharper?

Radial motion is less damped since it is not effected by azimuthal 
meandering.

�1

|~�|2

large N results 
for g = 0.84 gc



superfluid

Bosons in an optical lattice

n=1

n=2
Mott insulator  
incompressible

hbi = 0

@hnii
@µ

= 0

quantum critical  
points

t>>U : superfluid (Bose condensate)

U>>t:  Mott insulator (gapped charge fluctuations)

Bose-Hubbard model H = �t
X

hiji

b†i bj + U
X

i

n2
i � µ

X

i

ni



superfluid

1

2) Close to Mott lobe, relativistic model,

Goldstone and Higgs.

2

Dynamics:

Bosons in an optical lattice

Bose-Hubbard model H = �t
X

hiji

b†i bj + U
X

i

n2
i � µ

X

i

ni

1) Far from Mott lobe, Gross-Pitaevskii model,

Gapless Goldstone mode, but no Higgs.
Varma, J. Low Temp. Phys. (2002) 
Huber et al, PRB (2008) 
Huber and Lindner, PNAS (2011)
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The ‘Higgs’ amplitude mode at the two-dimensional
superfluid/Mott insulator transition
Manuel Endres1, Takeshi Fukuhara1, David Pekker2, Marc Cheneau1, Peter Schaub1, Christian Gross1, Eugene Demler3,
Stefan Kuhr1,4 & Immanuel Bloch1,5

Spontaneous symmetry breaking plays a key role in our under-
standing of nature. In relativistic quantum field theory, a broken
continuous symmetry leads to the emergence of two types of fun-
damental excitation: massless Nambu–Goldstone modes and a
massive ‘Higgs’ amplitude mode. An excitation of Higgs type is
of crucial importance in the standard model of elementary particle
physics1, and also appears as a fundamental collective mode in
quantum many-body systems2. Whether such a mode exists in
low-dimensional systems as a resonance-like feature, or whether
it becomes overdamped through coupling to Nambu–Goldstone
modes, has been a subject of debate2–9. Here we experimentally find
and study a Higgs mode in a two-dimensional neutral superfluid
close to a quantum phase transition to a Mott insulating phase. We
unambiguously identify the mode by observing the expected reduc-
tion in frequency of the onset of spectral response when approach-
ing the transition point. In this regime, our system is described by
an effective relativistic field theory with a two-component
quantum field2,7, which constitutes a minimal model for spontan-
eous breaking of a continuous symmetry. Additionally, all micro-
scopic parameters of our system are known from first principles
and the resolution of our measurement allows us to detect excited
states of the many-body system at the level of individual quasi-
particles. This allows for an in-depth study of Higgs excitations that
also addresses the consequences of the reduced dimensionality and
confinement of the system. Our work constitutes a step towards
exploring emergent relativistic models with ultracold atomic gases.

Higgs modes are amplitude oscillations of a quantum field and
appear as collective excitations in quantum many-body systems as a
consequence of spontaneous breaking of a continuous symmetry.
Close to a quantum critical point, the low-energy physics of such
systems is in many cases captured by an effective Lorentz-invariant
critical theory2. The minimal version of such a theory describes the
dynamics of a complex order parameter Y 5 jYjeiw near a quantum
phase transition between an ordered (jYj. 0) and a disordered phase
(jYj5 0). Within the ordered phase, the classical energy density has a
‘Mexican hat’ shape (Fig. 1a) and the order parameter takes on a non-
zero value in the minimum of this potential. Its phase, w, thereby
acquires a definite value through spontaneous breaking of the rota-
tional symmetry (that is, U(1) symmetry). Expanding the field around
the symmetry-broken ground state leads to two types of mode: a
Nambu–Goldstone mode and a Higgs mode. These modes are related
to phase and amplitude variations of Y, respectively (Fig. 1a). In
contrast to the phase mode, the amplitude mode has a finite excitation
gap (that is, a finite mass), which is expected to show a characteristic
softening when approaching the disordered phase (Fig. 1a). The
sketched minimal model of an order parameter with N 5 2 compo-
nents belongs to a class of O(N) relativistic field theories, which are
essential for the study of quantum phase transitions2.

Despite the fundamental nature of the amplitude mode, a full theor-
etical understanding of it has not yet been achieved. In particular, the

decay of the amplitude mode into lower-lying phase modes, especially
in two dimensions, has led to considerable theoretical interest.
Specifically, it has been discussed whether a resonance-like feature
persists or the decay results in a low-frequency divergence2–9.

The earliest experimental evidence for a Higgs mode stems from the
observation of an unexpected peak in Raman scattering in a super-
conducting charge density wave compound10, which was later inter-
preted as a signal of an amplitude mode11. Further examples of
experiments in solid-state systems can be found in ref. 6. None of these
experiments have studied the mode spectrum across a quantum phase
transition, except for neutron scattering experiments on quantum
antiferromagnets12. In contrast to the work presented here, a
resonance-like response of an amplitude mode is expected in these
systems, because the phase transition occurs in three dimensions.

Ultracold bosonic atoms in optical lattices offer unique possibilities
to study quantum phase transitions in a system with reduced dimen-
sionality13. These systems are nearly ideal realizations of the Bose–
Hubbard model, which is parameterized by a tunnelling amplitude
J and an on-site interaction energy U (Methods). The coupling
parameter j 5 J/U is easily tunable via the lattice depth, and the dimen-
sionality of the system can be reduced by suppressing hopping in a
certain direction14. At a critical coupling jc and commensurate filling,
the system undergoes a quantum phase transition from a superfluid
(ordered) to a Mott insulating (disordered) phase13, which is described
by an O(2) relativistic field theory2,7. A number of theoretical works
have studied the Higgs mode in this system7–9,15–19. In particular, it has
been argued that a modulation of the lattice depth can reveal a Higgs
mode even in a two-dimensional system6,8,9.

Previous experiments using a lattice modulation amplitude of 20%
were unable to identify the gapped amplitude mode20,21, most likely
owing to the strong drive. A recent theoretical analysis of experiments
using Bragg scattering in three-dimensional superfluids interpreted
parts of the measured spectrum to be the result of nonlinear coupling
to a short-wavelength amplitude mode22. Here we experimentally
study the long-wavelength and low-energy response, which is
described by a relativistic field theory at the quantum critical point.

Our experiment began with the preparation of a two-dimensional,
degenerate gas of 87Rb atoms in a single antinode of an optical
standing wave23. To realize different couplings j, we loaded the two-
dimensional gas into a square optical lattice with variable depth V0

(Fig. 1b). For our trapping parameters and atom numbers (Methods),
the density in the centre of the trap is typically one atom per lattice site.
We then modulated the lattice depth with an amplitude of 3% at
variable frequencies nmod. The modulation time Tmod was set to 20
oscillation cycles (Tmod 5 20/nmod), thus avoiding an unwanted
enhanced response at higher frequencies present in experiments with
a fixed modulation time20,21. We allowed for an additional hold time
such that the sum of modulation and hold time was constant at 200 ms.
To quantify the response, we adiabatically increased the lattice depth to
reach the atomic limit (j < 0) and measured the temperature of the

1Max-Planck-Institut für Quantenoptik, 85748 Garching, Germany. 2Department of Physics, California Institute of Technology, Pasadena, California 91125, USA. 3Physics Department, Harvard University,
Cambridge, Massachusetts 02138, USA. 4University of Strathclyde, SUPA, Glasgow G4 0NG, UK. 5Ludwig-Maximilians-Universität, 80799 München, Germany.
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system with a recently developed scheme based on single-atom-
resolved detection24. It is the high sensitivity of this method that
allowed us to reduce the modulation amplitude by almost an order
of magnitude compared with earlier experiments20,21 and to stay well
within the linear response regime (Supplementary Information).

The results for selected lattice depths V0 are shown in Fig. 2b. We
observe a gapped response with an asymmetric overall shape that will
be analysed in the following paragraphs. Notably, the maximum
observed temperature after modulation is well below the ‘melting’
temperature for a Mott insulator in the atomic limit25, Tmelt < 0.2U/kB

(kB, Boltzmann’s constant), demonstrating that our experiments probe
the quantum gas in the degenerate regime. To obtain numerical values
for the onset of spectral response, we fitted each spectrum with an error
function centred at a frequency n0 (Fig. 2b, black lines). With j
approaching jc, the shift of the gap to lower frequencies is already
visible in the raw data (Fig. 2b) and becomes even more apparent for
the fitted gap n0 as a function of j/jc (Fig. 2a, filled circles). The n0 values
are in quantitative agreement with a prediction for the Higgs gap nSF at
commensurate filling (solid line):

hnSF=U~ 3
ffiffiffi
2
p

{4
" #

1zj=jcð Þ
$ %1=2

j=jc{1ð Þ1=2

Here h denotes Planck’s constant. This value is based on an analysis of
variations around a mean-field state7,16 (throughout the manuscript,
we have rescaled jc in the theoretical calculations to match the value
jc<0:06 obtained from quantum Monte Carlo simulations26).

The sharpness of the spectral onset can be quantified by the width of
the fitted error function, which is shown as vertical dashed lines in
Fig. 2a. Approaching the critical point, the spectral onset becomes
sharper, and the width normalized to the centre frequency n0 remains
constant (Supplementary Fig. 3). The constancy of this ratio indicates
that the width of the spectral onset scales with the distance to the
critical point in the same way as the gap frequency.

We observe similar gapped responses in the Mott insulating regime
(Supplementary Information and Fig. 5a), with the gap closing con-
tinuously when approaching the critical point (Fig. 2a, open circles).
We interpret this as a result of combined particle and hole excitations
with a frequency given by the Mott excitation gap that closes at the
transition point16. The fitted gaps are consistent with the Mott gap

hnMI=U~ 1z 12
ffiffiffi
2
p

{17
" #

j=jc
$ %1=2

1{j=jcð Þ1=2

where nMI is the Mott gap as predicted by mean-field theory16 (Fig. 2a,
dashed line).

The observed softening of the onset of spectral response in the
superfluid regime has led to an identification of the experimental
signal with a response from collective excitations of Higgs type. To
gain further insight into the full in-trap response, we calculated the
eigenspectrum of the system in a Gutzwiller approach16,22 (Methods
and Supplementary Information). The result is a series of discrete
eigenfrequencies (Fig. 3a), and the corresponding eigenmodes show
in-trap superfluid density distributions, which are reminiscent of the
vibrational modes of a drum (Fig. 3b). The frequency of the lowest-
lying amplitude-like eigenmode n0,G closely follows the long-wave-
length prediction for homogeneous commensurate filling nSF over a
wide range of couplings j/jc until the response rounds off in the vicinity
of the critical point due to the finite size of the system (Fig. 3c). Fitting
the low-frequency edge of the experimental data can be interpreted as
extracting the frequency of this mode, which explains the good
quantitative agreement with the prediction for the homogeneous com-
mensurate filling in Fig. 2a. Modes at different frequencies from the
lowest-lying amplitude-like mode broaden the spectrum only above
the onset of spectral response.

An eigenmode analysis, however, does not yield any information
about the finite spectral width of the modes, which stems from the
interaction between amplitude and phase excitations. We will consider
the question of the spectral width by analysing the low-, intermediate-
and high-frequency parts of the response separately. We begin by
examining the low-frequency part of the response, which is expected
to be governed by a process coupling a virtually excited amplitude
mode to a pair of phase modes with opposite momenta. As a result,
the response of a strongly interacting, two-dimensional superfluid is
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Figure 1 | Illustration of the Higgs mode and experimental sequence.
a, Classical energy density V as a function of the order parameter Y. Within the
ordered (superfluid) phase, Nambu–Goldstone and Higgs modes arise from
phase and amplitude modulations (blue and red arrows in panel 1). As the
coupling j 5 J/U (see main text) approaches the critical value jc, the energy
density transforms into a function with a minimum at Y 5 0 (panels 2 and 3).
Simultaneously, the curvature in the radial direction decreases, leading to a
characteristic reduction of the excitation frequency for the Higgs mode. In the
disordered (Mott insulating) phase, two gapped modes exist, respectively
corresponding to particle and hole excitations in our case (red and blue arrow in
panel 3). b, The Higgs mode can be excited with a periodic modulation of the
coupling j, which amounts to a ‘shaking’ of the classical energy density
potential. In the experimental sequence, this is realized by a modulation of the
optical lattice potential (see main text for details). t 5 1/nmod; Er, lattice recoil
energy.
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Energy absorption rate of 
periodically modulated lattice 

/ !�00
scalar(!)



expected to diverge at low frequencies, if the probe in use couples
longitudinally to the order parameter2,4,5,9 (for example to the real part
of Y, if the equilibrium value of Y was chosen along the real axis), as is
the case for neutron scattering. If, instead, the coupling is rotationally
invariant (for example through coupling to jYj2), as expected for
lattice modulation, such a divergence could be avoided and the

response is expected to scale as n3 at low frequencies3,6,9,17.
Combining this result with the scaling dimensions of the response
function for a rotationally symmetric perturbation coupling to jYj2,
we expect the low-frequency response to be proportional to
(1 2 j/jc)

22n3 (ref. 9 and Methods). The experimentally observed sig-
nal is consistent with this scaling at the ‘base’ of the absorption feature
(Fig. 4). This indicates that the low-frequency part is dominated by
only a few in-trap eigenmodes, which approximately show the generic
scaling of the homogeneous system for a response function describing
coupling to jYj2.

In the intermediate-frequency regime, it remains a challenge to
construct a first-principles analytical treatment of the in-trap system
including all relevant decay and coupling processes. Lacking such a
theory, we constructed a heuristic model combining the discrete spec-
trum from the Gutzwiller approach (Fig. 3a) with the line shape for a
homogeneous system based on an O(N) field theory in two dimen-
sions, calculated in the large-N limit3,6 (Methods). An implicit assump-
tion of this approach is a continuum of phase modes, which is
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until a rounding off takes place close to the critical point due to the finite size of
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response in the superfluid regime shows a scaling compatible with the
prediction (1 2 j/jc)

22n3 (Methods). Shown is the temperature response
rescaled with (1 2 j/jc)

2 for V0 5 10Er (grey), 9.5Er (black), 9Er (green), 8.5Er

(blue) and 8Er (red) as a function of the modulation frequency. The black line is
a fit of the form anb with a fitted exponent b 5 2.9(5). The inset shows the same
data points without rescaling, for comparison. Error bars, s.e.m.
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Figure 2 | Softening of the Higgs mode. a, The fitted gap values hn0/U
(circles) show a characteristic softening close to the critical point in quantitative
agreement with analytic predictions for the Higgs and the Mott gap (solid line
and dashed line, respectively; see text). Horizontal and vertical error bars
denote the experimental uncertainty of the lattice depths and the fit error for the
centre frequency of the error function, respectively (Methods). Vertical dashed
lines denote the widths of the fitted error function and characterize the
sharpness of the spectral onset. The blue shading highlights the superfluid

region. b, Temperature response to lattice modulation (circles and connecting
blue line) and fit with an error function (solid black line) for the three different
points labelled in a. As the coupling j approaches the critical value jc, the change
in the gap values to lower frequencies is clearly visible (from panel 1 to panel 3).
Vertical dashed lines mark the frequency U/h corresponding to the on-site
interaction. Each data point results from an average of the temperatures over
,50 experimental runs. Error bars, s.e.m.
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The ‘Higgs’ amplitude mode at the two-dimensional
superfluid/Mott insulator transition
Manuel Endres1, Takeshi Fukuhara1, David Pekker2, Marc Cheneau1, Peter Schaub1, Christian Gross1, Eugene Demler3,
Stefan Kuhr1,4 & Immanuel Bloch1,5

Spontaneous symmetry breaking plays a key role in our under-
standing of nature. In relativistic quantum field theory, a broken
continuous symmetry leads to the emergence of two types of fun-
damental excitation: massless Nambu–Goldstone modes and a
massive ‘Higgs’ amplitude mode. An excitation of Higgs type is
of crucial importance in the standard model of elementary particle
physics1, and also appears as a fundamental collective mode in
quantum many-body systems2. Whether such a mode exists in
low-dimensional systems as a resonance-like feature, or whether
it becomes overdamped through coupling to Nambu–Goldstone
modes, has been a subject of debate2–9. Here we experimentally find
and study a Higgs mode in a two-dimensional neutral superfluid
close to a quantum phase transition to a Mott insulating phase. We
unambiguously identify the mode by observing the expected reduc-
tion in frequency of the onset of spectral response when approach-
ing the transition point. In this regime, our system is described by
an effective relativistic field theory with a two-component
quantum field2,7, which constitutes a minimal model for spontan-
eous breaking of a continuous symmetry. Additionally, all micro-
scopic parameters of our system are known from first principles
and the resolution of our measurement allows us to detect excited
states of the many-body system at the level of individual quasi-
particles. This allows for an in-depth study of Higgs excitations that
also addresses the consequences of the reduced dimensionality and
confinement of the system. Our work constitutes a step towards
exploring emergent relativistic models with ultracold atomic gases.

Higgs modes are amplitude oscillations of a quantum field and
appear as collective excitations in quantum many-body systems as a
consequence of spontaneous breaking of a continuous symmetry.
Close to a quantum critical point, the low-energy physics of such
systems is in many cases captured by an effective Lorentz-invariant
critical theory2. The minimal version of such a theory describes the
dynamics of a complex order parameter Y 5 jYjeiw near a quantum
phase transition between an ordered (jYj. 0) and a disordered phase
(jYj5 0). Within the ordered phase, the classical energy density has a
‘Mexican hat’ shape (Fig. 1a) and the order parameter takes on a non-
zero value in the minimum of this potential. Its phase, w, thereby
acquires a definite value through spontaneous breaking of the rota-
tional symmetry (that is, U(1) symmetry). Expanding the field around
the symmetry-broken ground state leads to two types of mode: a
Nambu–Goldstone mode and a Higgs mode. These modes are related
to phase and amplitude variations of Y, respectively (Fig. 1a). In
contrast to the phase mode, the amplitude mode has a finite excitation
gap (that is, a finite mass), which is expected to show a characteristic
softening when approaching the disordered phase (Fig. 1a). The
sketched minimal model of an order parameter with N 5 2 compo-
nents belongs to a class of O(N) relativistic field theories, which are
essential for the study of quantum phase transitions2.

Despite the fundamental nature of the amplitude mode, a full theor-
etical understanding of it has not yet been achieved. In particular, the

decay of the amplitude mode into lower-lying phase modes, especially
in two dimensions, has led to considerable theoretical interest.
Specifically, it has been discussed whether a resonance-like feature
persists or the decay results in a low-frequency divergence2–9.

The earliest experimental evidence for a Higgs mode stems from the
observation of an unexpected peak in Raman scattering in a super-
conducting charge density wave compound10, which was later inter-
preted as a signal of an amplitude mode11. Further examples of
experiments in solid-state systems can be found in ref. 6. None of these
experiments have studied the mode spectrum across a quantum phase
transition, except for neutron scattering experiments on quantum
antiferromagnets12. In contrast to the work presented here, a
resonance-like response of an amplitude mode is expected in these
systems, because the phase transition occurs in three dimensions.

Ultracold bosonic atoms in optical lattices offer unique possibilities
to study quantum phase transitions in a system with reduced dimen-
sionality13. These systems are nearly ideal realizations of the Bose–
Hubbard model, which is parameterized by a tunnelling amplitude
J and an on-site interaction energy U (Methods). The coupling
parameter j 5 J/U is easily tunable via the lattice depth, and the dimen-
sionality of the system can be reduced by suppressing hopping in a
certain direction14. At a critical coupling jc and commensurate filling,
the system undergoes a quantum phase transition from a superfluid
(ordered) to a Mott insulating (disordered) phase13, which is described
by an O(2) relativistic field theory2,7. A number of theoretical works
have studied the Higgs mode in this system7–9,15–19. In particular, it has
been argued that a modulation of the lattice depth can reveal a Higgs
mode even in a two-dimensional system6,8,9.

Previous experiments using a lattice modulation amplitude of 20%
were unable to identify the gapped amplitude mode20,21, most likely
owing to the strong drive. A recent theoretical analysis of experiments
using Bragg scattering in three-dimensional superfluids interpreted
parts of the measured spectrum to be the result of nonlinear coupling
to a short-wavelength amplitude mode22. Here we experimentally
study the long-wavelength and low-energy response, which is
described by a relativistic field theory at the quantum critical point.

Our experiment began with the preparation of a two-dimensional,
degenerate gas of 87Rb atoms in a single antinode of an optical
standing wave23. To realize different couplings j, we loaded the two-
dimensional gas into a square optical lattice with variable depth V0

(Fig. 1b). For our trapping parameters and atom numbers (Methods),
the density in the centre of the trap is typically one atom per lattice site.
We then modulated the lattice depth with an amplitude of 3% at
variable frequencies nmod. The modulation time Tmod was set to 20
oscillation cycles (Tmod 5 20/nmod), thus avoiding an unwanted
enhanced response at higher frequencies present in experiments with
a fixed modulation time20,21. We allowed for an additional hold time
such that the sum of modulation and hold time was constant at 200 ms.
To quantify the response, we adiabatically increased the lattice depth to
reach the atomic limit (j < 0) and measured the temperature of the

1Max-Planck-Institut für Quantenoptik, 85748 Garching, Germany. 2Department of Physics, California Institute of Technology, Pasadena, California 91125, USA. 3Physics Department, Harvard University,
Cambridge, Massachusetts 02138, USA. 4University of Strathclyde, SUPA, Glasgow G4 0NG, UK. 5Ludwig-Maximilians-Universität, 80799 München, Germany.
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What happens near the quantum critical point???



Does the Higgs survive near!
quantum criticality?



Scaling near criticality

Podolsky and Sachdev, PRB (2012)

gap: � ⇠ |g � gc|⌫ ⌫ = 0.6717(1) (N = 2)

universal function

�scalar(!) = �3�2/⌫�s

⇣ !

�

⌘
+ . . .

Does it have a peak?



First indications

L. Pollet and N. Prokof’ev, PRL (2012)

2

1/N prediction
MISSING SPECTRAL DENSITY

FIG. 1. Universal scaling predictions for scaler susceptibility
(solid lines). The dashed-dotted line depicts prediction of
Ref. [12] which is missing most of the spectral density at the
relevant energy scale � ⇥ (1� U/Uc)

� . The two alternatives
for connecting universal power laws are shown by dashed lines
(one may also imagine multiple peaks in the crossover region).

momentum at the generic, i.e., non-mean-field, QCP of
the 2D Bose-Hubbard model and how it disappears with
detuning to the SF phase. Equally important are ques-
tions regarding finite temperature e⇥ects and the role of
trapping potential in experiments with ultra-cold atoms.
A theoretical treatment of the Higgs amplitude mode is
notoriously di⌅cult and controversial. In Refs. [5, 7–9]
exact scaling laws in the low-frequency limit were estab-
lished, as well as arguments given that the mode is at the
edge of the two-phonon continuum, rendering the mode
overdamped. Huber et al. used a variational Ansatz
which, however, predicted a spurious first order SF-MI
transition, and thus was limited to the parameter regime
away from quantum criticality [10, 11]. Podolsky et al.
generalized field theoretical results of Ref. [7] to high fre-
quencies and discussed in detail the scalar response func-
tion within the 1/N and a weak coupling expansions.
They revealed a broad peak whose maximum saturates at
finite value at the QCP and concluded that close enough
to the transition, it becomes impossible to identify the
Higgs energy from the scalar response function. Their
findings are in quantitative and qualitative disagreement
with those reported here. The major problem with re-
sults of Ref. [12] is strong violation of the universal low-
frequency scaling law for scalar response function [5],
S(⇥) ⇥ �3�2/�F (⇥/�), where � ⇥ (1 � U/Uc)� is the
characteristic energy scale in proximity of the quantum
critical point at Uc, and � = 0.6717 is the correlation
length exponent, see Fig. 1. As a result, the theory is
missing most of the spectral density in the � < ⇥ < 4J
range. We refer to the supplementary material for a de-
tailed comparison [13].

In this Letter, we employ quantum Monte Carlo sim-
ulations of the 2D model (3) in the lattice path integral

representation using the worm algorithm [14–16] to study
the spectral density of the kinetic energy correlation func-
tion at zero momentum, in combination with an analytic
continuation method. We unambiguously demonstrate
the existence of a low-energy resonance peak associated
with the Higgs boson in close vicinity of the QCP by dis-
criminating it from the second broad peak at the typical
lattice-model energies. The Higgs boson energy, ⇥H, ob-
tained from the peak maximum increases with detuning
from QCP nearly identically to that of the particle-hole
gap �MI in the MI phase. We observe that the spectral
density associated with the Higgs boson broadens with
detuning and quickly overlaps with other higher energy
modes and is no longer seen as a resonance peak with
detuning as small at 20 % from QCP, in line with the
parameter regime where particle and hole masses were
found equal on the MI side [17]. On the other hand, we
find that the Higgs boson remains visible in the spec-
tral density at finite temperatures as high as Tc, and
even in the normal phase in close vicinity of QCP! More-
over, although at high temperature the resonance is no
longer visible in the spectral density, the onset of strong
response at low-frequency is barely modified. These re-
sults, as well as simulations of realistic trapped systems,
explain why the experimental protocol of extracting ⇥H

from the onset of strong response [18] works even in the
absence of low-frequency resonance.
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FIG. 2. Spectral density S(�) of the kinetic energy corre-
lation function for U/J = 16 (thick solid line), 14 (dashed
line), and 12 (thin solid line) at low temperature T/J = 0.1.
The Higgs amplitude mode (�H) emerges as an isolated, well-
defined peak on approach to the quantum critical point at
Uc = 16.7424.

A small uniform modulation of the optical lattice
depth [19] leads, under mapping to the Bose-Hubbard
model (3), to the perturbation proportional to the total

Numerics on Bose-Hubbard model

Scaling function to O(1/N)

Podolsky and Sachdev, PRB (2012)
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Discrete model:

Monte Carlo Simulations

Worm algorithm:

Dual loop model  
with N flavors:

x

y

⌧

System size: 1 ⌧ ⇠ ⌧ L (1 ⌧ 30 ⌧ 200)

Z =

Z
D~� e�S[~� ]

S = �
X

hiji

~�i · ~�j + µ
X

i

|~�i|2 + g
X

i

|~�i|4

Numerical analytical continuation from Matsubara to real frequencies



Tracking the Higgs peak

Scalar susceptibility in ordered phase: �s(!) =
⌦
�2(!)�2(�!)

↵

|�g| = 12%

|�g| = 0.25%

mH = B|�g|⌫

Gazit, Podolsky, Auerbach, PRL (2013)



Spectral function at the QCP

Mean field:
mH

�
=

p
2

Conclusion: Higgs resonance survives close to criticality in d=2 

Chen et al, Bose-Hubbard Model (2013):
mH

�
= 3.3(8)

Rancon and Dupuis (2014):
mH

�
= 2.4

�0.08 �0.04 0.00 0.04
�g

0.0

0.2

0.4

0.6

0.8

mH

N = 2

N = 3

0.0

0.2

0.4

0.6

0.8

�
0 1 2 3

µ
2

3

4

5

g

Broken symmetry

(a)

Quantum disordered

(b)

charge gap

Higgs mass

mH

mH

�
= 2.1(3)



Tenenbaum Katan and Podolsky, unpublished

Scaling functions in D= 4-ε dimensions
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Higgs in optical conductivity

�SF(!) = 2⇡�Q

✓
!2 �m2
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⇥(! �mH)

Lindner, Auerbach (2010) 
Podolsky, Auerbach, Arovas (2011)
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Gapped modes of a !
quantum solid



Helium 4 - Phase diagram



Inelastic neutron scattering

Markovic et al., PRL 88, 195301 (’02)  

Optical mode observed!
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Multiple optical modes?
Look in different  
directions & polarizationsCHAPTER 2. THEORETICAL AND HISTORICAL BACKGROUND21

Figure 2.8: {002} scattering plane of a bcc crystal in the reciprocal lattice. Solid
circles are Bragg points. Two examples of generating excitations are
shown, with two diÆerent polarizations: The blue arrow shows momentum
transfer Q which creates a phonon with a longitudinal polarization. Red-
Violet arrows show a similar process with a transverse polarization

Lubensky [23]). The scattering function is defined as the dynamic structure factor:

S(Q, !) =
(2º)3

v0
[
X

j

bp
m

(Q · ªjs)e
°W ]2

KbT

~!2
qsº

∞qs

!2 + ∞2
qs

(2.12)

where

∞qs =
!2

qs

2°qs
(2.13)

°qs is the peak half-width at half-maximum(HWHM). W is the Debye-Weller factor

that is defined in eq 2.17. Measuring the dynamic structure factor is the goal of

neutron scattering experiments. A factor that is proportional to (
°!
Q ·
°!
ª qs)2 is part of

the dynamic structure factor. Here,
°!
ª s denotes the polarization vector of excitation

belonging to branch s. This polarization can be Longitudinal (atoms vibrate along

the propagation direction of the wave) or transverse (atoms vibrate in perpendicular

to the propagation direction of the wave). Figure 2.8 shows the {002} reciprocal

scattering plane. In this plane it is possible to measure excitation along two principal

directions of bcc solids: [110] and [100] directions. For these two directions we can

!"! !"# !"$ !"% !"& !"'
!"!

!"'

#"!

#"'

$"!

$"'

%"!

()*+(,-./01

(2.3(4/5.6

(

,
#

,
$

7

(8
9
.
0:
1
((
;<

.
=
>

!(((;0"6"?>

;!(!(!>

(

((110)

Markovic et al., PRL 88, 195301 (’02)  
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Figure 4.8: Dispersion relation in the (100) direction with longitudinal polarization.
Solid black squares represent experimental phonon peaks, open green
squares represent the phonon spectrum calculated using PIMC[10], blue
rectangles are experimental points for the LOB excitation, and solid red
circles are experimental points for the HOB excitation. Dashed lines are
guide to the eye.

lowest final momentum transfer possible, that gives a better resolution but lower flux.

All scans are summarized in figure 4.8, this is why there are multiple symbols for each

energy transfer. To summarize, with all the diÆerent setups the overall picture shows

three excitations. 1) A phonon branch that fits nicely to the PIMC simulation. 2) A

HOB excitation that was observed before in the (110) direction and now is seen in this

direction as well. Again the HOB interacts with the acoustic phonons causing mode

coupling between branches. 3) LOB excitation is observed in the two polarization.

It can be observed in high resolution scans, and it is missing from lower resolution

scans.

L(100)

Pelleg et al, JLTP 151, 1164 (’08)  
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Figure 4.6: Dispersion relation in the (100) direction with transverse polarization.
Solid black squares represent experimental points for phonons, open green
squares are for phonons calculated using PIMC [10], and the blue rectan-
gles are experimental points for the LOB excitation.

observed. A comparison with the old data by Minkiewicz [6], Markovich [8], and to

the calculation of the SCP theory [4] will be addressed later. Also, the origin of the

LOB will be discussed in the ”discussion” section. To conclude, not only a phonon

excitation was observed but another optic excitation was discovered, with very narrow

line-width and without dispersion.

4.3.2 Longitudinal polarization

In this polarization the data is not an easy to interpret as in the transverse polariza-

tion. The reasons might be that the longitudinal phonons are less intense. Certainly,

with more measurement time the ratio between signal to background was a lot bet-

ter. In addition, as will be discussed later on, the phonons and one of the optic-like

excitations interact. This interaction causes energy loss, so the scattered intensity

for certain values of energy is small. Moreover, in this direction the data is more

complex, since several excitations are found.

T(100)

Pelleg et al, PRB 73, 180301R (’06)  



Harmonic theory of solids

Equilibrium:

R

r(R) = R+ u(R)

Fluctuations:
R

r u

Lindemann criterion:                            ! melting 
p

hu2i = 0.1�R

Uharm =
1

2

X

RR0

X

µ⌫

uµ(R)Dµ⌫(R�R0)u⌫(R
0)

 Small fluctuations
p

hu2i ⌧ �R

Monatomic Bravais lattice   !   acoustic phonons only

Uanh ⇠ u3 + u4 + . . .Corrections to harmonic theory:



Helium - A quantum solid
Zero point motion H. Glyde, “Helium, Solid”

Can we think of solid He-4 as a charge density wave (CDW)?
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HELIUM, SOLID 1

Helium, Solid
Henry R. Glyde

Introduction

Helium was first solidified at the famous Kamerlingh Onnes low-temperature
physics laboratories in Leiden by W. H. Keesom [1] on June 25, 1926. The
initial experiments by Sir Francis Simon at Oxford University and by Keesom
and their collaborators focused on the melting curve, the specific heat, and the
thermal conductivity of solid helium as a test of our early understanding of
solids. These measurements showed, for example, that the Lindemann criterion
of melting does not hold in solid helium. This pioneering work up to 1957 is
elegantly and beautifully reviewed by Domb and Dugdale [2], a review that
stands today as an excellent introduction to solid helium along with the books
and reviews by Wilks [3], Keller [4], Wilks and Betts [5], Glyde [6], Dobbs [7]
and Roger et al. [8].

The pair potential v(r) between helium atoms is precisely known [9,10]. It is
weakly attractive at large separation, r ! 3 Å−1, with a maximum well depth
ϵ = 10.95 K. At close approach r ≤ σ = 2.63 Å, where hard-core radius σ
defined by v(σ) = 0, v(r) becomes steeply repulsive. The potential parameters
σ and ϵ of the rare gases are compared in Table 1. The potential seen by a
helium atom lying between two atoms in a linear lattice is depicted in Fig. 1.
The well shape, which is wide and anharmonic, is clearly dominated by the
repulsive core of v(r).

Table 1: Comparison of solid 3He (at V = 24 cm3/mole) and solid 4He (at V =
21.1 cm3/mole) with the heavier rare-gas crystals. The interatomic potential
parameters are the core radius σ [v(σ) = 0] and the well depth ϵ for the following
potentials: He [9,10]; Ne, HFD-C2 [9]; Ar, HFD-C [9]; Kr, HFD-C (HFGKK) [9].
For Xe we quote σ and ϵ from Barker et al. [11].

Debye Melting Debye zero Lindemann Potential parameters de Boer
Rare-gas temperature temperature point energy parameter parameter
crystal θD (K) TM (K) EZD = 9

8θD δ = ⟨u2⟩1/2/R σ (Å) ϵ (K) Λ
3He(bcc) 19 0.65 21 0.368 2.637 10.95 0.325
4He(bcc) 25 1.6 28 0.292 2.637 10.95 0.282
Ne 66 24.6 74 0.091 2.758 42.25 0.061
Ar 84 83.8 95 0.048 3.357 143.22 0.019
Kr 64 161.4 72 0.036 3.579 199.9 0.011
Xe 55 202.0 62 0.028 3.892 282.35 0.0065

Since helium is light, its thermal wavelength, λT , is long, e. g., at T = 1.0 K,
λT ∼ 10 Å for 4He. Helium is therefore difficult to localize. Attempts to localize
it lead to a high kinetic or zero point energy. Since v(r) is weak, helium does
not solidify under attraction via v(r). Rather, it solidifies only under pressure



Collective modes of 3d CDW

Solve linearized Euler-Lagrange equations

6 pairs of reciprocal lattice vectors ! 12 modes! 

Dynamical Ginzburg-Landau: L =
1
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Fluctuations about mean-field:

 i(r, t) =  ⇤
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⇢(r, t) =
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Apply Ginzburg-Landau analysis to 3d solid Alexander and McTague, PRL (1978)

Assume weakly first order transition  !                           is small⇢(r) ⌘ n(r)� n0



Spectrum

T(100)
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What neutrons see:

Structure factor: S(q,!) = h⇢(q,!)⇢(�q,�!)i

12 modes = 3 acoustic + 9 optical
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Symmetry of the excitations
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Visualizing the optical modes
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dxy “quadrupolon” has vanishing z-axis spring constant ! flat band



Quantum Monte Carlo

Continuous space path integral QMC 
!

2000 He4 Atoms

AB-inito simulations (Aziz potential)

0.5 1.0 1.5 2.0 2.5 3.0

r

rm

-1.0

-0.5

0.0

0.5

1.0
V(r)



QMC results

A clear peak at

!H ⇡ 1meV

Structure factor:
S(q,!) = h⇢(q,!)⇢(�q,�!)i ⇢(q, t) =
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n
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“Scalar susceptibility”:

⇥(q, t) =
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n
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Ss(q,!) = h⇥(q,!)⇥(�q,�!)i
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conductivity 
pseudogap
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cold atomic gases

d=2

of singlet and triplet states on each dimer bond: the QD
state is described by the singlet component (jsi), and the
properties of the RC phase by an additional triplet compo-
nent. For the pressure-induced QPT, the wave function j!ii
of a dimer may be written as

 j!ii ! "cos"jsi# sin"eiQAF$ri jtzi%; (2)

where " increases monotonically with pressure from 0 at
p ! pc to #=4 for perfect antiferromagnetism, QAF is the
ordering wave vector, and ri the position of dimer i. The
triplet mixing coefficient sin" is the sole parameter deter-
mining all the physical properties of the ordered state
(TN&p', ms&p' ! g$B sin"=

!!!
2

p
, !L&p'), and is specified

entirely by the pressure evolution of the superexchange
parameters. The emergence of the longitudinal mode is
contained naturally in this theoretical framework.

The problem of modeling hydrostatic pressure effects in
TlCuCl3 is underconstrained. We have fitted the data by
assuming both an increase of J2 (an interdimer coupling in
the a-c plane [4]) and a reduction of J. Either change in
isolation acts to close the gap and to alter the dispersion,
making this linear at the band minimum at the QPT, where
a perfectly SU(2)-symmetric system would have three spin
waves. The evolution of the mode gaps at p < pc, and the
ordered moment and longitudinal mode gap at p > pc, are
reproduced with the functional forms J&p' ! J&1# A0p#
B0p2', J2&p' ! J2&1# A2p# B2p2'. The exponents of
the transition are dictated by the linear terms, which were
taken as A2 ! (A0 ! 0:006 60 kbar(1, while the qua-
dratic coefficients B2 ! (B0 ! 0:001 09 kbar(2 were
also necessary to ensure an adequate fit.

Similarly, the anisotropic interactions required to ac-
count for the experimental observations may reside on
the dimer bonds, on the interdimer bonds, or on both. In
a minimal model where only J is anisotropic, one may

define uni- and biaxial anisotropy parameters Jxx and Jyz
by Jx ! J# Jxx, Jy;z ! J) Jyz. The conclusions obtained
using interdimer exchange anisotropy are qualitatively
identical. The excitation gaps are very sensitive to this
anisotropy, which can thus be deduced with extremely
high precision from the INS data. The low-pressure data
show two resolved mode energies, the best fit giving gaps
! ! 0:65 meV and 0.79 meV. The separation of the upper
mode (T2) is reproduced by an easy-plane, uniaxial anisot-
ropy Jxx ! 0:008J for pure intradimer anisotropy (J0xx !
(0:004J0 for pure interdimer anisotropy). At p > pc we
observe (a) one massive ‘‘spin-wave’’ (transverse, T2)
mode with gap ! ! 0:38 meV, (b) one nearly massless
transverse mode (T1) with fitted gap 0.023 meV, and (c) one
excitation which becomes higher-lying away from pc (L).
(a) The gap of T2 is in good agreement with the value 0.8%
( ( 0:4%) for the uniaxial anisotropy component deduced
at p < pc. (b) The data correspond to a biaxial anisotropy
of 0.002% ( ( 0:001%), a value impossible to resolve at
p < pc, and are more appropriately considered as setting
an effective upper limit on the possible mass of T1. (c) The
longitudinal mode shows a characteristic pressure evolu-
tion where the gap scales with the ordered moment and
Néel temperature, following precisely the parameter-free
curve in Fig. 4(b). The data for all pressures are described
by the same anisotropy, and its value is consistent with that
deduced from electron spin resonance measurements [12].

The field-induced QPT, because it involves a U(1)-
symmetric order parameter and quadratically dispersing
bosons, has been described as a Bose-Einstein condensa-
tion (BEC) of the single magnon mode which becomes
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FIG. 4 (color online). Longitudinal mode in the pressure-
controlled RC phase. (a) INS intensity as a function of energy
for predominantly longitudinal fluctuations (red peaks, Fig. 2)
measured at Q ! &0 4 0'. (b) Longitudinal mode gap !L&p': the
black curve obtained from the theoretical description has a
square-root form, !L&p' / &p( pc'1=2. (c) Integrated scattering
intensity, which is inversely proportional to the gap for p > pc.
(d) FWHM: here the black line is a guide to the eye, with fitted
exponent % ! 0:5) 0:1.
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FIG. 3 (color online). Summary of INS results for the gaps of
all three triplet excitations as functions of pressure at T !
1:85 K. Data for TN&p' from Ref. [5]. Modes L and T1 are
degenerate within experimental resolution at p < pc. Red sym-
bols show the longitudinal mode L at p > pc. Solid and dashed
lines are theoretical fits.
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