Higgs mode and universal dynamics near quantum criticality

Daniel Podolsky

YITP, Kyoto University June 2014

Podolsky, Auerbach, Arovas, PRB 84, 174522 (2011) Podolsky and Sachdev, PRB 86, 054508 (2012) Gazit, Podolsky, Auerbach, PRL 110, 140401 (2013) Gazit, Podolsky, Auerbach, Arovas PRB 88, 235108 (2013) Tenenbaum Katan and Podolsky, to appear (2014) Gazit, Podolsky, Auerbach, to appear (2014)

Outline

- The Higgs mode in condensed matter
- How to see the Higgs mode in 2d?
- Universal dynamics near quantum criticality
- Can the Higgs be seen through conductivity measurements?
- Amplitude mode in solid Helium 4?

Spontaneous Symmetry Breaking

SSB - Ground state has less symmetry than the Hamiltonian

Ubiquitous phenomenon in physics. Order parameter $\phi(x,t)$ gets an expectation value. Usually results in massless Goldstone bosons.

n symmetry Goldstone bosons
ional invariance spin waves
onal invariance phonons and phasons
ation invariance phonons

MAGNETS

magnetization $\,M\,$

SUPERCONDUCTORS pair field $\Psi = |\Psi| e^{i\phi}$

DENSITY WAVES Fourier mode $|\varrho_G| e^{i\phi_G}$

THE UNIVERSE Higgs field $\phi = \frac{1}{\sqrt{2}} \begin{pmatrix} \phi^+ \\ \phi^0 \end{pmatrix}$

Spontaneous Symmetry Breaking

N-component order parameter:

$$oldsymbol{\phi} = \left(egin{array}{cc} \phi_1 \ \phi_2 \ \ldots \ \phi_N \end{array}
ight)$$

$$V(\boldsymbol{\phi}) = g\boldsymbol{\phi}^2 + u\left(\boldsymbol{\phi}^2\right)^2$$

Collective excitations

Action:

$$\mathcal{S} = \int d^d x \, dt \, \left[(\partial_t \phi)^2 - (\nabla \phi)^2 - g \phi^2 - u(\phi^2)^2 \right]$$

Higgs mechanism vs Higgs boson

Amplitude and phase: $\psi = (1 + \eta) e^{i\xi}$

Gauge invariance: $\psi \to e^{-i\xi} \psi$, $\widetilde{A}_{\mu} \equiv A_{\mu} - e^{-1} \partial_{\mu} \xi$

Then:

$$\mathcal{L} = \frac{1}{2} \left(\partial_{\mu} \eta \right)^{2} + m^{2} \left(\eta^{2} + 2\eta^{3} + 2\eta^{4} \right) + e^{2} (1+\eta)^{2} \tilde{A}_{\mu} \tilde{A}^{\mu} - \frac{1}{4} \tilde{F}_{\mu\nu} \tilde{F}^{\mu\nu}$$

- * There is no ξ particle !
- * Photon becomes massive triplet A_{μ}
- * The Higgs boson (η) has mass, $m_H = \sqrt{2}m$, independent of e

Higgs mechanism in condensed matter

Meissner Effect, 1933

Superconductor

Higgs mechanism, but where is the "Higgs boson"?

Some experimental candidates

Superconducting 2H-NbSe₂

R. Sooryakumar et al., PRB (1981)

First observation of the Higgs mode?

P. B. Littlewood and C. M. Varma, PRB (1982)

Antiferromagnetic TlCuCl₃

Ch. Rüegg et al., PRL (2008)

Higgs mode softens at quantum phase transition

Charge density waves

Density modulation:

$$\delta \rho(x) = \operatorname{Re}\left[\psi e^{iQx}\right] = |\psi|\cos(Qx + \varphi)$$

Complex order parameter:

 $\psi = \left|\psi\right|e^{i\varphi}$

"phason"

"amplitudon" (Higgs)

 $\omega \sim cq$

FS pump-probe spectroscopy

One-dimensional CDW conductor K_{0.3}MoO₃:

Y. Ren, Z. Xu, and G. Lüpke, J. Chem. Phys. 120, 4755 (2004)

How to see the Higgs mode in 2d?

The Higgs decay

The Higgs mode can decay into a pair of Goldstone bosons:

d=3 Higgs decay rate is finite. As $g \rightarrow g_c$, Higgs mode becomes sharper and sharper Affleck and Wellman (1992)

d=2 Longitudinal response diverges at low frequency, even at weak coupling!

(Nepomnyaschii)² (1978) Sachdev (1999), Zwerger (2004)

Behavior of different response functions

longitudinal susceptibility

$$\chi_{\text{long}}(\omega) = \langle \phi_1(\omega)\phi_1(-\omega) \rangle \sim \omega^{-1}$$

infrared divergent in d=2

(Nepomnyaschii)² (1978) Sachdev (1999), Zwerger (2004)

scalar susceptibility

$$\chi_{\text{scalar}}(\omega) = \langle |\vec{\phi}|^2(\omega) |\vec{\phi}|^2(-\omega) \rangle \sim \omega^3$$

infrared regular in d=2

Podolsky, Auerbach and Arovas, PRB (2011)

Longitudinal versus scalar measurements

Longitudinal: couples to order parameter as a vector

$$\mathcal{H}_{\text{probe}} = \vec{h}_{\text{ext}} \cdot \vec{\phi}$$

Example: neutron scattering in an antiferromagnet.

$$\mathcal{H}_{\text{probe}} = u_{\text{ext}} |\vec{\phi}|^2$$

Example: lattice depth modulation of bosons

Why is the scalar response sharper?

Radial motion is less damped since it is not effected by azimuthal meandering.

Bosons in an optical lattice

Bose-Hubbard model $H = -t \sum_{i} b_i^{\dagger} b_j + U \sum_i n_i^2 - \mu \sum_i n_i$

t>>U : superfluid (Bose condensate)

U>>t: Mott insulator (gapped charge fluctuations)

Bosons in an optical lattice

Bose-Hubbard model
$$H=-t\sum_{\langle ij
angle}b_i^\dagger b_j+U\sum_i n_i^2-\mu\sum_i n_i$$

Dynamics:

1) Far from Mott lobe, Gross-Pitaevskii model, $\mathcal{L} = -i\psi^*\partial_t\psi - \frac{\hbar^2}{2m^*}|\nabla\psi|^2 + \mu|\psi|^2 - g|\psi|^4$

Gapless Goldstone mode, but no Higgs.

Varma, J. Low Temp. Phys. (2002) Huber et al, PRB (2008) Huber and Lindner, PNAS (2011)

2) Close to Mott lobe, relativistic model,

$$\mathcal{L} = |\partial_t \psi|^2 - c^2 |\nabla \psi|^2 + r|\psi|^2 - u|\psi|^4$$

Goldstone and Higgs.

The 'Higgs' amplitude mode at the two-dimensional superfluid/Mott insulator transition

Manuel Endres¹, Takeshi Fukuhara¹, David Pekker², Marc Cheneau¹, Peter Schau β^1 , Christian Gross¹, Eugene Demler³, Stefan Kuhr^{1,4} & Immanuel Bloch^{1,5}

LETTER

The 'Higgs' amplitude mode at the two-dimensional superfluid/Mott insulator transition

Manuel Endres¹, Takeshi Fukuhara¹, David Pekker², Marc Cheneau¹, Peter Schau β^1 , Christian Gross¹, Eugene Demler³, Stefan Kuhr^{1,4} & Immanuel Bloch^{1,5}

What happens near the quantum critical point???

Does the Higgs survive near quantum criticality?

Scaling near criticality

gap:
$$\Delta \sim |g - g_c|^{\nu}$$
 $\nu = 0.6717(1)$ $(N = 2)$

$$\chi_{scalar}(\omega) = \Delta^{3-2/\nu} \Phi_s \left(\frac{\omega}{\Delta}\right) + \dots$$

universal function

Podolsky and Sachdev, PRB (2012)

Does it have a peak?

First indications

Numerics on Bose-Hubbard model

L. Pollet and N. Prokof'ev, PRL (2012)

Scaling function to O(1/N)

Podolsky and Sachdev, PRB (2012)

Monte Carlo Simulations

Discrete model:

$$\mathcal{Z} = \int \mathcal{D}\vec{\phi} e^{-S\left[\vec{\phi}\right]}$$
$$S = -\sum_{\langle ij \rangle} \vec{\phi}_i \cdot \vec{\phi}_j + \mu \sum_i |\vec{\phi}_i|^2 + g \sum_i |\vec{\phi}_i|^4$$

Worm algorithm:

Dual loop model with N flavors:

System size: $1 \ll \xi \ll L$ $(1 \ll 30 \ll 200)$

Numerical analytical continuation from Matsubara to real frequencies

Tracking the Higgs peak

Gazit, Podolsky, Auerbach, PRL (2013)

Spectral function at the QCP

$$\frac{m_H}{\Delta} = 2.1(3)$$
 Mean field: $\frac{m_H}{\Delta} = \sqrt{2}$

Conclusion: Higgs resonance survives close to criticality in d=2

Chen et al, Bose-Hubbard Model (2013): $\frac{m_H}{\Delta} = 3.3(8)$ Rancon and Dupuis (2014): $\frac{m_H}{\Delta} = 2.4$

Scaling functions in $D = 4 - \varepsilon$ dimensions

Tenenbaum Katan and Podolsky, unpublished

Higgs in optical conductivity

Lindner, Auerbach (2010) Podolsky, Auerbach, Arovas (2011)

Gapped modes of a quantum solid

Helium 4 – Phase diagram

Inelastic neutron scattering

Optical mode observed!

Markovic et al., PRL 88, 195301 ('02)

Multiple optical modes?

Look in different directions & polarizations

Pelleg et al, PRB 73, 180301R ('06)

Markovic et al., PRL 88, 195301 ('02)

Pelleg et al, JLTP 151, 1164 ('08)

Harmonic theory of solids

Small fluctuations $\sqrt{\langle \mathbf{u}^2 \rangle} \ll \Delta R$

$$U_{\text{harm}} = \frac{1}{2} \sum_{\mathbf{R}\mathbf{R}'} \sum_{\mu\nu} u_{\mu}(\mathbf{R}) D_{\mu\nu}(\mathbf{R} - \mathbf{R}') u_{\nu}(\mathbf{R}')$$

Monatomic Bravais lattice \Rightarrow acoustic phonons only

Corrections to harmonic theory: $U_{\rm anh} \sim u^3 + u^4 + \dots$

Lindemann criterion: $\sqrt{\langle \mathbf{u}^2 \rangle} = 0.1 \Delta R$ $rac{l}{ra}{rac{l}{rac}{rac{l}{rac{r}{rac{r}{$

Helium – A quantum solid

Zero point motion

H. Glyde, "Helium, Solid"

	Debye	Melting	Debye zero	Lindemann
Rare-gas	temperature	temperature	point energy	parameter
crystal	$\theta_{\rm D}~({\rm K})$	$T_M({ m K})$	$E_{\rm ZD} = \frac{9}{8}\theta_{\rm D}$	$\delta = \langle u^2 \rangle^{1/2}/R$
3 He(bcc)	19	0.65	21	0.368
4 He(bcc)	25	1.6	28	0.292
Ne	66	24.6	74	0.091
Ar	84	83.8	95	0.048
Kr	64	161.4	72	0.036
Xe	55	202.0	62	0.028

Can we think of solid He-4 as a charge density wave (CDW)?

Collective modes of 3d CDW

Apply Ginzburg-Landau analysis to 3d solid Alexander and McTague, PRL (1978)

Assume weakly first order transition $\Rightarrow \rho(\mathbf{r}) \equiv n(\mathbf{r}) - n_0$ is small

Dynamical Ginzburg-Landau:

$$L = \frac{1}{2} \int d^3 r \, \left(\frac{\partial \rho}{\partial t}\right)^2 - F_{\rm GL}$$

Fluctuations about mean-field:

$$o(\mathbf{r}, t) = \sum_{i} (\bar{\rho}_{i} + \psi_{i}(\mathbf{r}, t)) e^{i\mathbf{G}_{i} \cdot \mathbf{r}}$$
$$\psi_{i}(\mathbf{r}, t) = \psi^{*}_{-i}(\mathbf{r}, t)$$

Solve linearized Euler-Lagrange equations

6 pairs of reciprocal lattice vectors ⇒ 12 modes!

Spectrum

12 modes = 3 acoustic + 9 optical

Structure factor:

 $S(\mathbf{q},\omega) = \langle \rho(\mathbf{q},\omega)\rho(-\mathbf{q},-\omega) \rangle$

Symmetry of the excitations

Visualizing the optical modes

dxy "quadrupolon" has vanishing z-axis spring constant 🖙 flat band

Quantum Monte Carlo

AB-inito simulations (Aziz potential)

2000 He4 Atoms

Continuous space path integral QMC

QMC results

Structure factor:

$$S(\mathbf{q},\omega) = \langle \rho(\mathbf{q},\omega)\rho(-\mathbf{q},-\omega)\rangle \qquad \qquad \rho(\mathbf{q},t) = \sum_{n} e^{i\mathbf{q}\cdot\mathbf{r}_{n}(t)}$$

"Scalar susceptibility":

$$S_{\rm s}(\mathbf{q},\omega) = \left\langle \Theta(\mathbf{q},\omega)\Theta(-\mathbf{q},-\omega) \right\rangle \qquad \Theta(\mathbf{q},t) = \left| \sum_{n} e^{i\mathbf{q}\cdot\mathbf{r}_{n}(t)} \right|^{2}$$

Amplitude mode in bcc ⁴He?

Higgs Hunters

Dan Arovas circa 1981

Assa Auerbach

Snir Gazit

Heloise Nonne

Subir Sachdev

Yaniv Tenenbaum Katan

Thank you!