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Unusual Modes detected in NbSe(2) in Raman Scattering	


on entering the superconducting phase.	



Urbana Raman Scattering group (1979-80)
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Organization of this lecture:	


!
1. Basic Phenomenology of Superconductors. 	


      Phase and Amplitude co-ordinates.

2.  Derivation of Higgs using Nambu identities.

3.  How to couple to Higgs? Necessity of breaking number 	


    conservation. Necessity of particle-hole symmetry.

4.  New Experimental Results.

5.   Higgs in cold atoms.

Contrasting theory of superconductivity with electro-weak	


gauge theory : Can CMP say anything helpful?



Phenomenological understanding of Superconductivity:

London(s) (1935), Ginzburg-Landau (1950).	



Following the Meissner-Ochsenfeld Effect.

Superconductivity is 	


a MACROSCOPIC COHERENT QUANTUM STATE in 	


which the metallic electrons develop a STIFFNESS.	





with a Hamiltonian

H =
R
dd(r)

⇣
1

2m |(r� e⇤/cA) |2 + r| |2 + u| |4
⌘

The Ginzburg Landau Model was used to
calculate various properties of superconductors.

It did not give Higgs particle to condensed
matter theorists.

But it did to Higgs (1964).
And
There is also no Higgs in Superfluid Helium(4).

| |
�

V

 = | |ei�



E↵ective Potential V (| |,�) for r < 0
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In Equilibrium all values of � must

have the same energy

Therefore there must exist a collective mode

of zero energy at long wavelengths

This is the content of the so-called

Goldstone Theorem.

charge: ⌧3

Amplitude: ⌧1

Phase:
⌧2
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charge: ⌧3

Amplitude: ⌧1

Phase:
⌧2

BCS:

H =
P

k 
†
k⌧3✏k k

+
P

k,k0,q V (k,k0,q) †
k+q⌧3 k 

†
k0�q⌧3 k0

Note: BCS Hamiltonian bears a one to one Correspondence with
Dirac Hamiltonian.  Y. Nambu’s important observation (1960)

Y. Nambu



Local Gauge Invariance:

Continuity Equation

BCS Theory does not satisfy this, yet they got 	


right answers for things they calculated !

Need to do one loop calculations (RPA) using 

H�HBCS

Gorkov (1959): From BCS theory to Ginzburg-Landau



Anderson (1959), and some others did such a calculation:	


Obtained the “Goldstone mode” for oscillations of phase:

⌧2 oscillation : ! / k

But this couples to Longitudinal fluctuations of EM field:	


Showed that the oscillation is at the plasmon frequency as 	


in the normal metallic state:

“Anderson mechanism”.

! = !P =
q

4⇡ne2

m �O(�2/!P )

!�1
P sets also the scale for

the London penetration depth.

Or of the mass of W or the range
of weak interactions.



leading to a ”continuity” equation:

charge: ⌧3

Amplitude: ⌧1

Phase:
⌧2

Amplitude Mode

H, unlike HBCS is also invariant to

: in ⌧1 sector: Chargeless, Spin-less

To satisfy this, solve

with � / ⌧1.

Note: No renormalization due to Coulomb interaction.

No coupling to electromagnetic field !

Y. Nambu (1960):



⌧1 or amplitude sector with

⌫2q ⇡ 4�

2
+

1
3v

2
F q

2
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2

12�vF q.

Littlewood, CMV (1981): Calculation consistent with

this invariance yields an excitations in the

This does not help at all with the observed sharp mode

How would one couple to it anyway?

It has no charge, no dipole moment,

no magnetic moment, etc.

to which we couple excitations

with external probes.

To excite this mode, one must shake the condensate!

At q=0, the integral Eqn. solved is the same as the gap Eqn. for supercond.	


All superconds. have this mode.  Also, no other scale in the problem.

It is a SCALAR



Higgs

Higgs

2�0

What are these?



NbSe2 has a charge density wave transition at 33 K.

This is a structural transition which gaps

part of the Fermi-surface.

In the low T phase, altered periodicity gives new optical

phonons

at relatively low energies.

2�0

Looking at the data suggested to us that the weight in the new peak plus that in	


what remains of the old peak is the same as the weight of the peak above Tc.	





This conservation of weight implies a linear coupling between the	


excitation above Tc and the daughter peak below Tc.

FIG. 5. (a) The Raman active Phonon’s Self energy due to linear coupling to the Higgs mode due to
the anomalous vertex of Eq. (18). A similar process gives the self-energy of the Higgs mode with an
intermediate state of the phonon. (b) The anomalous vertex which relies on the existence of a number non-
conserving condensate. (c) Vertex for production of Higgs boson, which may be used in cold boson atoms
in a lattice, similar to that of (b). The drive excites long wave-length density or current fluctuations which
are quadratic in boson operators. A vacuum expectation value of the boson operator exists in the condensed
state leaving the fluctuations of the other to turn into the Amplitude or Higgs mode.

C. Coupling of Amplitude Modes to Experimental Probes.

If one puts in the Raman scattering q, which is of the order of the inverse wave-length of

light in Eq. (17), the damping of the mode is much larger than 2�. This bears no relation to the

experiments which see very sharp peaks. But even more important is the question, how one may

couple with external fields to such a mode and observe it as a linear response. As we have seen, it

has no projection to charge or current density (i.e. dipole) oscillations and therefore no coupling

to electromagnetic fields. It also has no magnetic moment. Indeed there is no coupling of ordinary

condensed matter probes to it.

A reading [10] of the experiments [23] suggested that the new mode appears only through steal-

ing spectral weight from the optical phonon present already in the Raman spectra above Tc. (Ap-
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proximate conservation of the first moment of the spectral weight in the two modes as a function

of a magnetic field was shown in the experiments but one finds an an equally good conservation

of the integrated spectral weight itself in those measurements. No temperature dependent mea-

surements in the superconducting state were made until very recently [26].) Such a conservation

automatically occurs if the Higgs were linearly coupled to Raman active optical phonons. The

Higgs mode would then appear as a pole in its self-energy of the Raman active phonon resulting in

a pair of resonances, with the weight of the two resonances the same as that of the only resonance

above the superconducting transition temperature.

It was therefore natural to assume that a coupling of the lattice displacement co-ordinate u�,q of

the Raman active modes to the amplitude mode ( †⌧1 
�
(q) exists:

H0 =
X

�,q
g� u�,q ( †⌧1 

�
(�q) + H.C. (18)

Here � labels the polarization of the displacement co-ordinate. Now we can calculate the self-

energy of the displacement propagator, D(�,q,!) ⌘ hu�,qu†�,qi(!) as shown in part (a) of Fig.

(5), as well as the self-energy of the amplitude mode due to the coupling. Such couplings have

two e↵ects: the pole of the amplitude mode shifts down-wards at q = 0 from its value without

the coupling of 2� if lies below the phonon energy !�,0. So at small q, it no longer overlays

the particle-hole continuum and is therefore undamped. The renormalized pole of the amplitude

mode appears in the self-energy of D(�,q,!) to which external photons couple. An approximately

correct estimate of the spectral weight transfer in Fig. (3) could be obtained for the breathing

or A1g mode through an estimate of the coupling g� obtained from the relative variation of the

superconducting and charge density wave transitions with hydrostatic pressure.

The magnitude of the self-energy in Fig. (5) depends on, beside the coupling matrix elements,

the di↵erence in the energy of the phonon !0 and the amplitude mode, i.e. 2�. Calculations

show that the e↵ect disappears as g2
�

!0
(!0 � 2�

��2. We have a fortunate situation in NbSe2, where

due to the occurrence of a charge density wave transitions at Tcdw ⇡ 30K, there exist modes with

!0 ⇡ 4�. Other materials where such happy circumstances prevail are some A15 compounds

where the amplitude mode may also be identified through the conservation of total spectral weight

[28].

It should be noted that Eq. (18) appears to violate conservation of particle number. To under-

stand the conditions in which this is allowed, one has to delve a bit deeper into the physics of g�.
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But this violates conservation laws!
To understand how this is permitted, look closer at g.

FIG. 5. (a) The Raman active Phonon’s Self energy due to linear coupling to the Higgs mode due to
the anomalous vertex of Eq. (18). A similar process gives the self-energy of the Higgs mode with an
intermediate state of the phonon. (b) The anomalous vertex which relies on the existence of a number non-
conserving condensate. (c) Vertex for production of Higgs boson, which may be used in cold boson atoms
in a lattice, similar to that of (b). The drive excites long wave-length density or current fluctuations which
are quadratic in boson operators. A vacuum expectation value of the boson operator exists in the condensed
state leaving the fluctuations of the other to turn into the Amplitude or Higgs mode.

C. Coupling of Amplitude Modes to Experimental Probes.

If one puts in the Raman scattering q, which is of the order of the inverse wave-length of

light in Eq. (17), the damping of the mode is much larger than 2�. This bears no relation to the

experiments which see very sharp peaks. But even more important is the question, how one may

couple with external fields to such a mode and observe it as a linear response. As we have seen, it

has no projection to charge or current density (i.e. dipole) oscillations and therefore no coupling

to electromagnetic fields. It also has no magnetic moment. Indeed there is no coupling of ordinary

condensed matter probes to it.

A reading [10] of the experiments [23] suggested that the new mode appears only through steal-

ing spectral weight from the optical phonon present already in the Raman spectra above Tc. (Ap-
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Existence of a condensate allows the detection of the Higgs particle. 



The same is true of some of the processes by which	


 Higgs is detected at LHC.

52 Higgs production at the Tevatron

t, b
H

H
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Figure 12: The Feynman diagrams for the four main channels for SM Higgs production at hadron colliders

as discussed in the text: the gluon–gluon fusion gg ! H (upper left), the vector boson fusion

q1q2 ! q1q2H (upper right), the Higgs–strahlung channels qq̄ ! V H with V = W, Z (lower

left) and the associated top quark production pp̄ ! tt̄H (lower right).

variable ⌧H =
M2

H

S
which is our ⌧AB, and we also define a new variable z =

⌧H

⌧
wich quantify

the departure from the soft–gluon limit z ! 1 where ŝ ! S with no jets production.

This cross section is already a loop calculation at leading order (LO) in QCD, as it

involves in the SM triangular quark loops, mainly the top quark and in a lesser extent the

bottom quark, see Fig. 12. We write the total cross section in ↵s expansion as

�(pp̄ ! H) =
X

(ij)

Z 1

⌧H

d⌧
dLij

d⌧
(⌧)↵2

s�
0

✓
�(0)
ij (z) +

↵s

⇡
�(1)
ij (z) +

⇣↵s

⇡

⌘2

�(2)
ij (z) + · · ·

◆
(4.6)

(ij) means either gg which occurs already at LO, or qg and qq̄/qq/qq0 pairs which occur

from the NLO, see Fig. 13 for typical NLO diagrams. �0 is the LO kernel and �(K)
ij is the

Kth order correction to the total cross section induced by a (ij) partonic initial state. We

have

�0 =
GF

288⇡
p

2

�����
3

4

X

q

A(⌧q)

�����

2

(4.7)

with GF = 1.16637 ⇥ 10�5 GeV�2 as the Fermi constant. In Eq. 4.7 we have ⌧q =
M2

H

4m2
q

and

How is Higgs being discovered at LHC?
(From J. Baglio, Thesis (2011), Orsay)

Second diagram possible only if there is a condensate.

X

X

<H>

<H>



Calculations: (Littlewood, cmv 81)

Raman Scattering couples to such Phonons

So calculate the Self-energy of such phonons

(one loop enough) and study the spectral weight.

VOLUME 47, NUMBER 11 PHYSICAL REVIEW LETTERS 14 SEPTEMBER 1981

ImZ, (v) =0 v(26„
2 4g 2 1/2

= -g'nN(0), ', v) 260.
The first thing to note is that Z(v) is divergent
for any value of the coupling constant g for v
= 2hp. This means that a pole necessarily ap-
pears in the phonon spectral weight

(20)

S(v) =-m 'ImD(v)

a = 4g'N(0)/x'It v, .
For a «1, we get from D '(v, ) = 0

2 4~2
SVg= 26 1— 2m' (h(u, )'

with spectral weight

(22)

(23)

(24)

We identify this mode with the new "gap" mode
observed in Raman scattering by Sooryakumar
and Klein. ' In Fig. 3, we present the spectral
weight, calculated numerically, for n varying
from 0.1 to 0.5 and with p= 4 86p.
We can get a rough estimate of n from the

measured variations with pressure of T, and T„,
and the estimated amplitude of the lattice distor-
tion accompanying the CDW"; we find a =0.3-
0.5. To obtain the result of SK that (10-15)%of
the CD%-AM weight is transferred to the gap
mode, we need +=0.4.
It is interesting to note that the vertex correc-

tion is necessary to keep the self-energy invari-
ant to the transformation

at a frequency v~ below 2b. It is convenient to de-
fine a dimensionless coupling strength

[Eq. (17)]was derived by Nambu' from a general-
ized Ward identity following from (25).
The transformation (25) is to be contrasted with

the more familiar gauge transformation

+(x)—exp[i p (x)v, ]4 (x) (26)
(and the associated transformation of the electro-
magnetic field and the gradient operator) under
which H„ is also invariant, but the BCS Hamil-
tonian is not. The longitudinal response of a su-
perconductor in the BCS approximation is not
gauge invariant. Vertex corrections to maintain
the gauge invariance in the response give rise to
bound states, ' the so-called Bogoliubov modes,
which go to zero frequency at long wavelength.
However, in a charged superconductor these
modes get pushed to near the plasma frequency
of the metal by Coulomb interactions.
The modes calculated here are massive by con-

trast with a mass ~ 2b, . The Coulomb interac-
tions do not affect Z(v) and our bound state. This
is as it should be since H,-„, induces variations
of the superconducting gap with no associated
variation in the charge density.
In the above calculation we have neglected H~, ~

a =O. l

a =0.3

e(x) - exp[a(x)v, ]e(x) (25)

(and the associated transformation of the gradient
operator) under which H„ is invariant, but the
BCS Hamiltonian H, is not. In fact the vertex I'

a =0.5

(b) +
r g~i g~) g&) I gTi

1.0 2.0 3.0
FIG. 2. (a) The phonon self-energy in lowest order

from the BCS approximation Zo and (b) the full self-
energy Z including the vertex correction I'.

~/2h
FIG. 3. The phonon spectral weight of the CDW-AM

for three different values of the coupling constant ~.
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True test of theory: Conservation of Weight.

New Experiments: (M-A. Méasson, A. Sacuto, Paris)
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FIG. 3. Temperature dependence of the CDW mode and the SC mode in NbSe2. Raman

spectra for NbSe2 in the A1g +E2g symmetry channel at various temperature. The orange arrow

depicts the spectral weight transfer from the CDW mode (grey area) to the SC mode (blue area)

upon entering the SC state. The inset shows the Raman spectra subtracted from the one measured

at 8 K above Tc and the arrow points to the isosbestic point (Methods).
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Phys. Rev. B 2013 ( and preprint)



Just as interesting

NbS2 - Same structure, similar Tc, no CDW.
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Other ways of Shaking:
Hit the supercond. with femotsec. pulse
of Terahz. radiation and probe
the recovery of the gap by another optical pulse.
Watch oscillations as function of time at the Higgs freq.

Higgs Amplitude Mode in BCS Superconductors Nb1-xTixN 
induced by Terahertz Pulse Excitation

Ryusuke Matsunaga et al. (2013)
Other ways of Shaking:
Hit the supercond. with femotsec. pulse
of Terahz. radiation and probe
the recovery of the gap by another optical pulse.
Watch oscillations as function of time at the Higgs freq.

Higgs Amplitude Mode in BCS Superconductors Nb1-xTixN 
induced by Terahertz Pulse Excitation

Ryusuke Matsunaga et al. (2013)
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Fig. 3 |  X’X’ spectra. Purple horizontal line indicates the estimated background (energy-independent) intensity 
which will be first subtracted from the spectra before applying thermal correction (the Bose factor) later.

Here in Fig. 3, some of the spectra (10 K, dark blue, and 145 K, yellow) are a bit  problematic in the sense that they 
do not follow the systematic trend with temperature that  is obeyed by all other spectra. Most  likely the problem is 
related to the quality of self-consistency in  re-adjusting the focusing, since in  the un-normalized data those two 
spectra have the lowest and highest intensity, respectively (Fig. 4).

 
Fig. 4 |  Un-normalized spectra  for XX and X’X’ polarizations. Apparently there is a tolerance range of focusing, 
within  which the data would look regular after normalization. The XX data are safe to discuss at  a very quantitative 
level, but the quality of focusing consistency of X’X’ and X’Y’ (not shown) might not be good enough.

Yuan Li et al. (Unpublished)
Possible Higgs in a Cuprate Superconductor.



Data at 10K - at Tc after correcting for phonon shifts.



Figure 4. (Color Online) a) Spectral function of the renormalized propagator with the background

subtracted plotted in arbitrary units for different values of the dimensionless coupling constant

α = 0.0, 0.02, 0.04, 0.06 and 0.08 as a function of Ω with ∆0 = 1 and λ = 0.33. b) Imaginary part

of the renormalized propagator 1/πD(Ω) plotted for the same values.

Let us now look at the self-energy Σ(ω) to deduce the measurable function D(ω). Σ(ω) can

be expressed in terms of two integrals which need to be evaluated numerically.

ReΣ(Ω) = −
2g2∆N(0)

λ

[

1−
λ

6
−
λ

2
g(Ω)

]

(11)

ImΣ(Ω) = −
2g2∆N(0)

λ

λh(Ω)

2
. (12)

N(0) is the density of states at the Fermi level, and λ = N(0)V0 = (log[2ωc/∆])−1 and ωc

is the cutoff energy. The functions g(Ω) and h(Ω) is plotted in Fig 3. From the behavior of

g(Ω) note that ReΓ(Ω) attains its minimum value at Ω = 2∆0.

The measurable functions ReD(Ω) and ImD(Ω) may be calculated from these by

D−1(Ω) = D−1
0 (Ω)− Σ(ω) (13)

7

Barlas-cmv (unpublished)	


Breathing Higgs in a d-wave superconductor.



Not quite true that one cannot couple to the Higgs.

One can couple through a Field conjugate to the superconduting
amplitude. Such a field is provided by proximity to another
superconductor.

Some peculiar unexplained results in such

Experiments by Goldman et al. (1975-1980)PAIR-FIELD SUSCEPTIBILITY AND SUPERCONDUCTING. . . 6703

SUPERCONDUCTOR2 SUPERCONDUCTOR I

I
I

I

Tc' I, Tc
I

I

4 ),1»',
I

I
i
I

liX

FIG. 1. Schematic of tunnel junction for measure-
ment of pair-field susceptibility, for T=T', &&T,'. The
magnetic field is in the y direction, the pair field is
modulated in the x direction, and the electric field and
current flows are in the z direction.

Then y can be written

y=8 2eVpt/A—(2e/fi) f—A dz
=8—copt —qpx ~

where

(5)

q p——(2e /A')(A, '+d /2+5)Hp,
and it is assumed that the penetration depth A,

' of
the primed film is much less than its thickness,
while d « A, for the unprimed film (5 is the bar-
rier thickness, usually negligible). Then

largely accounted for as a shift in T, .'o The quan-
tity on the left of Eq. (9) is the usual TDGL equa-
tion for T& T,. If the right-hand side were equal
to zera, then in steady state one would have /=0.
If the quantity on the right included thermal fluc-
tuations, we would still have the thermal average
of the order parameter ( lit ) =0, although
( l g l )+0, giving rise to excess electrical conduc-
tance of the film in the normal state abave T,
In the present case, the quantity on the right can
be viewed as an effective "pair field" g(x, t) which
is conjugate to the order parameter and excites a
particular mode of oscillation with wave vector qp
and frequency cop:

g(x, t) =aCiexp[i(qpx+copt)] . (10)

(The normalization has been chosen so that
de/dg—'.) It is a remarkable fact, attribut-

able to the gauge invariance of the Josephson cou-
pling, that the application of time-and-
space —independent electromagnetic fields in the
junction leads to a temporally and spatially modu-
lated effective pair field.
The induced order parameter which satisfies Eq.

(9) takes the form

Ciexp[i(qpx+topt)]
itoorGL+(1+4 qo)

This can also be seen within the context of linear
response theory, where one can define the order-
parameter response function X(x—x', t t') such—
that

{yexp[ i(qox—+ot) l
AC
4ed iA„(x,t)= f fg(x', t')X(x x', t t')dx—'dt'. —(12)

+g'exp[+i(qox+copt)] l .

8 2ieg 5frat. I
a

I a~
(8)

If we define f=fp+fq, one can perform the usual
variational calculation to obtain the time-
dependent Ginzburg-Landau (TDGL) equation

Q;„(k,a))=g(k, co)X(k,co), (13)

where X(k,co) is the wave-vector- and frequency-
dependent order-parameter susceptibility. In the
present case

In terms of the Fourier transforms of these quanti-
ties, this becomes

where rat. rriI/8ktt l
T———T, l

is the Ginzburg-
Landau relaxation time and (() is the local electric
potential. This leads to

+g $2V2P=Ci exp[i(q—ox+coot)],8
Bt (9)

and

g(k, pi) =aci5(k —qp)5(pi —too)

X(k co) {a[itoraL+(1+k2g2)] I
—1

(14)

(15)
where Ci ——irtC/(4ed

l
a

l ) and we take p =0 (the
other film is at voltage Vp), and also neglect A in
V—2ieA/A, since for small fields its effect can be

so that

f;„(x,t) =g(x, t)X(qo&too) .

Josephson type coupling to Higgs:



Suppose now one calculates dynamics by linear in time

term in the Lagragian

No Higgs! as in superfluid 4He.

Why was Higgs missed in CMP over the years?

Suppose we try Ginzburg-Landau Lagrangian:



Try ‘Lorentz-invariant’ theory:

; µ = (it, r)

Essential Physical Point (CMV -2001)
Weak-coupling equations for superconductivity are
mathermatically identical to the Dirac equation,
i.e. thery are particle-hole symmetric, although
the normal metallic state (and the state just below Tc)
is not. Then first order time-derivatives are zero.
This point is being displayed in the ”Higgs”
observations in the cold-atom experiments
(Bloch-et al. 2012).

Higgs Immediately : ⌦Higgs =
p

�2r/u
(Results with both first and second time-derivatives in Pekker-cmv)



Cold Bosons in a Lattice: (I. Bloch et al., 2012)

Approximate particle-hole symm. at near some fillings

Literally shake the lattice at a low frequency and

observe resonant absorption at the amplitude mode frequency.

No local gauge inv., unlike in standard model

of particle physics or in superconductors.

Similarly, also amplitude (and phase) modes

in incomm. CDW’s and AFM’s (Ruegg et al. 2008).

u : �u@b+

@u

< b >
Bose Superfluids :

Cold Bosons in a Lattice: (I. Bloch et al., 2012)

Approximate particle-hole symm. at near some fillings

Literally shake the lattice at a low frequency and
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FIG. 7. The phase diagram of the Bose Hubbard model in 2D. The phase diagram was obtained by optimiz-
ing the trial wave function Eq. (23) with up to 10 bosons on each site.

B. The Bose-Hubbard model and the Higgs excitation

Consider the motion of the interacting atoms in a periodic potential. If the lattice potential is

su�ciently deep, the atoms are confined to the lowest Bloch band, so that we can describe the low

energy sector of the system using the Bose-Hubbard model [48]

HBH = �J
X

hi ji
b†i b j +

1
2

U
X

i

ni(ni � 1) � µ
X

i

ni. (22)

Here, b†i and bi are the boson creation and annihilation operators on site i, ni is the occupancy of

the i-th site. The hopping matrix element J is related to the overlap of the boson wave functions

on neighboring sites and the interaction strength U to the boson scattering length in free space

as. Both J and U are sensitive to the optical lattice depth, however for the case of a deep lattice

J depends exponentially on it while U varies weakly. The chemical potential µ is related to the

depth of the trap and its filling and generally varies across the system. But we initially consider

only the case of uniform µ.

To get a notion of the T = 0 phase diagram of the Bose-Hubbard model consider a ground state

wave function of the product form

| prodi =
Y

i

(↵|0ii + �|1ii + �|2ii + . . . ) , (23)
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3

small uniform modulation term to the Hamiltonian

�H(t) = ��J cos(�t)
�

<ij>

b†
i bj � �J

J
K(t) , (3)

where �J/J � 1. The imaginary time correlation func-
tion for kinetic energy, �(�) = �K(�)K(0)� � �K�2, is
related to S(�) through the spectral integral with the
finite-temperature kernel, N(�, �) = e��� + e��(1/T��):

�(�) =

� +�

0
N(�, �)S(�) . (4)

We employ the same protocol of collecting and analyzing
data as in Ref. [14]. More specifically, in the MC simu-
lation we collect statistics for the correlation function at
Matsubara frequencies �n = 2�Tn with integer n

�(i�n) = �K(�)K(0)�i�n + �K� (5)

which is related to �(�) by a Fourier transform. In the
path integral representation, �(i�n) has a direct unbi-
ased estimator, |

�
k ei�n�k |2, where the sum runs over

all hopping transitions in a given configuration, i.e. there
is no need to add term (3) to the Hamiltonian explicitly.
Once �(�) is recovered from �(i�n), the analytical con-
tinuation methods described in Ref. [14] are applied to
extract the spectral function S(�). A discussion on the
reproducibility of the analytically continued results for
this type of problem can also be found in Ref. [14].

We consider system sizes significantly larger than the
correlation length by a factor of at least 4 to ensure that
our results are e�ectively in the thermodynamic limit.
Furthermore, for the SF and MI phases, we set the tem-
perature T = 1/� to be much smaller than the charac-
teristic Higgs energy, so that no details in the relevant
energy part of the spectral function are missed.

We consider two paths in the SF phase to approach the
QCP: by increasing the interaction U � Uc at unity fill-
ing factor n = 1 (trajectory i perpendicular to the phase
boundary in Fig 1), and by increasing µ � µc while keep-
ing U = Uc constant (trajectory ii tangential to the phase
boundary in Fig 1). We start with trajectory i by consid-
ering three parameter sets for (|g|, L, �): (0.2424, 20, 10),
(0.0924, 40, 20), and (0.0462, 80, 40). The prime data in
imaginary time domain are shown in Fig. 3 using scaled
variables to demonstrate collapse of �(�) curves at large
times. Analytically continued results are shown in the in-
set of Fig. 4. After rescaling results according to Eq. (1),
we observe data collapse shown in the main panel of
Fig.4. This defines the universal spectral function in the
superfluid phase �SF.

When approaching the QCP along trajectory ii,
with (|gµ|, L, �) = (0.40, 25, 15), (0.30, 30, 15), and
(0.20, 40, 20) we observe a similar data collapse and arrive
at the same universal function �SF; see Fig. 5. The fi-
nal match is possible only when the characteristic energy
scale �(gµ) = C�(g(gµ)) involves a factor of C = 1.2.
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FIG. 8. The spectral function Im �KE KE(!) = S SF(!) as a function of the frequency ! showing the Higgs
excitation in the 2D Bose-Hubbard model. The spectral function was obtained using quantum Monte Carlo
calculations for several values of g = (U � Uc)/J in the superfluid phase near the particle-hole symmetric
quantum critical point. The inset shows the un-rescaled spectral functions while the main plot shows the
collapse of the spectral functions upon the rescaling of the axes (from Ref. [67]).

lation of the KE linear response to KE modulations, is plotted in Fig. 8, and is only reasonably

good.

D. Experimental observation of the Higgs mode in ultra cold atoms

The first experiments to study the excitations of bosonic superfluids on a lattice, with an attempt

to observe the Higgs excitation, were reported by [70, 71]. These experiments introduced the basic

three step strategy mentioned above and applied it to isotropic 3D lattices [70, 71], to 1D lattices

and anisotropic lattices in the 1D-3D crossover regime [70]. The scheme for detecting the energy

absorbed consisted of (1) ramping down the lattice to an intermediate depth to transfer the gas

deep into the superfluid regime, (2) letting the gas thermalize (3) turning o↵ the lattice and trap

potentials and letting the gas expand and (4) taking an image of the interference pattern in the

expanding cloud of atoms. The interference patterns observed in these images are related to the

phase coherence across the atom clouds (following thermalization) and hence their temperatures,

which is a measure of the energy absorbed.

To analyze the data, the full width at half maximum (FWHM) of the central peak in the inter-

ference images was measured and plotted as a function of the modulation frequency (see Fig. 9a
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Experiments are done by shaking the lattice which modulates the kinetic 
energy  and by somewhat complicated processes, measuring the 	
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FIG. 9. Experimental data from ultra cold atom groups showing the results of lattice modulation spec-
troscopy. a Modulation spectra obtained in Ref. [70], showing the full width at half-maximum (FWHM)
a measure of the energy absorbed by the atom gas, as a function of the lattice modulation frequency and
the lattice depth. A pair of peaks can be seen at energy scale ⇠ U and ⇠ 2U (see text). b & c Lattice
modulation data from Ref. [62]. The three plots on the right show the temperature of the sample following
lattice modulations, as a function of modulation frequency, at three di↵erent values of the lattice depth (as
indicated). In each spectrum there appears a step-like absorption edge, associated with the Higgs mass (see
text). The left hand plot shows the frequency associated with the absorption-edge feature as a function of
the lattice depth (measured in j/ jc where j = J/U and jc = (J/U)critical). The points represent experimental
data, the solid line shows the mass of the Higgs obtained from mean-field calculations and the dashed line
shows the energy of the lowest particle-hole excitation. One can clearly see the softening of the Higgs mass
on approach to the quantum critical point, thus allowing the identification of the absorption edge with the
Higgs mass.
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FIG. 10. Higgs “drum” modes in a trap. The four plots show the superfluid density as a function of position
in the trap, after lattice modulations at frequencies corresponding to the lowest four Higgs modes. The plots
were obtained by numerically evolving the product wave function of Eq. 23.

E. Outlook

In the future we may expect experiments on ultra cold atoms to provide us with a wealth of

new data to help understand many-body phenomena. A possible way to observe the Higgs mode

directly would be to change the driving mechanism. Instead of coupling to the Higgs mode via

the kinetic energy, one could couple to it via long wavelength density or current modulations. One

may then generate the Higgs directly through the process depicted in part (c) of the Figure (5),
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By shaking the lattice to modulate KE,	


one sees all kinds of multiple-particle-hole excitations 	


besides the Higgs.

Difficulty with the technique.

There ought to be ways of gently exciting the Higgs in 	


cold-bosons in a lattice which is the analog of what is	


done in superconductors:

FIG. 5. (a) The Raman active Phonon’s Self energy due to linear coupling to the Higgs mode due to
the anomalous vertex of Eq. (18). A similar process gives the self-energy of the Higgs mode with an
intermediate state of the phonon. (b) The anomalous vertex which relies on the existence of a number non-
conserving condensate. (c) Vertex for production of Higgs boson, which may be used in cold boson atoms
in a lattice, similar to that of (b). The drive excites long wave-length density or current fluctuations which
are quadratic in boson operators. A vacuum expectation value of the boson operator exists in the condensed
state leaving the fluctuations of the other to turn into the Amplitude or Higgs mode.

C. Coupling of Amplitude Modes to Experimental Probes.

If one puts in the Raman scattering q, which is of the order of the inverse wave-length of

light in Eq. (17), the damping of the mode is much larger than 2�. This bears no relation to the

experiments which see very sharp peaks. But even more important is the question, how one may

couple with external fields to such a mode and observe it as a linear response. As we have seen, it

has no projection to charge or current density (i.e. dipole) oscillations and therefore no coupling

to electromagnetic fields. It also has no magnetic moment. Indeed there is no coupling of ordinary

condensed matter probes to it.

A reading [10] of the experiments [23] suggested that the new mode appears only through steal-

ing spectral weight from the optical phonon present already in the Raman spectra above Tc. (Ap-
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Summary:

1. All superconductors are (almost) p-h symmetric.
So Amplitude mode or Higgs exists in all superconductors

2. It can be detected in several ways in CMP.

So far, they involve shaking the condensate, to be

“free” from conservation laws.

They are a proof of the existence of a condensate.

3. Josephson E↵ect ways of Detecting the Condensate?
Any HEP expts. similar to Josephson E↵ect?






