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Plan of my talk

1. General theorems on NGBS (16 min)
* Low energy effective Lagrangian

* General counting rules

* Dispersion relations

2. Anderson Tower of States (2min)
e Detecting SSB in finite size systems

3. Interactions (2 min)
* Among NGBs
* NGBs with other low-energy modes



General theorems on NGBs

HW and H. Murayama, Phys. Rev. Lett. 108, 251602 (2012)
HW and H. Murayama, arXiv:1402.7066.
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The definition of NGBs

* Gapless modes
(fluctuation in the flat direction may have a gap
* Fluctuation in the flat direction of the potential

= transform nonlinearly under broken symmetries
+ transform linearly under unbroken symmetries

, Magnets with unbroken S, z
Superfluid S

/I rotation around y (broken)
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Flat direction of the potential

* Lie group G: symmetry of the Lagrangian
* Lie group H: symmetry of the ground state

* Coset space G/H: the manifold of degenerated
ground states.

* dim(G/H) = dim(G)—dim(H)
= the number of broken generators

G=U(1) /‘6\ G = SO(3)
9 H = {e} ((9 qb) H=S0(2)

U(1)/{e} = St SO(3)/S0(2) = 2



Example of NGB (1):
Magnets
Symmetry of the Heisenberg model: G = SO(3) (3 generators)

Symmetry of (anti)ferromagnetic GS : H = SO(2) (1 generator)
Two (3 — 1 = 2) symmetries are spontaneously broken

Ferromagnets Antiferromagnets
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(k) g(k)
* One NGB * Two NGBs
* Quadratic dispersion * Linear dispersion
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Ferromagnet
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The time reversed motion is not a low-energy fluctuation



Example of NGB (2):

Spinor BEC
G = U(1) x SO(3) (4 generatosr)
- H =S0(2) (1 generator)

0'000 2'0 4.0 60 80 1 (?0
4 —1 = 3 broken symmetries % R
Only 2 NGBs ®
* one linear mode (sound wave) 20 4§
e one quadratic mode (spin wave) 5

5t
amplitude %
mode 2>

<SZ> # 0 Dan Stamper-Kurn et al

arxiv:1404.5631




Example of NGB (3):
more high-energy side example

g
L = Dyt DMp — m?*ylep — = (4T4h)?
D, =0y +iud, o (u: chemical potential) w — (wly ¢2)T

Symmetry of the Lagrangian: G = U(2) (4 generators) <w> o U(O 1)T
Symmetry of the condensate : H = U(1) (1 generator) - ?
Three (4 — 1 = 3) symmetries are spontaneously broken

(k) o

3! -
amplitude mode > 29 _ — — Only two NGBs (gapless)

a fluctuation in G/H > 2 * One quadratic
1.5¢ .
> * Onelinear
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0.5! _ ==
V. Miransky & I. Shavkovy (2002) _ - = <Q3> # O

T. Schéfer et al. (2001) 05 1 15 2 25 3




Questions

* [n general, how many NGBs appear?
* When do they have quadratic dispersion?

 What is the necessary information of the ground
state to predict the number and dispersion?

 What is the relation to expectation values of
conserved charges (generators)?

Y. Nambu, J. Stat. Phys. 115, 7 (2004)
<[Qa, Qb]> 75 0 Their zero modes are conjugate. Not independent modes.



Our approach

H. Leutwyler, Phys. Rev. D 49, 3033 (1994)

Low energy effective Lagrangian
= Non-Linear sigma model with the target space G/H

+ derivative expansion

* G/H :the manifold of degenerated ground states

e Effective theory after integrating out all fields with a mass term
i.e., those going out of G/H (amplitude fields)

U(1)/{e} = S SO(3)/S0(2) = §?

1 1
L= 50,0010 L= 50,7 - 07



How to get effective Lagrangian?

* 1. From a microscopic model /=75, i

I V27 I v
Lep = Zlﬁw — wz v — g(@ﬁw - n0)2
m 2

Jsaol 0 S Op 95002

~ onf + N9 - V9 — £ (6n)
1 . no — — g .

_ _92 U . _J o 2
2 vae Vo 2(5n 0/g)

e 2.Simply write down all terms
allowed by symmetry (+ derivative expansion)

For example: I
P —?7L492

the mass term is prohibited by symmetry 9



General form of effective Lagrangian

* Inthe presence of Lorentz symmetry

1

_ aqu,b
L= 29ab(7r)8ﬂ7r oM
* |nthe absence of Lorentz symmetry
1 1
- a — - a b a b
L =cq(m)m® + §gab(7r)7r 70— §gab(7T)V7T -V
dominant at low-energy
Taylor expand ... c.f. canonical conjugate between
1 Goldstone mode and Amplitude
Co (M) = — Py + O(m)

2

Canonical conjugate relation
between ¢ and rt?!!

oL 1
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General counting rule

Using the symmetry G of the effective Lagrangian, we can prove
antisymmetric matrix p_, is related to commutator of generator!!

9 () :volume of the system
, 1
ipab = ([Qa, Jy (£,1)]) = lim q {[Qa; Qb))
—00
m =rank p 0 A
ey, |
_ 0 A ;
(i, 2), (13, ), ..., (e, em) a0 0
— Canonically conjugate pairs! '
S I S —
c.f. LSF - n@ term in superfluid
S )



General counting rule

0 0 § \
* type-A (unpaired) NGBs 1 -
n,=dim(G/H) - rank p )= ) o
e type-B (paired) NGBs | """""""""""""""""
ng=(1/2)rank p \ 0 0 |

e The total number of NGBs
n, +ng =dim(G/H) - (1/2)rank p

ipab = ([Qur 30@ D)) = lim = ([Qa, Q)

Q—o00 )




Dispersion relations

1
L= — 5g&b(())wa-v7rb+..-
w w?2 k2
* Type-A NGBs: linear dispersion (Type-I NGBs )

* Type-B NGBs: quadratic dispersion (Type-ll NGBs )

Nielsen-Chadha’s counting rule c.f. Ripple motion of a domain wall
. = Goldstone mode of translation
n, +2n, 2dim(G/H)

Superfluid A
H. B. Nielsen and S. Chadha (1976)

Superfluid B
We proved the equality!

n, +2ng=dim(G/H) w? = k32



Effective Lagrangian for magnets

Ferromagnets

SC"y_ y'x " .
L= —p T %—Qaﬁ-aﬁ
1 4+ n*? 2

n,=dim(G/H)-rankp=2-2=0
ng=(1/2)rankp =1

Antiferromagnets

n,=dim(G/H)-rankp=2-0=2
ng=(1/2)rankp =0

m = 0 — O : magnetization density
S, S 0 -
pij:d inD:(m 8”) rankp=2o0r0



Anderson Tower of States

Ref: (textbooks) Sachdev, Xiao-Gang Wen, P.W. Anderson



Antiferromagnet on a squrelattice

Simultanous diagonalization of H and S2=S(S+1) (in the sector S,=0)
N = 20 is the total number of sites

SQR N=20 (4.2,-2.4) J=1 The exact ground stateisa |S=0, S,=0 >
T 1 +  (Marshall-Lieb-Mattis theorem)
) il | ! . % However, this state does not have a Neel order
| - E 32 N4
E : - . ' 5%, Néel order| # 0
= = -
-8 8 B 3 z . . .
% = : g A symmetry breaking state with a well-defined
> g z s order parameter is a superposition of low-lying
" 3 = |1 excited state with energy S(S+1)/V = 1/L9
AR iOCl/L On the top of it, there is a Goldstone excitation
N with the excitation energy 1/L.
/! ~10) °°
X 1/V " Well-separation of two energy scales
a8 . A IM‘ x | indimensionsd>1
14
0 5 10 15 20

S(S+1) Claire Lhuillier, arXiv: cond-mat/0502464



Bose Hubbard model on a lattice for t>>U

0

1

-10

V. Alba et al.

http://www.mpipks-dresden.mpg.de/~esicqw12/Talks_pdf/Alba.pdf



Tower of States
from the effective Lagrangian

Nonlinear sigma model

0
£_2v2n i 871 o;n

U2

H= -3 S+'0(3’n 8ift, 5= (p/vd)it x 7t
0

Fourier transform:

F
S = /dda: S(Z,t)



(N — Nyg)?

Superfluid Hros o ~——>
: 52
Antiferromagnet  Hros x -
52

Crystals Hros P

mnoV
F t H —0 Symmetry can be broken even in

errOmagne TOS — a finite size system / 1+1 dimension

From this argument, softer dispersion E = p">2 is impossible!

What happens for when both type-A and type-B present?



Interactions



Scaling of interactions among NGBs

e Quadratic part (free) part of action

Sfﬁ'eieA /ddxdt (gabT(O)frafrb gab2( )V “.Vn ) SE?;?B /dda:dt( p;bwaﬂb ab2(0) AV 67Tb)

e Scaling of fields to keep the free part

% (aZ, at) = a¥7ra(f, t) % (aZ, a’t) = oz_%wa(f, t)

* Most relevant interactions

d%zdtVv3r® | d%edto?n® d%zdtVv3re | dYedto,n’

’

* Their scaling raw and condition for the free fixed point

=
I

o

N

a” 2z = d>1 o’z = d>0
e SSBin 1+1 dimensions is OK!
Symmetries will be restored e Order parameters commute with H

in 1+1 dimensions (Coleman’s theorem) = GSis one of their simultaneous eigenstates
- No quantum fluctuation



Superfluid-
Superfluid

interface 0

2D Crystal of
electrons
in 3+1 dimenisons

HW and H. Murayama, PRD (2014)
H. Takeuchi and K. Kasamatsu

Ripplons siupos)

Bogoliubov phonons
in the bulk

3/2
w o< k3
fluctuation of the domain wall
1 w? 9
L~ 5 [(mlnl + mzng)? —ok™ | u_zu;y
photons in the bulk



Non-Fermi liquid through NGBs

Usually, interaction between NGBs with other
fields are derivative coupling )TV - V§

interaction vanishes in the low-energy, long wavelenghth limit
However, there is an exception

guasi-particle
. excitations near FS E> non-Fermi liquid behavior

Goldstone mode :
< > (orientational mode) E> Landau damping
V. Oganesyan, S. A. Kivelson, and E. Fradkin,
Phys. Rev. B 64, 195109 (2001).

| pinned down the condition for NFL:

[Q, P] =0 HW and Ashvin Vishwanath, arXiv:1404.3728



Conclusion

e Clarified number and dispersion of Nambu-
Goldstone bosons

* Looking at the zero mode part of the effective
Lagrangian, we can derive the tower of state
structure

* Interactions among low-energy modes result in
nontrivial outcome

NGBs with fractional-power dispersion
Non-Fermi liquid behavior of electrons






How do you define Higgs?

In general, if no fine tuning or other special reasons,
(the number of gapped modes)
= (the total number of modes) — (the number of NGBs)

We can easily change the total number of modes without changing
the symmetry of the system.

example 1: add a completely decoupled field (+ infinitesimal interaction)

1

L= ['Higgs(wy A) + §(§b2 — m2§b2) + ['int(gba ¢7 A)

example 2: copy and mix [©,, ©,]
L = Lsp1 + Lsra + p(]ths + c.c.) — g(]p]vaths + c.c.)

Is it necessary for us to look at the behavior near the
critical point? (i.e., cannot define Higgs in only one phase)



