Nambu-Goldstone bosons in nonrelativistic systems

Haruki Watanabe University of California, Berkeley

Tomas Brauner

Hitoshi Murayama

Ashvin Vishwanath (Ph. D advisor)

Plan of my talk

1. General theorems on NGBs (16 min)

- Low energy effective Lagrangian
- General counting rules
- Dispersion relations

2. Anderson Tower of States (2 min)

Detecting SSB in finite size systems

3. Interactions

(2 min)

- Among NGBs
- NGBs with other low-energy modes

General theorems on NGBs

HW and H. Murayama, Phys. Rev. Lett. 108, 251602 (2012)

HW and H. Murayama, arXiv:1402.7066.

Spontaneous Symmetry Breaking (SSB) of *global* and *internal* symmetries

Nambu-Goldstone Bosons (NGBs) gapless particle-like excitation

position-dependent fluctuation of order parameter in the flat direction

The definition of NGBs

- Gapless modes
- (fluctuation in the flat direction may have a gap
- Fluctuation in the flat direction of the potential
- = transform *nonlinearly* under *broken* symmetries
- + transform *linearly* under *unbroken* symmetries

Superfluid
$$\theta' = \theta + \epsilon$$
 c.f. linear transformation
$$\vec{v}' = M \vec{v}$$

Magnets with unbroken $\mathbf{S_z}$ rotation around y (broken) $\delta n_x' = \epsilon_y, \delta n_y' = 0$ rotation around z (unbroken)

$$\delta n_x' = \epsilon_y, \delta n_y' = 0$$
 tation around z (unbroken) $\vec{n} = \begin{pmatrix} \delta n_x \\ \delta n_y \\ 1 \end{pmatrix}$

Flat direction of the potential

- Lie group G: symmetry of the Lagrangian
- Lie group H: symmetry of the ground state
- Coset space G/H: the manifold of degenerated ground states.
- dim(G/H) = dim(G)-dim(H)

= the number of broken generators

$$G = U(1)$$
$$H = \{e\}$$

$$U(1)/\{e\} = S^1$$

$$SO(3)/SO(2) = S^2$$

Example of NGB (1): Magnets

Symmetry of the Heisenberg model: G = SO(3) (3 generators) Symmetry of (anti)ferromagnetic GS : H = SO(2) (1 generator)

Two (3 - 1 = 2) symmetries are spontaneously broken

$\epsilon(k)$ • One NGB • Quadratic dispersion

Ferromagnets

Antiferromagnets

Antiferromagnet \uparrow \uparrow \uparrow No net magnetization $\langle S_z \rangle = 0$

Ferromagnet $\uparrow\uparrow\uparrow\uparrow\uparrow\uparrow$ Nonzero magnetization $\langle S_z \rangle \neq 0$

The time reversed motion is not a low-energy fluctuation

Example of NGB (2): Spinor BEC

 $G = U(1) \times SO(3)$ (4 generatosr)

$$\rightarrow$$
 H = SO(2) (1 generator)

4 - 1 = 3 broken symmetries

Only 2 NGBs

- one linear mode (sound wave)
- one quadratic mode (spin wave)

Dan Stamper-Kurn et al arxiv:1404.5631

Example of NGB (3): more high-energy side example

$$\mathcal{L} = D_{\mu}\psi^{\dagger}D^{\mu}\psi - m^{2}\psi^{\dagger}\psi - \frac{g}{2}(\psi^{\dagger}\psi)^{2}$$

$$D_{\nu} = \partial_{0} + i\mu\delta_{\nu,0} \quad \text{(μ: chemical potential)} \qquad \psi = (\psi_{1},\psi_{2})^{T}$$

Symmetry of the Lagrangian: G = U(2) (4 generators) Symmetry of the condensate : H = U(1) (1 generator)

 $\langle \psi \rangle = v(0,1)^T$

Three (4 - 1 = 3) symmetries are spontaneously broken

Questions

- In general, how many NGBs appear?
- When do they have quadratic dispersion?
- What is the necessary information of the ground state to predict the number and dispersion?
- What is the relation to expectation values of conserved charges (generators)?

Y. Nambu, J. Stat. Phys. 115, 7 (2004)

$$\langle [Q_a, Q_b] \rangle \neq 0$$

Their zero modes are conjugate. Not independent modes.

Our approach

H. Leutwyler, Phys. Rev. D 49, 3033 (1994)

Low energy effective Lagrangian

- = Non-Linear sigma model with the target space G/H
- + derivative expansion
- *G/H*: the manifold of degenerated ground states
- Effective theory after integrating out all fields with a mass term i.e., those going out of G/H (amplitude fields)

$$U(1)/\{e\} = S^1$$

$$\mathcal{L}=rac{1}{2}\partial_{\mu} heta\partial^{\mu} heta$$

$$SO(3)/SO(2) = S^2$$

$$\mathcal{L}=rac{1}{2}\partial_{\mu}ec{n}\cdot\partial^{\mu}ec{n}$$

How to get effective Lagrangian?

• 1. From a microscopic model

$$\psi = \sqrt{n_0 + \delta n} e^{-i\theta}$$

$$\mathcal{L}_{\mathrm{SF}} = i \psi^{\dagger} \dot{\psi} - \frac{\vec{\nabla} \psi^{\dagger} \cdot \vec{\nabla} \psi}{2m} - \frac{g}{2} (\psi^{\dagger} \psi - n_{0})^{2}$$

$$\simeq \delta n \dot{\theta} - \frac{n_{0}}{2m} \vec{\nabla} \theta \cdot \vec{\nabla} \theta - \frac{g}{2} (\delta n)^{2}$$

$$= \frac{1}{2g} \dot{\theta}^{2} - \frac{n_{0}}{2m} \vec{\nabla} \theta \cdot \vec{\nabla} \theta - \frac{g}{2} (\delta n - \dot{\theta}/g)^{2}$$
make n and θ canonically conjugate

 2. Simply write down all terms allowed by symmetry (+ derivative expansion)

For example: the mass term is prohibited by symmetry

$$\frac{1}{2}m^2\theta^2$$

General form of effective Lagrangian

In the presence of Lorentz symmetry

$$\mathcal{L} = \frac{1}{2} g_{ab}(\pi) \partial_{\mu} \pi^{a} \partial^{\mu} \pi^{b}$$

In the absence of Lorentz symmetry

$$\mathcal{L} = \underline{c_a(\pi)\dot{\pi}^a} + \frac{1}{2}\overline{g}_{ab}(\pi)\dot{\pi}^a\dot{\pi}^b - \frac{1}{2}g_{ab}(\pi)\nabla\pi^a\cdot\nabla\pi^b$$

Taylor expand ...

$$c_a(\pi)\dot{\pi}^a = -\frac{1}{2}\rho_{ab}\pi^a\dot{\pi}^b + O(\pi^3)$$

Canonical conjugate relation between π^a and $\pi^b!!$

$$p_b = \frac{\partial \mathcal{L}}{\partial \dot{\pi}^b} = -\frac{1}{2} \rho_{ab} \pi^a$$

c.f. canonical conjugate between Goldstone mode and Amplitude

$$\mathcal{L}_{\rm SF} \ni i\psi^{\dagger}\dot{\psi} = -n\dot{\theta}$$

General counting rule

Using the symmetry G of the effective Lagrangian, we can prove antisymmetric matrix ρ_{ab} is related to commutator of generator!!

 $m = \text{rank } \rho$

$$c_a(\pi)\dot{\pi}^a = -\frac{1}{2}\rho_{ab}\pi^a\dot{\pi}^b + O(\pi^3)$$
$$i\rho_{ab} = \langle [Q_a, j_b^0(\vec{x}, t)] \rangle = \lim_{\Omega \to \infty} \frac{1}{\Omega} \langle [Q_a, Q_b] \rangle$$

 Ω : volume of the system

$$(\pi^1, \pi^2), (\pi^3, \pi^4), ..., (\pi^{2m-1}, \pi^{2m})$$

→ Canonically conjugate pairs!

c.f.
$$\mathcal{L}_{\mathrm{SF}}
ightarrow n\dot{ heta}$$
 term in superfluid

General counting rule

- type-A (unpaired) NGBs $n_A = \dim(G/H) - \operatorname{rank} \rho$
- type-B (paired) NGBs $n_{\rm R}$ = (1/2)rank ρ

 $= \begin{pmatrix} \begin{bmatrix} 0 & \lambda_1 \\ -\lambda_1 & 0 \end{bmatrix} & O \\ & \begin{bmatrix} 0 & \lambda_2 \\ -\lambda_2 & 0 \end{bmatrix} & O \\ & \ddots & & \\ O & & \begin{bmatrix} 0 & \lambda_m \\ -\lambda_m & 0 \end{bmatrix} & O \end{pmatrix}$

• The total number of NGBs
$$n_A + n_B = \dim(G/H) - (1/2) \operatorname{rank} \rho$$

$$i\rho_{ab} = \langle [Q_a, j_b^0(\vec{x}, t)] \rangle = \lim_{\Omega \to \infty} \frac{1}{\Omega} \langle [Q_a, Q_b] \rangle$$

Dispersion relations

$$\mathcal{L} = -\frac{1}{2}\rho_{ab}\pi^a\dot{\pi}^b + \frac{1}{2}\bar{g}_{ab}(0)\dot{\pi}^a\dot{\pi}^b - \frac{1}{2}g_{ab}(0)\nabla\pi^a\cdot\nabla\pi^b + \cdots$$

$$\omega$$

$$\omega$$

$$\omega$$

$$k^2$$

- Type-A NGBs: linear dispersion (Type-I NGBs)
- Type-B NGBs: quadratic dispersion (Type-II NGBs)

Nielsen-Chadha's counting rule $n_1 + 2 n_{11} \ge \dim(G/H)$

H. B. Nielsen and S. Chadha (1976)

We proved the equality! $n_A + 2n_B = \dim(G/H)$ c.f. Ripple motion of a domain wallGoldstone mode of translation

Superfluid A

Superfluid B

$$\omega^2 = k^{3/2}$$

Effective Lagrangian for magnets

Ferromagnets

$$\mathcal{L} = -m \frac{n^x \dot{n}^y - n^y \dot{n}^x}{1 + n^z} + \frac{\overline{g}}{2} \dot{\vec{n}} \cdot \vec{n} - \frac{g}{2} \partial_i \vec{n} \cdot \partial_i \vec{n}$$

$$n_{\mathsf{A}} = \dim(\mathsf{G/H}) - \operatorname{rank} \rho = 2 - 2 = 0$$

$$n_{\mathsf{B}} = (1/2) \operatorname{rank} \rho = 1$$

Antiferromagnets

$$\mathcal{L} = -m \frac{n^x \dot{n}^y - n^y \dot{n}^x}{1 + n^z} + \frac{\bar{g}}{2} \dot{\vec{n}} \cdot \dot{\vec{n}} - \frac{g}{2} \partial_i \vec{n} \cdot \partial_i \vec{n}$$

$$n_{\mathsf{A}} = \dim(\mathsf{G/H}) - \operatorname{rank} \rho = 2 - 0 = 2$$

$$n_{\mathsf{B}} = (1/2) \operatorname{rank} \rho = 0$$

$$m=rac{\langle [S_x,S_y]
angle}{i\Omega}=rac{\langle S_z
angle}{\Omega}$$
 : magnetization density

$$ho_{ij} = rac{\langle [S_i, S_j] \rangle}{i\Omega} = \begin{pmatrix} 0 & -m \\ m & 0 \end{pmatrix}$$
 rank ho = 2 or 0

Anderson Tower of States

Ref: (textbooks) Sachdev, Xiao-Gang Wen, P.W. Anderson

Antiferromagnet on a squrelattice

Simultanous diagonalization of H and $S^2=S(S+1)$ (in the sector $S_z=0$) N = 20 is the total number of sites

The exact ground state is a $|S = 0, S_z=0 >$ (Marshall-Lieb-Mattis theorem) However, this state does not have a Neel order

$$[\vec{S}^2, \text{N\'eel order}] \neq 0$$

A symmetry breaking state with a well-defined order parameter is a superposition of low-lying excited state with energy $S(S+1)/V = 1/L^d$

On the top of it, there is a Goldstone excitation with the excitation energy 1/L.

Well-separation of two energy scales in dimensions d > 1

Claire Lhuillier, arXiv: cond-mat/0502464

Bose Hubbard model on a lattice for t>>U

V. Alba et al. http://www.mpipks-dresden.mpg.de/~esicqw12/Talks_pdf/Alba.pdf

Tower of States from the effective Lagrangian

Nonlinear sigma model

$$\mathcal{L} = \frac{\rho}{2v^2} \dot{\vec{n}} \cdot \dot{\vec{n}} - \frac{\rho}{2} \partial_i \vec{n} \cdot \partial_i \vec{n}$$

$$\mathcal{H} = \frac{v^2}{2\rho} \vec{s} \cdot \vec{s} + \frac{\rho}{2} \partial_i \vec{n} \cdot \partial_i \vec{n}, \quad \vec{s} = (\rho/v^2) \dot{\vec{n}} \times \vec{n}$$

Fourier transform:

$$H = \frac{v^2}{2\rho V} \vec{S}^2 + \sum_{\vec{k}} \left[\frac{v^2}{2\rho} \vec{s}_{-\vec{k}} \cdot \vec{s}_{\vec{k}} + \frac{\rho k^2}{2} \vec{n}_{-\vec{k}} \cdot \vec{n}_{\vec{k}} \right]$$

$$\vec{S} = \int d^d x \, \vec{s}(\vec{x}, t)$$

$$H_{\rm TOS} \propto \frac{(N-N_0)^2}{V}$$

$$H_{\mathrm{TOS}} \propto rac{ec{S}^2}{V}$$

$$H_{\rm TOS} \propto rac{ec{P}^2}{mn_0 V}$$

Ferromagnet

$$H_{\rm TOS} = 0$$

Symmetry can be broken even in a finite size system / 1+1 dimension

From this argument, softer dispersion $E = p^{n>2}$ is impossible! What happens for when both type-A and type-B present?

Interactions

Scaling of interactions among NGBs

Quadratic part (free) part of action

$$S_{\text{free}}^{\text{type-A}} = \int d^d x dt \left(\frac{\bar{g}_{ab}(0)}{2} \dot{\pi}^a \dot{\pi}^b - \frac{g_{ab}(0)}{2} \vec{\nabla} \pi^a \cdot \vec{\nabla} \pi^b \right) \left[S_{\text{free}}^{\text{type-B}} = \int d^d x dt \left(-\frac{\rho_{ab}}{2} \pi^a \dot{\pi}^b - \frac{g_{ab}(0)}{2} \vec{\nabla} \pi^a \cdot \vec{\nabla} \pi^b \right) \right]$$

Scaling of fields to keep the free part

$$\pi'^{a}(\alpha \vec{x}, \alpha t) = \alpha^{\frac{1-d}{2}} \pi^{a}(\vec{x}, t)$$

Most relevant interactions

$$\mathrm{d}^d x \mathrm{d} t \nabla^2 \pi^3$$
, $\mathrm{d}^d x \mathrm{d} t \partial_t^2 \pi^3$

$$S_{\text{free}}^{\text{type-B}} = \int d^d x dt \left(-\frac{\rho_{ab}}{2} \pi^a \dot{\pi}^b - \frac{g_{ab}(0)}{2} \vec{\nabla} \pi^a \cdot \vec{\nabla} \pi^b \right)$$

$${\pi'}^a(\alpha \vec{x}, \alpha^2 t) = \alpha^{-\frac{d}{2}} \pi^a(\vec{x}, t)$$

$$\mathrm{d}^d x \mathrm{d} t \nabla^2 \pi^3$$
 , $\mathrm{d}^d x \mathrm{d} t \partial_t \pi^3$

Their scaling raw and condition for the free fixed point

$$\alpha^{-\frac{1-d}{2}} \Rightarrow d > 1$$

$$\alpha^{-\frac{d}{2}} \Rightarrow d > 0$$

Symmetries will be restored in 1+1 dimensions (Coleman's theorem)

- SSB in 1+1 dimensions is OK!
- Order parameters commute with H
- → GS is one of their simultaneous eigenstates
- → No quantum fluctuation

Ripplons

HW and H. Murayama, PRD (2014) H. Takeuchi and K. Kasamatsu PRA (2013).

Non-Fermi liquid through NGBs

• Usually, interaction between NGBs with other fields are derivative coupling $\psi^\dagger \vec{\nabla} \psi \cdot \vec{\nabla} \theta$ interaction vanishes in the low-energy, long wavelenghth limit

However, there is an exception

I pinned down the condition for NFL:

$$[Q, \vec{P}] = 0$$

Conclusion

- Clarified number and dispersion of Nambu-Goldstone bosons
- Looking at the zero mode part of the effective Lagrangian, we can derive the tower of state structure
- Interactions among low-energy modes result in nontrivial outcome

NGBs with fractional-power dispersion Non-Fermi liquid behavior of electrons

How do you define Higgs?

In general, if no fine tuning or other special reasons, (the number of gapped modes)

= (the total number of modes) – (the number of NGBs)

We can easily change the total number of modes without changing the symmetry of the system.

example 1: add a completely decoupled field (+ infinitesimal interaction)

$$\mathcal{L} = \mathcal{L}_{\text{Higgs}}(\psi, A) + \frac{1}{2}(\dot{\phi}^2 - m^2\phi^2) + \mathcal{L}_{\text{int}}(\phi, \psi, A)$$

example 2: copy and mix $[\Theta_1, \Theta_2]$

$$\mathcal{L} = \mathcal{L}_{SF1} + \mathcal{L}_{SF2} + \mu(\psi_1^{\dagger}\psi_2 + c.c.) - g(\psi_1^{\dagger}\psi_1^{\dagger}\psi_2\psi_2 + c.c.)$$

Is it necessary for us to look at the behavior near the critical point? (i.e., cannot define Higgs in only one phase)