中性子星で探る核物質の状態方程式

中里健一郎 (東京理科大·理工·物理)

Talk Plan

Introduction

核物質状態方程式と中性 子星クラスト

中性子星の準周期的振動で探る核物質状態方程式

星の一生

 中性子星は大 質量星の進化 の最後に起こ る超新星爆発 により形成され る。

白色矮星と中性子星

- 白色矮星
 - 密度~10⁶g/cm³
 - 電子の縮退圧で支えられている。

よく分かっている

- 中性子星
 - 密度~10¹⁴g/cm³
 - 核子間の反発力で支えられている

未解明の部分が多い

真空中と物質中では話が異なる

・陽子は安定粒子、中性子は不安定粒子。

$n \rightarrow p + e + v$

 $mc^2 = 939 \text{ MeV} 938 \text{ MeV} 0.5 \text{ MeV}$

- 電子が縮退しているので運動エネルギーを持つ
 *ε*_F ~ 300 MeV
- 電子を減らして中性子を作った方が得!
 N + v ← P + C
 939 MeV
 938 MeV
 300 MeV
- •「中性子」星

原子核物理学のおさらい

- 結合エネルギーの飽和性
 - 1核子あたりの結合エネルギーは核種によらず、 ほぼ一定
- 密度の飽和性

 1核子の占める体積は 核種によらず、ほぼ一定
- 対称エネルギー
 - 中性子と陽子が同数の
 核種が安定(クーロンエ
 ネルギーは除く)

• 地上における(孤立した)原子核とは異なる。

おおざっぱに5つのパラメータで特徴づける。

saturation パラメータの重要性

- 核物質のモデルはさまざま。
- ・比較には共通の言語が必要
 → saturation パラメータ
- ものによって、大きな不定性はあるが、、、

$$n_0 = 0.15 - 0.16 \text{ fm}^{-3}$$

- $w_0 \sim -16 \text{ MeV}$
- $K_0 = 230 250 \text{ MeV}$ (Piekarewicz 2010)
- $E_{sym} = 30 34 \text{ MeV}$ (Tsang et al. 2009)
- L = 20 100 MeV ???

E_{sym} と L の実験値

中性子星質量の観測

- ・パルサー J1614-2230の質量は2M_☉!
 - 状態方程式に制限

Demorest et al., Nature 467 (2010) 1081

中性子星の内部 • ぎっしり詰まったコア+薄皮1枚のクラスト

質量・半径の決定に重要 電磁放射に影響

本日の話題 外殻 クラストでの「原子核」を探る 内殻 外核 内核

1 核物質状態方程式とクラスト 2 準周期振動で探る状態方程式

核物質状態方程式と中性子星クラスト

• クラストでは核子が凝集する ⇒「原子核」

最も単純なモデル

- 液滴模型
 - 体積 a³のセルを考える。
 –「原子核」の体積比を固定する。
 - 「原子核」内に中性子と陽子が存在。
 - 「原子核」外にドリップした中性子。
 - 電子はセル内に一様に分布

体積項と表面項

実は Weizsäcker-Bethe の質量公式と同じ

半経験的質量公式

- A: 質量数、N: 中性子数、Z: 陽子数
 - → 密度の飽和性:A、N、 $Z \propto r^3$ (原子核体積)
- δ : 殻項(偶奇項などの量子論的補正)
- → 系のサイズが大きい場合には効かない。

液滴模型で探る中性子星クラスト $W = W_b + W_s + W_c + W_{Coul}$

- エネルギー密度が最小になる大きさと形の「原 子核」が出現。
 SP_
- 原子核パスタ

高分子物理とのアナロジー

Nakazato, Oyamatsu and Yamada PRL **103** (2009) 132501 Nakazato, Iida and Oyamatsu PRC **83** (2011) 065811

2種の高分子の混合物(ブロック共重合体)の
 相分離で類似の形状変化。

Phys. Today 52, No.2, 32 (1999)

もう少し進んだモデル

原子核表面は拡がり(diffuseness)を持つ。

- 表面項の代わりに、勾配項を現象論的に導入。 $W_g = F_0 \int_{\text{cell}} |\nabla n(\mathbf{r})|^2 d^3 \mathbf{r} \qquad F_0$:定数

Thomas-Fermi 模型

• 体積項は核子分布を局所的に一様とみなして エネルギーを足し上げる。

$$W_B = \int_{\text{cell}} n(\mathbf{r}) w \left(n_n(\mathbf{r}), n_p(\mathbf{r}) \right) d^3 \mathbf{r}$$

エネルギー表式

 $W = W_{\rm B} + W_{\rm a} + W_{\rm Coul.}$

- エネルギー密度を最小化
 する核子分布は?
 - → 変分問題

Remark (1)

Thomas-Fermi 模型では(特に核密度付近の)
 一様原子核物質の状態方程式が必要。

Remark (2)

Oyamatsu and Iida PTP **108** (2003) 201101 Oyamatsu and Iida PRC **75** (2007) 015801

• 核密度のまわりでの展開形を利用。

状態方程式パラメータの決定

• 一様核物質状態方程式

$$w = w_0 + \frac{K_0}{18n_0^2}(n - n_0)^2 + \left[S_0 + \frac{L}{3n_0}(n - n_0)\right](1 - \frac{2x_p}{4})^2$$

- 不定性の大きい K₀,
 Lについては仮定。
- 既存の原子核質量や
 半径のデータを再現
 するように n₀, w₀, S₀
 を決める。

proton fraction —

クラスト内の「原子核」

 Thomas-Fermi 計算で、クラストの「原子核」の 陽子数 Z は K₀ より、L に強く依存すると判明。

• この結果を天体物理に応用できるか?

中性子星の準周期 振動で探る核物質 状態方程式

中性子星の巨大フレア現象

- Soft gamma-ray repeater (SGR)
 - 強磁場中性子星(>10¹⁴G)
 - 散発的に X 線や γ 線を放出
- まれに巨大フレアを起こす
 - SGR 0526-66 (1979)
 - SGR 1900+14 (1998)
 - SGR 1806-20 (2004)

- 減衰過程(SGR 1806-20)が観測されている。
 - Rossi X-ray Timing Explorer (RXTE)
 - Ramaty High Energy Solar Spectroscopic Imager (RHESSI)

準周期的振動(QPO)

 ・巨大フレアの減衰過程に準周期振動(quasiperiodic oscillation: QPO)を発見

- 地震波から地球内部を 探る。
 - → 地震学
- 太陽表面の固有振動
 モード観測による、太陽
 内部診断。
 - → 日震学
- QPO から中性子星内部
 を探る。

クラストでのねじれ振動

- 観測された QPO の起源?
 別の説:コアにおける磁気流体的振動
- クラストでは原子核は bcc lattice を組む。 \rightarrow 歪にたいする応答は?

クラスト振動数は何で決まるか?

• 等方的な弾性体では

- ばねモデル: $F = kx \rightarrow$ 振動数 = $\sqrt{k/m}$
- bcc lattice (クラスト) では (Ogata and Ichimaru, 1990)
 - shear speed: $v_s = \sqrt{\mu / \rho}$

- shear modulus: $\mu = 0.1194 n_i (Ze)^2/a$

クラスト「原子核」の陽子数 Zの出番!!

クラスト振動の計算

Sotani, Nakazato, Iida and Oyamatsu PRL **108** (2012) 201101 Sotani, Nakazato, Iida and Oyamatsu MNRASL **428** (2013) L21

- 一般相対論的摂動計算
- TOV 方程式から
 中性子星の構造を
 計算。
 - *M*, *R*を固定して
 外側から解く。
- 基準振動数₀t₂を 求める。

パラメータ L への制限

- クラスト振動の振動数は L に強く依存し、K₀ に はあまり依存しない。
 - shear modulus を決める Zが主に L で決まるため。
- 18 Hz の QPO を説明するには L > 50 MeV

超流動の効果

- クラスト中性子(の一部)は超流体
 - ある割合で振動に寄与しない中性子が存在する。
 - 振動数が上がる。

$\bar{n} \text{ (fm}^{-3}\text{)}$	Z	Α	$n_n^{\mathrm{f}}/n_n~(\%)$	$n_n^{ m c}/n_n^{ m f}~(\%)$	m_n^{\star}/m_n
0.0003	50	200	20.0	82.6	1.21
0.001	50	460	68.6	27.3	3.66
0.005	50	1140	86.4	17.5	5.71
0.01	40	1215	88.9	15.5	6.45
0.02	40	1485	90.3	7.37	13.6
0.03	40	1590	91.4	7.33	13.6
0.04	40	1610	88.8	10.6	9.43
0.05	20	800	91.4	30.0	3.33
0.06	20	780	91.5	45.9	2.18
0.07	20	714	92.0	64.6	1.55
0.08	20	665	104	64.8	1.54

(Chamel, 2012)

まとめ

まとめ

- 中性子星において核物理は input として重要。
- 核物理において中性子星は実験場として重要。
- 核物質状態方程式で探る中性子星クラスト。
 パスタ原子核など非一様相の出現
 - クラスト内の「原子核」の大きさは、核物質状態方程
 式の saturation パラメータに依存
- 中性子星の準周期振動からクラスト物質を探る。
 - クラスト振動数は「原子核」の大きさに依存
 - 飽和密度付近で原子核状態方程式に制限

back up

中性子星の構造計算(1)
• ニュートン力学の場合
- 連続の式

$$m(r+dr)-m(r)$$

 $= 4\pi r^2 dr \rho(r)$
 $\Rightarrow \frac{dm(r)}{dr} = 4\pi r^2 \rho(r)$
 $P(r) dS$
 $P(r) dS$
 $P(r+dr) dS$
 $P(r) dS$
 $P(r) dS r$
 $m(r)$
 $P(r+dr) dS r$
 $P(r) dS r$
 $P(r) dS r$
 $P(r+dr) dS r$
 $P(r) dS r$
 $P(r) dS r$
 $P(r+dr) dS r$
 $P(r) dS r$
 $P(r) dS r$
 $P(r+dr) dS r$
 $P(r) dS r$

$$\Rightarrow \quad \frac{dP(r)}{dr} = -\frac{Gm(r)}{r^2}\rho(r)$$

中性子星の構造計算(2)

- $\begin{cases} \frac{dm(r)}{dr} = 4\pi r^2 \rho(r) \\ \frac{dP(r)}{dr} = -\frac{Gm(r)}{r^2} \rho(r) \end{cases}$
- 微分方程式を解く

- 状態方程式P=P(
ho)

- 境界条件 (中心 r = 0 で m(r) = 0中心密度 ρ_c は仮定

中性子星の構造計算(3)

- 一般相対論の場合
 - 相対論効果の強さ(コンパクトネス)

$$\frac{2GM}{Rc^{2}} \sim 0.4 \qquad \begin{cases} R = 10 \text{ km} \\ M = 1.5M_{\odot} \text{ (太陽質量 } M_{\odot} = 2 \times 10^{33} \text{g}) \\ \rightarrow \frac{2GM}{Rc^{2}} = 1 \text{ でブラックホール} \end{cases}$$

