Avalanche Crystallization of 4He in Aerogel

Ryuji Nomura
H. Matsuda, A. Ochi, R. Isozaki, and Y. Okuda

Tokyo Institute of Technology
Aerogel: ~ 98% high porosity, very transparent, suitable for visualizing the dynamics in it.

98% model aerogel
We are interested in the dynamics of the first order phase transition in disordered media at very low temperatures.

Why ^4He?

No viscous effect in pores.

No release of latent heat.

Effect of quenched disorder, which induces complex energy landscape, on the crystallization can be revealed down to absolute 0 K.

New quantum phenomena may emerge at very low temperatures.
Variable volume cell

Crystallization at low temperatures can be investigated systematically.
Aerogel is in a thin glass tube and has a contact with the bulk crystals on the upper surface.

Porosities:
- 96% made by Panasonic
- 98% made by Pollanen and Halperin at Northwestern University
1. Crystallization of ^4He in aerogel by pressurization
Crystallization in 98% aerogel

170 mK

850 mK

(50 times faster replay)

Avalanche at low temperatures

(100 times faster replay)

Creep at high temperatures

Transition in a growth mode
Dynamical phase diagram

Competition between thermal fluctuation and disorder

Mass has to be transferred for the crystallization. 4He crystals are formed deep in the aerogel.

Outer bulk crystal has to be melted by the stress, and enter the aerogel in the superfluid state.

Avalanche (quantum?)
Creep (thermal?)
The critical overpressure was measured 50 times at constant temperature.

Clear metastability:
not instability but nucleation

The critical overpressure was measured 50 times at constant temperature.
\(\delta P_{1/2} \) mean critical overpressure in 98% aerogel

Avalanche: quantum nucleation

Creep: thermal activation

Matsuda et al. PRE (2013)
Power law in the avalanche size distribution in 98% aerogel

\[N = AS^{-\alpha} \exp \left(-\left(\frac{S}{S_c} \right)^\beta \right) \]

Self-organized criticality (SOC) in quantum growth

Nomura et al., JPSJ 80, 123601 (2011).

Editors’ choice
S_c decrease as approaching the transition. (due to dissipation?)

Looks like a crossover.

$$N = A S^{-\alpha} \exp \left(-\left(\frac{S}{S_c} \right)^\beta \right)$$

$$\alpha' \approx \frac{2}{3} \alpha \approx 0.8$$
2. Crystallization of 4He in aerogel on cooling

Due to “supersolidity”?
Crystallization of ^4He in 96% aerogel on cooling 100 times faster
Crystallization of 4He in 96% aerogel \textbf{on cooling}

Mass supply from the surrounding bulk crystals into aerogel is needed to grow crystal in aerogel, even \textbf{without pressurization}.
Crystallization rate and Pressure of bulk crystals on cooling

Mass flowed from the surrounding bulk crystals into aerogel.
1. What is the driving force for crystallization on cooling?

Equilibrium crystallization pressure is temperature independent at low temperatures in 4He.

\[\Delta \mu = \left\{ \frac{1}{\rho_l} - \frac{1}{\rho_s} \right\} \Delta P - (S_l - S_s) \Delta T \]

Usually neglected

2. How mass is transported in bulk 4He crystals?

May be related to the so called “supersolidity”.
Mass flow experiment

$T_{\text{flow}} = 630$ mK

Original torsional oscillator experiment by Kim and Chan (Nature 2004) was retracted.

But, occurrence of mass flows in 4He crystal was reported by Hallock et al. (PRL 2008) by direct flow measurements.
Superfluid components at a core of edge dislocation

Path integral Monte Carlo technique

Boninsegni et al., PRL 99, 035301 (2007)

This issue has not been is settled, yet.
Crystallization diagram in aerogel on cooling

$T_{\text{grow}} < T_{\text{flow}} = 630 \text{ mK}$ by Hallock
Summary

Crystallization in aerogel is via creep at high T and via avalanche at low T by pressurization. Creep growth is thermal activation and avalanche growth is macroscopic quantum tunneling from both crystallization rate and nucleation probability measurements. Avalanche size follows a power law: Self-organized critical states in macroscopic quantum tunneling.

Crystallization on cooling was observed. T_{grow} was lower than T_{flow}. T_{grow} had a anomalous pressure dependence. T_{grow} had a anomalously wide distribution; large supercooling in nucleation process. This can be an observation of a new crystallization mode as “supersolidity”-assisted crystallization in pores.