Y. Matsuda

Department of Physics Kyoto University Kyoto, Japan

H.E

THE

Conventional Superconductor

$MgB_{2}(T_{c} = 39 \text{ K}) \text{ J. Nagamatsu et al., Nature (2001)}$

FIG. 1. Fermi surface of MgB₂. The figure is taken from Ref. [5]. Holes in the σ -band form cylinders around the ΓA -line. The π -band has electron and hole pockets located near the H- and K-points, respectively.

High- T_c cuprates

Possible High T_c Superconductivity in the Ba – La – Cu – O System

J.G. Bednorz and K.A. Müller IBM Zürich Research Laboratory, Rüschlikon, Switzerland

Received April 17, 1986

Metallic, oxygen-deficient compounds in the Ba-La-Cu-O system, with the composition Ba_xLa_{5-x}Cu₅O_{5 (3-y)} have been prepared in polycrystalline form. Samples with x=1 and 0.75, y>0, annealed below 900 °C under reducing conditions, consist of three phases, one of them a perovskite-like mixed-valent copper compound. Upon cooling, the samples show a linear decrease in resistivity, then an approximately logarithmic increase, interpreted as a beginning of localization. Finally an abrupt decrease by up to three orders of magnitude occurs, reminiscent of the onset of percolative superconductivity. The highest onset temperature is observed in the 30 K range. It is markedly reduced by high current densities. Thus, it results partially from the percolative nature, bute possibly also from 2D superconducting fluctuations of double perovskite layers of one of the phases present.

J. G. Bednorz and K.A. Müller, Zeitschrift für Physik B 64, 189 (1986).

Year

Superconductivity occurs in CuO₂ 2D planes

Enhanced fluctuations \rightarrow suppression of magnetic order

Mott insulator

 $La^{3+} \rightarrow Ba^{2+}$ $(La_{1-x}Sr_x)_2CuO_4$

High- T_c superconductor

Superconductivity appears by doping holes or electrons

銅酸化物高温超伝導体最大の謎

フェルミアーク

擬ギャップの起源

クロスオーバー

超伝導ゆらぎ

相転移

超伝導と競合する何らかの秩序 フェルミ面の再構成 電荷ストライプ相(並進対称性の破れ) 軌道電流反磁性(時間反転対称性の破れ)

銅酸化物高温超伝導体最大の謎

超伝導ゆらぎ

超伝導と競合する何らかの秩序 フェルミ面の再構成 電荷ストライプ相(並進対称性の破れ) 軌道電流反磁性(時間反転対称性の破れ)

Parent compound

- U : Coulomb ~ 8eV
- W : Band width ~ 3eV

Strong electron-electron correlation

Mott insulator

Large crystal field ~2-3 eV

single

band

hole

One orbital x²-y²

Copper pair with finite angular momentum

D. J. Scalapino, Phys. Rep. (1995).

YBCO tricrystal superconducting ring (1994)

C

B' C.C. Tsuei *et al*. PRL (94)

超伝導ギャップ構造の決定方法

Universal thermal conductivity

QPs outside of vortex core.

Doppler shift

Angular dependent DOS

Sign change or no sign change?

Quasiparticle excitations from the SC ground state

$$\begin{split} \gamma_{k0}^{\dagger} &= u_k c_{k\uparrow}^{\dagger} - v_k c_{-k\downarrow} \\ \gamma_{k1}^{\dagger} &= u_k c_{-k\downarrow}^{\dagger} + v_k c_{k\uparrow} \\ |u_k|^2 &= \frac{1}{2} \left(1 + \frac{\xi_k}{\sqrt{\Delta_k^2 + \xi_k^2}} \right) \quad |v_k|^2 = \frac{1}{2} \left(1 - \frac{\xi_k}{\sqrt{\Delta_k^2 + \xi_k^2}} \right) \quad \xi_k \equiv \frac{\hbar^2 k^2}{2m} - \varepsilon_F \end{split}$$

B-quasiparticle: a superposition of an electron and a hole

$$\mathbf{k}\sigma \to \mathbf{k}'\sigma' \\ \mathcal{H}_1 = \sum_{k\sigma,k'\sigma'} B_{k\sigma,k'\sigma'} c^{\dagger}_{k\sigma} c_{k'\sigma'} \int_{a}^{B_{k\sigma,k'\sigma'}} g_{k\sigma'} c^{\dagger}_{k\sigma} c_{k'\sigma'} c_{k\sigma'} c_{k$$

Coherence factor

Scattering of QPs
$$(u_k u_{k'} \pm v_k v_{k'})^2 = \frac{1}{2} \left(1 \pm \frac{\Delta^2}{E_k E_{k'}} \right)$$

Creation and annihilation of two QPs $(v_k u_{k'} \pm u_k v_{k'})^2 = \frac{1}{2} \left(1 \pm \frac{\Delta^2}{E_k E_{k'}} \right)$

Sign change or no sign change?: NMR

$$\frac{1}{T_{1}T} \propto \sum_{kk'} \left(1 + \frac{\Delta_{k}\Delta_{k'}}{E_{k}E_{k'}} \right) \left[-\frac{\partial f(E_{k})}{\partial E_{k}} \right] \delta(E_{k} - E_{k'})$$

s-wave
$$\frac{1}{T_{1}} \propto \int_{\Delta(T)}^{\infty} dE \frac{E^{2} + \Delta^{2}}{E^{2} - \Delta^{2}} \operatorname{sech}^{2} \left(\frac{E}{2T} \right)$$

Hebel-Slichter peak
$$\int_{\frac{E}{2}}^{\frac{1}{2}} \int_{0}^{\frac{1}{2}} \int_{0}^{\frac{1}{2}} \int_{0}^{\frac{1}{2}} \frac{e^{-\frac{1}{2}}}{e^{-\frac{1}{2}}} \operatorname{sech}^{2} \left(\frac{E}{2T} \right)$$

Hebel-Slichter peak
$$\int_{\frac{E}{2}}^{\frac{1}{2}} \int_{0}^{\frac{1}{2}} \int_{0}^{\frac{1}{2}} \frac{e^{-\frac{1}{2}}}{e^{-\frac{1}{2}}} \operatorname{sech}^{2} \left(\frac{E}{2T} \right)$$

No HS peak
$$\int_{0}^{\frac{1}{2}} \int_{0}^{\frac{1}{2}} \int_{0}^{\frac{1}{2}} \frac{e^{-\frac{1}{2}}}{e^{-\frac{1}{2}}} \operatorname{sech}^{2} \left(\frac{E}{2T} \right)$$

10-1

10¹

T (**K**) K. Ishida *et al*. JPSJ (93)

Sign change? Neutron resonance peak

In the superconducting state

$$\operatorname{Im}\chi_{0}(\mathbf{q},\omega) = \frac{1}{4} \frac{1}{(2\pi)^{3}} \int d^{3}k \left(1 - \frac{\underline{\Delta_{k} \Delta_{k+q}}}{E_{k+q} E_{k}}\right) \delta(\omega - E_{k+q} - E_{k}) \qquad E_{\mathbf{k}} = \sqrt{\xi_{\mathbf{k}}^{2} + \Delta_{\mathbf{k}}^{2}}$$

The coherence factor becomes 2 for $\Delta_{k+Q} = -\Delta_k$

Sharp resonance peak at ω_{res} < 2 Δ

Stock et al., PRL 100, 087001 (2008)

Sign change or no sign change?: STM

Bi:2212 Zn不純物周りの電子状態

Quasiparticle interference (QPI)

sign-reversing scattering

$$\Delta_k \Delta_{k'} < 0 \qquad (u_k u_{k'} - v_k v_{k'})^2 \quad \text{large}$$

Quasiparticle interference (QPI)

Cuprate : Octet Model J. Hoffman *et al.*, Science (2002), K. McElroy, *et al.*, Nature (2003). $\int sign-preserving scattering = > suppression$

 $\Delta_k \text{ and } \Delta_{k+q} \begin{bmatrix} \text{sign-preserving scattering} => \text{suppression} \\ \text{sign-reversing scattering} => \text{enhancement} \end{bmatrix}$

sign-preserving $(\mathbf{q}_1, \mathbf{q}_4, \mathbf{q}_5)$ q_y sign-reversing

 $(\mathbf{q}_2, \, \mathbf{q}_3, \, \mathbf{q}_6, \, \mathbf{q}_7)$

T. Hanaguri et al.