第60回物性若手夏の学校 平成27年7月30日 岐阜長良川温泉

固体中の電子の量子操作と計測

樽茶 清悟

東京大学大学院工学系研究科物理工学専攻 理化学研究所創発物質科学研究センター

電子の位相:単一粒子

 $|\Psi\rangle = |\psi(\mathbf{r})\rangle |\chi(\boldsymbol{\sigma})\rangle$

軌道

スピン

 $|\chi\rangle = \cos(\theta/2) |\uparrow\rangle + e^{i\omega t} \sin(\theta/2) |\downarrow\rangle$

ベクトルポテンシャル:AB位相 ハミルトニアンの断熱変化:Berry位相

電子の位相:2粒子相関

スピン1重項、3重項

内容

1. 量子コヒーレンスと量子情報

単一・結合量子ドットの電子状態と量子ゲートへの応用 単一電荷、単ースピンの検出 量子ビットと量子もつれの操作と射影測定 多重ドットへの拡張

2. 環境とデコヒーレンス

電気的雑音と磁気的雑音 スピン緩和(スピン軌道相互作用と超微細相互作用) デコヒーレンスのフィードバック制御 非エルゴート領域での不均一デコヒーレンス時間の拡張 核スピン環境の除去

3. 位相制御と計測

位相の時空間発展 2経路干渉計による位相制御と検出 量子ドットのフリーデル総和則 近藤位相の実証実験 非局所量子もつれの生成と検証

量子制御に必要な状態操作=量子情報のゲート

状態ベクトルのユニタリー変換 |0> - |1>ブロッホ球上の回転 (反転と相対位相) (量子ビットのXゲートと位相ゲート)

量子もつれの生成と解消 |01:

|01>-|10>ブロッホ球上の回転

状態緩和(環境との相互作用)

デコヒーレンス制限 x y (|0>|1>) x (|1>|0>)

基底状態の選択

初期化 |0>|0>, |0>|1>,..

読み出し:射影測定(|0>,|1>) ベル測定(|01>±|10>,|00>±|11>)

観測

状態操作のハミルトニアン: ベクトル回転

Well-defined two states |0> and |1> Hybridization of two states

 $H_{\text{qubit}} = \mathcal{E}_0 |0><0| - \mathcal{E}_1 |1><1| + (\mathcal{E}_x/2)[|0><1| + |1><0>]$

 $= (\varepsilon_z/2)\sigma_z + (\varepsilon_x/2)\sigma_x$

スピン回転のハミルトニアン

Rotation on Bloch sphere for $B_x = B_1 \cos(\omega t)$ along x-axis ($B_1 \ll B_0$)

$$H_{1} = -\hbar\gamma B_{1}\cos(\omega t)S_{x} = \begin{bmatrix} 0 & -\hbar\omega_{0}/2 \\ -\hbar\omega_{0}/2 & 0 \end{bmatrix}\cos(\omega t) = -\hbar\gamma B_{1}\cos(\omega t)\sigma_{x}/2$$

$$H_{total} = (-\hbar\gamma/2)[B_{0}\sigma_{z} + B_{1}\cos(\omega t)\sigma_{x}]$$

$$H_{2level} = \underbrace{\left\{\frac{\varepsilon_{z}}{2}\sigma_{z}\right\}}_{2} + \underbrace{\left\{\frac{\varepsilon_{x}(t)}{2}\sigma_{x}\right\}}_{2}$$

量子もつれ操作のハミルトニアン

スピンの間に働く交換相互作用

Spin exchange = $(-J/4)\sigma_1 \cdot \sigma_2$

Pulsed voltage to on/off exchange coupling J for $|\uparrow>|\downarrow>$ and $|\downarrow>|\uparrow>$

Generate entanglement

$$U_{\sqrt{SWAP}} \mid \uparrow > \mid \downarrow > = (\mid \uparrow > \mid \downarrow > + i \mid \downarrow > \mid \uparrow >)/(1+i)$$

Swap two qubits

 $U_{SWAP} \mid \uparrow > \mid \downarrow > = \mid \downarrow > \mid \uparrow >$

$$H_{exc} = (-J/4)\sigma_1 \cdot \sigma_2 = -J(1/4)(I + \sigma_1 \cdot \sigma_2) + (J/4)I$$

= (-J/2)U_{SWAP} + (J/4)I

 $exp[-iH_{exc}t/\hbar] = exp[iJU_{SWAP}t/2\hbar]exp[-iJt/4\hbar]$

 $= I\cos(Jt/2\hbar) + iU_{SWAP}\sin(Jt/2\hbar)$

$$= i U_{SWAP}$$
 for Jt=h/2

$$=\frac{1+i}{\sqrt{2}}U_{\sqrt{SWAP}}$$
 for Jt=h/4

量子ドットの電子状態

Total energy for N electrons $U(N) = \sum_{1}^{N} E_{n} + E_{int}(N)$

Chemical potential

$$\mu(N) = U(N) - U(N-1)$$

 $= E_N + E_{\rm int}(N) - E_{\rm int}(N-1)$

... Energy necessary for putting the Nth electron

$$\Delta \mu(N) = \mu(N) - \mu(N-1) : Increment$$
$$= \Delta E_N + E_{int}(N) - 2E_{int}(N-1)$$
$$+ E_{int}(N-2)$$

Approximation : large N, spinless, capacitive

$$\Delta E_{N} = E_{F}/N, \quad E_{int} = (Ne)^{2}/2C$$
$$E_{int}(N) - 2E_{int}(N-1) + E_{int}(N-2) = \frac{e^{2}}{C}$$
$$\Delta \mu(N) = E_{F}/N + e^{2}/C \approx e^{2}/C$$
単一電子帯電エネルギー (クーロンギャップ)

結合量子ドットの電子状態

Capacitive coupling between two dots

One-electron charging in one dot raises the electrostatic potential of the other dot by $E_c=e^2/C_{inter}$, which is equivalent to $\mu(1,1) - \mu(0,0)$.

結合量子ドットの電子状態

total electron number is only well defined.

dot by $E_c = e^2/C_{inter}$, which is equivalent to $\mu(1,1) - \mu(0,0)$.

多重量子ドットの電荷状態

(Am)²/₄ -400 -

-430

-280

-250

 $V_{\rm L}\,({\rm mV})$

-220

 C_L

 V_{L}

 C_R

 V_{R}

(1,0,2)

単一電荷の実時間測定

静電ポテンシャルの増加分 △V = *e*/C ("small")=0.1V

電子1個の実時間測定

1個単位の電子トンネルの実時間観測

初期化と読み出し

Double dots

Ono and ST, *Science* 02; *PRL* 04 Petta et al. *Science* 05 Koppens et al. *Nature* 07 Nowack et al. *Science* 07

初期化と読み出し

Double dots

Ono and ST, *Science* 02; *PRL*Petta et al. *Science*Koppens et al. *Nature*Nowack et al. *Science*

Transpot ie terminated by forming a triplet state = Initialization

スピン回転の検出

微小磁石を用いた量子ビット(Xゲート)

Nat. Phys. 2010; PRL2010, 2011

Inhomogeneous Zeeman field

 ΔB_z is the in-plane stray magnetic field// B_{ext}

2電子状態エネルギーの離調依存性

ブロッホ球上の状態ベクトル操作

回転座標系: E_z=ħω

 $H_{\text{total}} = (-\hbar\gamma/2)[B_0\sigma_z + B_1\cos(\omega t)\sigma_x]$

△B_z:余剰ゼーマン磁場

実験室座標系

J:ドット間交換結合

△B_z:ドット間のゼーマン磁場差

2重量子ドットによる2ビット

QPC charge sensing to detect to charge change in the double dot

R. Brunner et al. PRL 2011

最高速度ラビ振動

J. Yoneda et al. PRL 2015

位相ゲート

J. Yoneda et al. PRL 2015

Phase shift of Larmor precession = Rotation about z

Z gate time (ns)

Min. $Z(\pi/2)$ time = 5 nsec << T_2^*

$$R_{z}(\theta) = R_{x}(\pi/2)R_{y}(\theta)R_{x}(-\pi/2)$$

...Temporal detuning of ΔE_{Zeeman}
 $2\pi\Delta t\Delta f_{\text{L}} \ (\Delta E_{\text{Zeeman}}=h\Delta f_{\text{L}})$

Single-spin Based Qubits in TQD

- L. Gaudreau et al., Nat. Phys. (2011)
- J. Medford et al., PRL (2014)

P3 (V)

4重量子ドット

APL M. Delbeqc et al. 2014

VR

量子もつれゲート: |↑>|↓> ↔ |↓>|↑>

R. Brunner et al. PRL 2011

0.36

δG_{QPC} (a.u.)

P_{bright} (a.u.)

0.59

Probability of finding the singlet in the output $|\psi_2 > P_{bright} \equiv |\langle |\uparrow \rangle |\downarrow \rangle |\psi_2 \rangle|^2 + |\langle |\downarrow \rangle |\uparrow \rangle |\psi_2 \rangle|^2$

Calculation of concurrence using parameters derived from experiments

多重量子ドットの電荷状態の制御と検出

内容

1. 量子コヒーレンスと量子情報
 量子ドットの電子状態と量子ゲートへの応用
 単一電荷、単ースピンの検出
 量子ビットと量子もつれの操作と射影測定
 多重ドットへの拡張

2. 環境とデコヒーレンス

電気的雑音と磁気的雑音 スピン緩和(スピン軌道相互作用と超微細相互作用) デコヒーレンスのフィードバック制御 非エルゴート領域での不均一デコヒーレンス時間の拡張 核スピン環境の除去

3. 位相制御と計測 位相の時空間発展 2経路干渉計による位相制御と検出 量子ドットのフリーデル総和則 近藤位相の実証実験 非局所量子もつれの生成と検証

量子コヒーレンス

環境の影響

電荷(軌道) 電気的環境

> フォノン:エネルギーに依存 ピエゾエレクトリック 変形ポテンシャル 高周波

抵抗揺らぎ: 1/f 低周波

電荷揺らぎ: 1/f² 低周波

ショット雑音: 白色 高周波

スピン

磁気的環境

- スピン軌道相互作用 :電場、波数、方位 に依存 角運動量保存 高周波
- 核スピン: 超微細相互作用 中~高周波

磁性不純物、近藤効果、。。。

 $T_2 = 2T_1$

電荷状態のデコヒーレンス

T₁ > T₂ >> T₂* スピン状態のデコヒーレンス
1/f and 1/f² 雑音:量子ポイントコンタクト

静電的揺らぎ:低周波数

抵抗揺らぎ(ゲート電圧の揺らぎ) 電荷捕獲と放出

1/f and 1/f² 雑音の抑制:量子ポイントコンタクト

Buisert et al. PRL 2008

軌道とスピンの自由度

デコヒーレンス:スピン緩和

Coupling to lattice nuclei

$$H_{\rm HF} = A |\psi(\mathbf{x})|^2 \left(\frac{I_+ S_- + I_- S_+}{2} + I_Z S_Z \right)$$

"Spin flip" "Phase flip"

スピン軌道相互作用によるスピン緩和のT₁

Pump and probe measurement, Fujiswa, ST PRL 02

 $\Gamma_{\uparrow\downarrow} \approx (1 \text{ ms})^{-1} \text{ for } \omega_0 = 1 \text{ meV}, B = 1 \text{ T}$ and $\beta = 10^{-2} \sim 10^{-1} \text{ (GaAs)}$

 $T_2=2T_1..very long (> ms)$

スピン緩和

核スピン環境の影響

Statistical fluctuation of nuclear field = $\frac{A}{\sqrt{N}} = mT$

Standar deviation of ESR line : σ = a few MHz

半古典近似を超える取扱い

(a)

amplitude

Nuclear field is approximated Gaussian distribution of nuclear fields with deviation $\sqrt{\langle (B_N)^2 \rangle}$

Central spin problem

Central-spin problem is to investigate many-body correlations in nanoscale nuclear spin bath.

time (arb. units)

(b)

 $T_2^* = \frac{\hbar\sqrt{2}}{g\mu_R\sqrt{<(B_N)^2>}} \sim 10 \text{ ns (GaAs)}$

The decay is fitted as Gaussian

of the form $\exp[-t^2/(T_2^*)^2]$.

 $B_{\rm N}^{\rm Z}$

 $B_{\rm eff}$

B

Ex) phosphorous donors in silicon, silicon quantum dot, GaAs quantum dot

核スピン相互作用のラビ振動への影響:不均一幅と位相シフト

$$P(t) = \int_{-\infty}^{\infty} \mathrm{d}\omega \frac{e^{-\frac{\omega^2}{2\sigma^2}}}{\sqrt{2\pi\sigma}}$$

$$\times \frac{b_1^2}{2{\Omega_1}^2} [1 - \cos(\Omega_1 t)]$$

where
$$\Omega_1 = \sqrt{b_1^2 + \omega^2}$$

(generalized Rabi freq.)

Average over Overhauser field distribution Spin flip prob. for detuning ω

• $b_1 > \sigma$ (strong driving case)

For $|\omega| \leq \sigma$, the integrand is roughly constant.

$$P(t) \sim \frac{1}{2} [1 - \cos(b_1 t)] \quad for \ t \sim \frac{1}{b_1}$$

• $b_1 < \sigma$ (weak driving case)

$$P(t) \sim C + \frac{1}{2\sigma} \sqrt{\frac{b_1}{t} \cos\left(b_1 t + \frac{\pi}{4}\right)} \quad for \ t > \frac{2}{b_1}$$

FHL Koppens et al., PRL (2007)

核スピン相互作用の影響

Disrupted chevron patter in the B-t domain

burst time in units of $T_{2\pi}$

ラビ高速化による核スピンの影響の解消

* Feedback

T₁: spin-orbit T_2^* , T_2 : hyperfine

Non-exponential transverse spin decay reflecting Non-Markovian dynamics due to hyperfine int. Coish and Loss, Phys. Rev. B 70, 195340 (2004)

- $T_1 >> T_2$
- GaAs QD N=4x10⁵
- Nat. Si QD with 4.7% ²⁹Si N=5x10³
- ²⁸Si QD with 0.08% ²⁹Si N=10²

* Feedback

 T_1 : spin-orbit T_2^* , T_2 : hyperfine

Non-exponential transverse spin decay reflecting Non-Markovian dynamics due to hyperfine int. Coish and Loss, Phys. Rev. B **70**, 195340 (2004)

フィードバックによる環境揺らぎ補正

Feedback loop:

H. Bluhm et al. PRL 105, 216803 (2010)

Measure standard oscillations

Measure a few data points for a short time and fit the standard oscillation to extract deviation of ΔB_7

Feedback pulse to compensate the environment change

Measure the actual data

核スピン環境の揺らぎ(動的核スピン分極の揺らぎ)補正

H. Bluhm et al. PRL 105, 216803 (2010).

feedback response time to ≈ 1 s.

核スピン環境の揺らぎの高速補正

核スピン環境の揺らぎの高速補正

M.D. Shulman, Nat, Commu. 5, 5156 (2014)

Measure N~100 time within 0.1 msec to estimate ΔBz using the Bayesian estimation.

Apply resonance AC voltage to tune J whose frequency is consistent with the measured ΔBz .

$$J = J_0 \cos(\Omega_J t)$$
$$\frac{\Omega_J}{2\pi} = \Delta \breve{B}_2$$

Control $|\uparrow\rangle|\downarrow\rangle$ \leftrightarrow $|\downarrow\rangle|\uparrow\rangle$ oscillation in the rotational frame about x-axis

内容

1. 量子コヒーレンスと量子情報
量子ドットの電子状態と量子ゲートへの応用
単一電荷、単一スピンの検出
量子ビットと量子もつれの操作と射影測定
多重ドットへの拡張

2. 環境とデコヒーレンス

電気的雑音と磁気的雑音 スピン緩和(スピン軌道相互作用と超微細相互作用) デコヒーレンスのフィードバック制御 非エルゴート領域での不均一デコヒーレンス時間の拡張 核スピン環境の除去

3. 位相制御と計測

位相の時空間発展 2経路干渉計による位相制御と検出 量子ドットのフリーデル総和則 近藤位相の実証実験 非局所量子もつれの生成と検証

干渉と位相

Weak localization: $P \longrightarrow P$

Conductance fluctuation

Narrow Si inversion layer J.C. Licini et al. Phys. Rev. Lett. 55, 2987 (1985).

干渉と位相

AB ring for phase control with B

Phase difference between two paths

$$\Delta \varphi = k \cdot (l_1 - l_2) + \frac{e}{\hbar} BS$$

Normal-metal AB ring R. Webb et al. Phys. Rev. Lett. 54, 2696 (1985).

位相の制御と検出

位相剛性の問題

Two-terminal AB Ring with a QD

 G_{SD} : Linear conductance from S to D Boundary conditions between contacts -Unitarity: $G_{SD}(B) = G_{DS}(B)$ Time reversal symmetry: $G_{SD}(B) = G_{DS}(-B)$

$$\implies G_{SD}(B) = G_{SD}(-B)$$

Phase rigidity 0 or π ... only maintained by back scattering and multiple interference within the ring although expected phase shift is smooth:

$$\Delta \varphi = k \cdot (l_1 - l_2) + \frac{e}{\hbar} BS + \Delta \varphi_{\rm dot}$$

Difficult to measure transmission phase

位相剛性の問題の解消の試み

Weizmann group

Multi-terminal AB ring

新型2経路干渉計

M. Yamamoto et al. Nature Nano. **7**, 247 (2012).

$$|\psi_{i}\rangle = \frac{1}{\sqrt{2}} \left(|\psi_{S}\rangle + |\psi_{AS}\rangle \right) \implies |\psi\rangle_{f} = \frac{1}{\sqrt{2}} |\psi\rangle_{S} e^{-i\int \frac{E_{S}}{\hbar} dt} + \frac{1}{\sqrt{2}} |\psi\rangle_{AS} e^{-i\int \frac{E_{AS}}{\hbar} dt}$$

結合量子細線を伝搬する電子波

$$\mathsf{Input} \quad |\uparrow\rangle = \frac{1}{\sqrt{2}} (|\psi_s\rangle + |\psi_{AS}\rangle)$$

Output

Beam splitter when $\theta = (1+2n)(\pi/2)$ 50% (upper) : 50% (lower)

 $\implies I_{1,2} = \frac{|1 \pm \cos\theta|}{2}$

ABリングでの位相制御

2経路干渉計の出力

弱結合量子細線の出力:逆位相

結合量子細線の出力

強結合量子細線の出力:同位相

位相検出器(位相剛性の有無)

S. Takada et al. APL 2015

量子ドットを透過する電子波の位相と電子数の関係

量子ドットを透過する電子波の位相と電子数の関係

 $N - \delta(\mathcal{E}_F)$ related Friedel sum rule

$$N = \frac{1}{\pi} \delta(\varepsilon_F) \quad \text{for spinless fermions}$$
$$N = \frac{1}{\pi} \left[\delta_{\uparrow}(\varepsilon_F) + \delta_{\downarrow}(\varepsilon_F) \right] \quad \text{for spinful electrons}$$

Landauer formula

$$G = \frac{e^2}{h} \left(T_{\uparrow} + T_{\downarrow} \right)$$
$$T_{\uparrow\downarrow} \left(\varepsilon_F \right) = \sin^2 \delta_{\uparrow\downarrow} \left(\varepsilon_F \right)$$
$$= 1$$

量子ドットを透過する電子波の位相

Excess charge due to tunneling

Phase shift $\Delta \phi_{dot}$

Friedel's sum rule: $\Delta \phi_{dot} = \pi \Delta n$

One-by-one tunneling due to Coulomb blockade, then Δn across a Coulomb peak between two Coulomb valleys

 $\Delta n = 1$ then $\Delta \phi_{dot} = \pi$

クーロンピークを透過する単一電子の位相

Phase shifts π across the Coulomb peak

cf.) R. Schuster et al., Nature **385**, 417 (1997)

ドット中の局在スピンによる近藤効果

Screening of local spin by exchange coupling with electrons at Fermi sea in the leads.

量子ドットの近藤効果の特徴

近藤谷での位相シフト

 $\Delta \phi_{dot} = \pi/2$ for $\Delta n = 1/2$

Peak appears at low temperatures (T << T_K)

Temperature dependence of Coulomb peaks

Temperature dependence of the conductance at the Kondo valley

多重干渉の除去の試み

Weizmann group

- π / 2 shift in the Kondo regime (T < T_K)
- π shift in the Coulomb blockade regime $~(~T >> T_{\rm K}~)$

Multi-terminal AB ring

• Large QD ($\delta < \Gamma$)

- π - shift in the Kondo valley ($\neq \pi/2$) T (= 90 mK) < T_K (= 1 K)

Y. Ji et al., Science **290**, 779 (2000)

• Small QD ($\delta > \Gamma$)

- $\pi/2$ - shift across each Coulomb peak

 $T (= 30 \text{ mK}) > T_{K} (= 1 \text{ mK})$

M. Zaffalon et al., PRL 100, 226601 (2008)

Inconsistent with theory

近藤谷での位相シフトの観測 (T < T_{κ})

• $\pi/2$ plateau at the Kondo valley

Direct evidence of Kondo singlet state