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® Glass transition at high dimensions

® [ ong ranged systems
® Jamming transition

® Randomly pinned glass transition



Glass transition at high dimension

0 Introduction
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Glass transition at high dimension

® Introduction

If RFOT scenario IS correct,

O MCT should work better in Higher Dimensions

O MCT should work better for Long-Ranged Systems

O Dynamic (MCT) transition point should mark the
gualitative change of the free energy landscape
(inherent structures)



Glass transition at high dimension
® MCT vs MD at d=4

MD for 4d Hard Sphere Fluid
® Density (Volume fraction) © is a sole parameter

® Nucleation rate 1S small van meel, Frenkel, charbonneau PRE 79, (2009) 030201
Monatomic (1-component) glass former!

MCT for 4d Hard Sphere Fluid
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Glass transition at high dimension

KA-LJ system; Flenner et al. PRE 72 031508 (2005)
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Glass transition at high dimension
® MCT vs MD at d=4
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MCT is more mean-fieldy in 4d!



Glass transition at high dimension
® MCT vs Replica Theory at high d’s

MCT vs. Replica theoryin  d= 3

€ MCT in arbitrary dimensions

OF (q.1)
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/

A7 zr PP°(q i
Ing(r) = Bo(r) + /We q = pgz()q)’ Regular HNC equation

\ s :
o[ 4dA7 ar) phP(q) o[h(q) — h(q)]? HNC equation
\ lng(r)_/(%)de {1—|—ph(q) 1 +p[h(q)7z(q)]} between replicas




Glass transition at high dimension
® MCT vs Replica Theory at high d’s

MCT vs. Replica theory ind = 3 -

Gleim et al. PRL (1998)\
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MCT wins over Replica. But maybe simply because
HNC Is a bad approximation.



Glass transition at high dimension
® MCT vs Replica Theory at high d’s

MCT vs. Replica theory in d = o0

d/2
In d — 00, Static input is given by a single Mayor function: c(q) = — () Jd/Q(CJ)

€ MCT in arbitrary dimensions

OF(q.t) Dq’ I NOF (q.1)
= — F(q.t It Mg, t—t
Ot S @ )+f0 A Mgt =)=,
D d?k
Mg.1) =" / oy [eelh) + (2 = Ryelq = K] F(k.)F (g = k)

‘ Repllca Theory Wlth Cage EXpanSIOn Parisi and Zamponi Rev. Mod. Phys.82 789 (2010)

F(q,t =00) o exp [—Aq?} Gaussian assumption

1 dlq .~ Ay .
45/ d'r log [1/ (am)d q AQQC(Q)}/ (2m)1" )




Glass transition at high dimension
® MCT vs Replica Theory at high d’s

MCT vs. Replica theory in d = o0
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Glass transition at high dimension
® MCT vs Replica Theory at high d’s

MCT vs. Replica theory in d = o0

Nonergodic parameter [mui—~

= 50)

FS(Qf

MCT predicts non-Gaussian shape
Replica assumes Gaussian shape a priori



Glass transition at high dimension

® MCT vs Replica Theory at high d’s

MCT vs. Replica theory in d = o0

e MCT g
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Glass transition at high dimension
® MCT vs Replica Theory at high d’s

MCT vs. Replica theory in d = o0

This discrepancy is due to failure of MCT!

Non-Gaussian (and squashed) shape of F(qg, t) is WRONG

because inevitably leads to a negative value in its real space representation.
Fourier transform of F(q.t = o)

Go(r) oc (6(r — AR))

Propabiity distributon o1 a taggead partcile (van Hove
function).




Glass transition at high dimension

® Recent Progresses
Non-Gaussian long tails due to Rare Hoppings

Chaudhuri et al. PRL (2007)

b) Lenncurd ]oueb
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Charbonneau et al. arXiv (2012)
10— 1 100




Glass transition at high dimension

® Recent progresses

Violation of the Stokes-Einstein law
Ginzburg criteria for glass (Biroli Bouchaud, 2007)

(F2(k,1)) << (F(k,1))" &
Charbonneau et al. arXiv (2012)
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Glass transition at high dimension
® Recent Progresses

Exact Replica Theory Calculation at High d’s without
Gaussian ansatz (Kurchan Zamponi 2012, arXiv)

g = 4.8 x d/2°

Remain unchanged...
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® Glass transition at high dimensions

® [ ong ranged systems
® Jamming transition

® Randomly pinned glass transition



Long Ranged Systems

If RFOT scenario IS correct,

O MCT should work better in Higher Dimensions

O MCT should work better for Long-Ranged Systems

O Dynamic (MCT) transition point should mark the
gualitative change of the free energy landscape
(inherent structures)



Long Ranged Systems

Long-ranged Potential = Dense Ultra-Soft Potential

Gaussian Core Model (GCM)

oY h

Stillinger et al. (1977)




Long Ranged Systems

Phase Diagram of Monatomic GCM
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Long Ranged Systems

Monatomic GCM vitrifies!

X MD simulation

fluid
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Long Ranged Systems

Monatomic GCM vitrifies!
And MCT works unprecedentedly well!!

1.0 ;

0.5

Fs(k,1)

0.0

10° 10" 10% 10% 104 10° 10°
t

KA LJ GCM (p=1.5) GCM (p = 2.0)
T (simulation+fitting) 0.435 0.202 X107 0.266 X 10°
Tt (theory) 0.922 0.266 X 105 0.340 X 106
Deviations 112 % 33 % 28 %




Long Ranged Systems

Monatomic GCM vitrifies!

And MCT works unprecedentedly well!!
And dynamic heterogeneities are weak!!!

Weaker violation of Stokes-Einstein relation

(a)

—&¢— GCM (p = 1.5)
—&— GCM (p = 2.0)
—&— KA (large)
—v— KA (small)

0.1

T _TMCT



Long Ranged Systems

Monatomic GCM vitrifies!
And MCT works unprecedentedly well!!
And dynamic heterogeneities are weak!!!

[ Distribution of the Particle Displacement or ]
KA-LJ SyStem Flenner et al. (2005) GCM (p:2'0)

1.5

1 1
-1 0 0.01 10

log, , o 'log,, o'

Bimodal distribution of fast and slow particles Single-peaked and Gaussian shape



Long Ranged Systems

Whereas GCM becomes more mean-field-like,
MCT may start deteriorating, as the density

INncreases

Debye-Walller factors of MCT become anomalous
(non-Gaussian) at high densities!?
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® Glass transition at high dimensions

® [ ong ranged systems
® Jamming transition

® Randomly pinned glass transition



Jamming Transition

What is the Jamming Transition?

The volume fraction (density) of the hard balls poured into a jar
randomly is always about ©; ~ 64711



Jamming Transition

What is the re btwn Glass and Jaming Transition?

gperature

Jamming Point \
ed
S efc.

_00Se grains,
.0bles, droplets etc.

(4

Liu and Nagel, Nature 1998



Jamming Transition

Mean Field “Theories” of the Glass transition

é )

If we use S

(P,V) or (P,§0 Instead of (T,E)
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Dynamic (MCT) Thermodynamic
transition point transition point



Jamming Transition

Visualize the "Energy” Landscape
A

total volume @

W Ik

coordinate

This is nothing but the Jamming transition



Jamming Transition

The average will be lowered as density increases
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Jamming Transition

Initial density dependence of jamming
transition points Ozawa, Kuroiwa, keda, and KM, PRL (2012

Binary Hard Spheres with size ratio 1.4 and composition ratio 0.5:0.5

0.660

d=3 d=2

0.846
(DJ 0.655 - 1 (0\]

0.844

0.650 i .

9, 20648 [> [ - -8 - —g - o~ —gety | gojz0,842|4842_'+"'."'.'"'.'

0.645 ]
0.840

0.640 ; ; . 0.838 L— : : : :

0.3 04 05 0.6 0.3 0.4 0.5 0.6 0.7 0.8
gﬁeq T (Deq T
@q =0.52 ¢, = 0.69

See also Chaudhuri, Berthier, Sastry, PRL 104 (2010) 165701
Pica Ciammarra, Canigrio, Candia, Soft Matter 6 (2010) 2957



Jamming Transition

What is the relgman btwn Glass and Jarg

Ing Transition?

gperature

Jamming Points \
»/ Load

_00Se grains,
.0bles, droplets etc.

Density

Liu and Nagel, Nature 1998



Jamming Transition

What Is the jammed packing denser than 0.6487
Is this just a less random (or more ordered)

packing?
S. Torquato et al., PRL (2000)

<« HCP=0.74

1.0

Jammed MRJ
Structures " ¢,=0.64...

ot
W

Crystalline Order

0.4 0.6



Jamming Transition

Orientational Order Parameters

Schreck et al. PRE (2011)

A

ed packing




Jamming Transition
Hidden length

Ozawa, Kuroiwa, lkeda, and KM, PRL (2012)

06 (1) = (0¥ (r)d¥; (0)) =exp[—r/ £]

2.0 L DL L L L L L L ol
® IS
15 | ® Eq
'/56 ' + i
0. L e ____ ii i
I : _
05 F
I I I I '
0.3 0.4 0.5 0.6 T.?




Jamming Transition

What is the jammed packing denser than 0.6487
Is this just a less random (or more ordered)

packing?

N

For the ordered crystal, the
density can not exceed ¢=0.74
of HCP packing (Kepler, 1611)

For the disordered jammed
state, can the density exceed
¢=0.648 without being polluted
by crystalline order?




Jamming Transition
Conclusions

Dynamic transition point marks the qualitative change of
the free energy landscape (inherent structures)

More puzzles than answers...

® \What is the configurational properties beyond
dynamic transition point?
Does any “amorphous-order” grow beyond
¢=0.64877

® \Why does the mean field theory work so well
guantitatively? Is it just fortuitous?
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® Glass transition at high dimensions

® [ ong ranged systems
® Jamming transition

® Randomly pinned glass transition



Thermodynamic Glass Transition

of

Randomly Pinned Systems
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INTRODUCTION

® Does the (thermodynamic) Glass Transition Point exit?

ﬁonfiguratinal (residual) entropy \

Yes!
| Adam-Gibbs theory
50 | Random First Order Transition(RFOT)
L 40 etc...
\—E _ o‘rf TB
X 30} y.
;0 ettt T, = 175K No!
20}
T,=220K . . .
‘ Tq = 265K Purely Kinetic scenarios
10F Tk The =319 K Frustration pictures
0 ' lR/chelrt et a{. (199|8) etc...

150 200 250 300
\_ T/K -




Randomly Pinned Glass Transition

Kim (2000), Krakoviack(2005), KM and others (2009")

1. Randomly distribute all particles

2. Let them run till equilibrated

3. Quench (pin) a fraction of particles while
leave others moving

4. Take ensemble and sample averages




Randomly Pinned Glass Transition

Cammarota and Biroli (2012)

P-spin mean field model with random pinning

H — _Z ‘JiijiSjSk Cammarota et al. (2012)
o (co To)
5 3!
(Ji) =0 (Ji) =54 7| Ty
® T, (idealglass)and T, (dynamic) Tx(c)
transition line rise as ¢ (density of
pinned spins) increases. C

® They meet and terminate at
the end point



Randomly Pinned Glass Transition

Cammarota and Biroli (2012)

The ideal glass transition is a mix of 1RSB + 1%t order transitions

“The Equation of State of the overlap g”

® The overlap g discontinuously jumps q
at TK 1

® The configurational entropy S. N
vanishes at T

® The end point (¢, T) is of the
universality class of Random Field
Ising Model




Randomly Pinned Glass Transition

Kob and Berthier (2013)

Replica Exchange Simulation for harmonic binary system

1 &
a
Overlap q=-—>»nn’
N I
i=1
Distribution of g Averaged overlap g Phase diagram
Double peaked: _ _ _
The 15t order transition in finite Discontinuous jump |deal glass!
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Kob et al. (2013)



Randomly Pinned Glass Transition

AGENDA

[1. Overlap (: discontinuously jump at T }

2. Configurational Entropy S, : vanishing at T

3. Dynamic Transition (spinodal) line T :

merging with T, at large C



Randomly Pinned Glass Transition

Model and Simulation Method

System: Kob-Andersen LJ binary mixture

N=300 (and 150)

Simulation methods:
Thermodynamics: Replica Exchange
Dynamics (at higher T'): MC
and

Thermodynamic Integration



Randomly Pinned Glass Transition

Overlap q=%i@(a— R —R’)) (a=0.3)

Averaged Overlap
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Randomly Pinned Glass Transition

Overlap ¢ =%ie(a—

R —R?)) (a=0.3)

Averaged Overlap
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Randomly Pinned Glass Transition

Phase Diagram

T, (C) obtained as a point [(P(q))] becomes symmetric
0.8

" TR g
g >q//// /\
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Randomly Pinned Glass Transition

AGENDA

1. Overlap Q: discontinuously jump at Ty

[2. Configurational Entropy S, : vanishing at Ty }

3. Dynamic Transition (spinodal) line T :

merging with T, at large C



Randomly Pinned Glass Transition

Total Entropy of Pinned System

Thermodynamic Integration Method: Sciortino et al (1999), Coluzzi et al. (2000)

1. Integrate over a given pinned configuration S

A =00
S(S,8)=SE.0+AU)E.B)-[ 4B U)E.B) | l

2. Average over pinned configurations o /=T

S(B)=[s(S. )] c
Vibrational Entropy of Pinned System

1. Harmonic approximation around the inherent structures e,s
Sui(S, ) = 2. L~ log(fe, )}S)

2. Average over pmned configurations

Svib(/B) — [Svib(§’ ﬂ)]



Randomly Pinned Glass Transition

Total Entropy Configurational Entropy
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Randomly Pinned Glass Transition

Phase Diagram
T, (C) obtained as a point where S, =0

08 T T T T I I
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Randomly Pinned Glass Transition

AGENDA

1. Overlap Q: discontinuously jump at Ty

2. Configurational Entropy S, : vanishing at T

/3. Dynamic Transition (spinodal) line T : )

5 merging with T, at large C




Randomly Pinned Glass Transition

The dynamic (MCT) transition Td (Angelani et al., Broderix et al. 2000)

# of saddles Inherent Structures

-7.2 T T T T

(es)] | =2

—A— =02

0.08

0.06 +

4 D>DoDo

k 0.04 4

0.02 4

I
4 -72 -70 -6.8 -6.6

eSP




Randomly Pinned Glass TransitiaL

Co 1o
Phase Diagram e 2
Tk (c)
0.8 T T T T T C
. T§> (q) TK/O(SC) ]
0.6 - I A

T 0.5 1 End point? g
0.4 1 ,,’ 1
e —&— overlap
- < —@— entopy |
0.3y~ —— saddle _
T,=0.3

(Scortinoetal. 1999) 0.00 0.05 010 015 020 025 030 0.35



Randomly Pinned Glass Transition

CONCLUSIONS

The first experiments in silico
to detect the ideal glass at T, and Sc = 0
Strong support for RFOT

More questions than answers

® Growing static length(s) at T ?
® RFIM universality at the end point?
® Slow dynamics: A3 singularity? Adam-Gibbs violation?

® and more...



