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最近の研究から

 Glass transition at high dimensions

 Long ranged systems

 Jamming transition

 Randomly pinned glass transition



Glass transition at high dimension
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 Thermodynamics:  

Replica Liquid TheoryMezard, Parisi

 Dynamics:   Mode-Coupling Theory (MCT)
Gotze etc…



 Introduction

If RFOT scenario is correct,

 MCT should work better in Higher Dimensions

 MCT should work better for Long-Ranged Systems 

 Dynamic (MCT) transition point should mark the 

qualitative change of  the free energy landscape

(inherent structures)

Glass transition at high dimension



 MCT vs MD at d=4

MD for 4d Hard Sphere Fluid

 Density (Volume fraction)       is a sole parameter

 Nucleation rate is small van Meel, Frenkel, Charbonneau PRE 79, (2009) 030201

Monatomic (1-component) glass former!

MCT for 4d Hard Sphere Fluid

Glass transition at high dimension
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 MCT vs MD at d=4

Glass transition at high dimension



MCT is more mean-fieldy in 4d!

Violation of Stokes-Einstein relation

d=3

d=4

 MCT vs MD at d=4

Glass transition at high dimension



MCT vs. Replica theory in 

 MCT in arbitrary dimensions

 Replica Theory with Hyper-Netted Chain Parisi and Zamponi Rev. Mod. Phys.82 789 (2010)

3  

Regular HNC equation

HNC equation  

between replicas

 MCT vs Replica Theory at high d’s

Glass transition at high dimension



MCT vs. Replica theory in 3  

MCT wins over Replica. But maybe simply because 

HNC is a bad approximation.

Gleim et al. PRL (1998)

 MCT vs Replica Theory at high d’s

Glass transition at high dimension



MCT vs. Replica theory in 

 MCT in arbitrary dimensions

 Replica Theory with Cage Expansion Parisi and Zamponi Rev. Mod. Phys.82 789 (2010)

Gaussian assumption

In                    , static input is given by a single Mayor function: d

 MCT vs Replica Theory at high d’s

Glass transition at high dimension



MCT vs. Replica theory in 

Schmid and Schillling PRE 81 041502 (2010)

Ikeda and KM , PRL 104 255704 (2010)

 MCT vs Replica Theory at high d’s

Glass transition at high dimension



MCT vs. Replica theory in 

Gaussian

Nonergodic parameter

MCT predicts non-Gaussian shape
Replica assumes Gaussian shape a priori

 MCT vs Replica Theory at high d’s

Glass transition at high dimension



MCT vs. Replica theory in 

Schmid and Schillling PRE 81 041502 (2010)

Ikeda and KM (unpbulished)

Schmid and Schillling PRE 81 041502 (2010)

Ikeda and KM , PRL 104 255704 (2010)

 MCT vs Replica Theory at high d’s

Glass transition at high dimension



This discrepancy is due to failure of MCT!
Non-Gaussian (and squashed) shape of F(q, t) is WRONG   

because inevitably leads to a negative value in its real space representation.
Fourier transform  of

Probability distribution of  a tagged particle (van Hove 

function).

MCT vs. Replica theory in 

 MCT vs Replica Theory at high d’s

Glass transition at high dimension



 Recent progresses
Non-Gaussian long tails due to Rare Hoppings

3d

Chaudhuri et al. PRL (2007)

6d

Charbonneau, Ikeda et al. PNAS (2012)

r

8~4d

Charbonneau et al. arXiv (2012)

r

Glass transition at high dimension



 Recent progresses

Violation of the Stokes-Einstein law 

Charbonneau et al. arXiv (2012)

Ginzburg criteria for glass (Biroli Bouchaud, 2007)
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 Recent progresses

Exact Replica Theory Calculation at High d’s without

Gaussian ansatz (Kurchan Zamponi 2012, arXiv)

Remain unchanged…

Glass transition at high dimension



最近の研究から

 Glass transition at high dimensions

 Long ranged systems

 Jamming transition

 Randomly pinned glass transition



Long Ranged Systems

If RFOT scenario is correct,

 MCT should work better in Higher Dimensions

 MCT should work better for Long-Ranged Systems 

 Dynamic (MCT) transition point should mark the 

qualitative change of  the free energy landscape

(inherent structures)
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Gaussian Core Model (GCM)

Stillinger et al. (1977)

Long-ranged Potential = Dense Ultra-Soft Potential

Long Ranged Systems



Phase Diagram of Monatomic GCM

Quench!

Fluid

Crystal

Long Ranged Systems



Monatomic GCM vitrifies!

And MCT works unprecedentedly well!!

And dynamic heterogeneities are weak!!!

crystal

fluid

Monatomic GCM vitrifies!

Long Ranged Systems



And MCT works unprecedentedly well!!

And dynamic heterogeneities are weak!!!

And MCT works unprecedentedly well!!

KA LJ GCM (ρ = 1.5) GCM (ρ = 2.0)

Tmct (simulation+fitting) 0.435 0.202 ×10-5 0.266 ×10-6

Tmct (theory) 0.922 0.266 ×10-5 0.340 ×10-6

Deviations 112 % 33 % 28 %

Monatomic GCM vitrifies!

Long Ranged Systems



Monatomic GCM vitrifies!

And MCT works unprecedentedly well!!

And dynamic heterogeneities are weak!!!

Monatomic GCM vitrifies!

And MCT works unprecedentedly well!!

And dynamic heterogeneities are weak!!!And dynamic heterogeneities are weak!!!And dynamic heterogeneities are weak!!!

MCTTT 

Weaker violation of Stokes-Einstein relation

Long Ranged Systems



Monatomic GCM vitrifies!

And MCT works unprecedentedly well!!

And dynamic heterogeneities are weak!!!

Monatomic GCM vitrifies!

And MCT works unprecedentedly well!!

And dynamic heterogeneities are weak!!!And dynamic heterogeneities are weak!!!And dynamic heterogeneities are weak!!!

GCM (ρ=2.0)
time

r10log
Single-peaked and Gaussian shape

KA-LJ system

time

Distribution of  the Particle Displacement   δr

Bimodal distribution of fast and slow particles

Flenner et al. (2005)

r10log

Long Ranged Systems



Whereas GCM becomes more mean-field-like,

MCT may start deteriorating, as the density 

increases
Debye-Waller factors of MCT become anomalous 

(non-Gaussian) at high densities!?

Long Ranged Systems



最近の研究から

 Glass transition at high dimensions

 Long ranged systems

 Jamming transition

 Randomly pinned glass transition



What is the Jamming Transition?

The volume fraction (density) of the hard balls poured into a jar 

randomly is always about                       ! !

H. Tanaka’s homepage

g or P

Jamming Transition



What is the relation btwn Glass and Jamming Transition?

Liu and Nagel, Nature 1998

Jamming Point

Jamming Transition
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coordinate

total volume

Visualize the “Energy” Landscape
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This is nothing but the Jamming transition

Jamming Transition



(A
v
e

ra
g

e
 v

a
lu

e
s
) 

-1

o
f 
 t

h
e

 b
o

tt
o

m
s

eq

coordinate

v
o

lu
m

e
 o

r 

total volume

Kd
Low High 

The average will be lowered as density increases
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Brummer, Reichman (2005)

Zamponi, Parisi (2009)

Mari, Krzakala, Kurchan (2009)
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Ozawa, Kuroiwa, Ikeda, and KM, PRL (2012)

Initial density dependence of jamming 

transition points
Binary Hard Spheres with size ratio 1.4 and composition ratio 0.5:0.5

d=2

J

0.842J 

0.3 0.4 0.5 0.6 0.7 0.8
0.838

0.840

0.842

0.844

0.846

 

 

eq

0.69d 0.52d 

See also  Chaudhuri, Berthier, Sastry, PRL 104 (2010) 165701

Pica Ciammarra, Canigrio, Candia, Soft Matter 6 (2010) 2957 
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 d=3
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Jamming Transition



What is the relation btwn Glass and Jamming Transition?

Liu and Nagel, Nature 1998

Jamming Point

Jamming Points

Jamming Transition



S. Torquato et al., PRL (2000)
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What is  the jammed packing denser than 0.648?

Is this just a less random (or more ordered) 

packing?

HCP=0.74

φJ =0.64…

Jamming Transition



Schreck et al. PRE (2011)

Orientational Order Parameters

Our jammed packing

Jamming Transition



Hidden length
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Jamming Transition



What is the jammed packing denser than 0.648?

Is this just a less random (or more ordered) 

packing?

For the ordered crystal, the 

density can not exceed φ=0.74 

of HCP packing (Kepler, 1611)

For the disordered jammed 

state, can the density exceed 

φ=0.648 without being polluted 

by crystalline order? 

Jamming Transition



Dynamic transition point marks the qualitative change of  

the free energy landscape (inherent structures)

More puzzles than answers…

 What is the configurational properties beyond    

dynamic transition point?  

Does any “amorphous-order”  grow beyond    

φ=0.648??

 Why does the mean field theory work so well 

quantitatively?    Is it just fortuitous?

Jamming Transition

Conclusions
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Thermodynamic Glass Transition 
of 

Randomly Pinned Systems

Kunimasa Miyazaki
Department of Physics, Nagoya University

(talk at UCGP 02/02/2015)
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 Does the (thermodynamic) Glass Transition Point exit?

Yes!    

INTRODUCTION

Richert et al. (1998)

Configuratinal (residual) entropy

Adam-Gibbs theory
Random First Order Transition(RFOT)
etc…    

No!    
Purely Kinetic scenarios
Frustration pictures
etc…    



1. Randomly distribute all particles

3. Quench (pin) a fraction of particles while 
leave others moving

2. Let them run till equilibrated

4. Take ensemble and sample averages

Randomly Pinned Glass Transition

Kim (2000), Krakoviack(2005), KM and others (2009~)



Cammarota and Biroli (2012)

Cammarota et al. (2012)
kji
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p-spin mean field model with random pinning
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 TK (ideal glass) and Td (dynamic) 
transition line rise as c (density of 
pinned spins) increases.

 They meet and terminate at 
the end point

T

c

Randomly Pinned Glass Transition
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Cammarota and Biroli (2012)

The ideal glass transition is a mix of  1RSB + 1st order transitions

“The Equation of State of the overlap q”

Randomly Pinned Glass Transition



Kob and Berthier (2013)

Replica Exchange Simulation for harmonic binary system

Kob et al. (2013)

Phase diagram
Double peaked: 
The 1st order transition in finite 
sized box 

Discontinuous jump Ideal glass!
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Randomly Pinned Glass Transition



1. Overlap  q: discontinuously jump at TK

3. Dynamic Transition (spinodal) line Td :    

merging with TK at large c

2. Configurational Entropy Sc : vanishing at TK

AGENDA

Randomly Pinned Glass Transition



System:   Kob-Andersen LJ binary mixture

N=300 (and 150)

Model and Simulation Method

and    

Thermodynamic Integration

Randomly Pinned Glass Transition
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1. Overlap  q: discontinuously jump at TK

3. Dynamic Transition (spinodal) line Td :    

merging with TK at large c

2. Configurational Entropy Sc : vanishing at TK

AGENDA

Randomly Pinned Glass Transition



Total Entropy of Pinned System

Vibrational Entropy of Pinned System

)',(  'd),()0,(),(
0




SUSUSSSS




Thermodynamic Integration Method:  Sciortino et al (1999), Coluzzi et al. (2000)
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1. Integrate over a given pinned configuration S
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2. Average over pinned configurations

1. Harmonic approximation around the inherent structures     ISe
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2. Average over pinned configurations

Randomly Pinned Glass Transition
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Phase Diagram
obtained as a point  where           0cS)(cTK
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1. Overlap  q: discontinuously jump at TK

3. Dynamic Transition (spinodal) line Td :    

merging with TK at large c

2. Configurational Entropy Sc : vanishing at TK

AGENDA

Randomly Pinned Glass Transition
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Randomly Pinned Glass Transition
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(Scortino et al.1999)



CONCLUSIONS

More questions than answers

Randomly Pinned Glass Transition


