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A review on KPZ

e Basics
What is the KPZ equation?
What is the KPZ universality class?
"The KPZ equation is not really well-defined.”

e Explicit formula for height distribution
Tracy-Widom distributions from random matrix theory

Behind the tractability ... Stochastic integrability

e Universality

A " generalization” of the central limit theorem

"KPZ is everywhere”



0. Non-linearity and fluctuations for
far-from-equilibrium systems

e \arious interesting phenomena

e Dissipative structurell Benard convection

T

L HOHH M

T + AT

e Fundamental principle is unknown (cf Fluctuation theorem)

e Experimental developments: colloids, single electron counting,
cold atom...



Nonlinearity for non-eq systems: Fermi-Pasta-Ulam

A first numerical simulation of Hamiltonian dynamics for studying
ergodic properties.

e Harmonic chain is easy, but no dissipation.

e Unharmonic chain (nonlinearlity). Hamiltonian

N p2 N-—1
H=) 25+ ) V@ -z))
j=1 j=1
where , N
2 3 4
V(x) = 5T + 37 + i
e No relaxation. Recurrence.

Refs: ed " Status report” 2007



Hydrodynamics: non-linear but no noise

Navier-Stokes equation

Kuramoto-Shivashinsky equation
Ut + Uy + Ugy + Ugzaze = 0

Burgers equation

Ut = Uz + Uy

Solvable by the Cole-Hopf transformation
¢ = e" = Pt = Qo

One can add noise to study fluctuations
=> Nonlinear SPDE (stochastic partial differential equation)



1. Basics of the KPZ equation: Surface growth

Paper combustion, bacteria colony, crystal

growth, etc
Non-equilibrium statistical mechanics

Stochastic interacting particle systems
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Simulation models

Ex: ballistic deposition

Height fluctuation
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Scaling

h(x,t): surface height at position « and at time ¢

Scaling (L: system size) = it "

W (L,t) = ((h(z,t) — (h(z,t)))*)"/?
— LoW(t/L?) X

Fort > o0 W(L,t) ~ L*

Fort ~0 W/(L,t) ~t° where a = 3z

In many models, « =1/2,3=1/3 1""10""1n€”I6no 7

Figure 1. Interface width W wersus time ¢ for the RS

Dynamical exponent PA— 3/2 AﬂlSOthplC Scaling {Ref. [11])in 1 + 1 dimensions, in two differsnt latice



KPZ equation

h(x,t): height at position * € R and at time ¢t > 0
(not Knizhnik-Polyakov-Zamolodchikov)

dh(x,t) = IA(Ozh(z,t))? + vd2h(z,t) + vV Dn(z,t)

where 1) is the Gaussian noise with mean 0 and covariance

<77(w9 t)n(wlv t,)> — 5(w o ZB,)(S(t T t,)

By a simple scaling we can and will do set v = %, A=D=1.

The KPZ equation now looks like

Oith(x,t) = %(Bwh(w, t))?% + %Bih(a:, t) + n(x,t)



Most Famous(?) KPZ

e MBT-7001 KPz 70

Tank developed in 1960s by US and West Germany.
MBT(MAIN BATTLE TANK)-70 is the US name and
KPz(KampfPanzer)-70 is the German name.
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New most famous KPZ(?) [This morning in Japan]
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" Derivation”
e Diffusion Oth(x,t) = %(ﬁh(w,t)

Not enough: no fluctuations in the stationary state
e Add noise: Edwards-Wilkinson equation
Oth(x,t) = %8£h(:1:, t) + n(x,t)
Not enough: does not give correct exponents

e Add nonlinearity (8,h(x,t))? = KPZ equation

ht <

VSZB;\\ Oth = ’U\/l + (O0zh)?

\fg ~ v+ (v/2)(0h)% + ...

1

Dynamical RG analysis: - a =1/2,8 = 1/3 (KPZ class)
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2: Limiting height distribution

ASEP = asymmetric simple exclusion process

q p q p q

o -

-3 -2 -1 0 1 2 3
o TASEP(Totally ASEP, p = 0 or g = 0)

e N(x,t): Integrated current at (x,x 4+ 1) upto time ¢

e Bernoulli (each site is independently occupied with probability

p) is stationary

13



Mapping to surface growth

2 initial conditions besides stationary

Flat

Wedge /\/\/\/\

Step Alternating

Integrated current N (a,t) in ASEP
< Height h(x,t) in surface growth

14



TASEP with step i.c.

Ast — oo
N(0,t) ~ 1t — 274/3¢1/3¢,

Here N(x = 0,t) is the integrated current of TASEP at the
origin and &2 obeys the GUE Tracy-Widom distribution;

F>(s) = Pl&2 < s] = det(1 — P;Ka;iPs)

05
0.4;

where Pj: projection onto the interval [s, 0o) ol

and K aj is the Airy kernel 02
0.1 A .
Kai(z,y) = / dAAi(z + N)Ai(y + ) e 2 o
0
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Tracy-Widom distributions

Random matrix theory, Gaussian ensembles

H: N x N matrix

I€] 2
—§’I‘rH

P(H)dH = e

ZNg

GOE(real symmetric, 3 = 1), GUE(hermitian, 8 = 2).

Joint eigenvalue distribution

N
]. __B..2
PN,B(mlaw29°°°7wN):Z— H (wz_wJ)IBHe 2%
NB 1<i<j<N i—1

e Average density ... Wigner semi-circle
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Largest eigenvalue distribution

Largest eigenvalue distribution of Gaussian ensembles

1

PNa[Tmax < 8] = —— H(mi—wj)ﬁ He_ng?dwl .-

ZNB (—oo,s]V i<j i

Scaling limit (expected to be universal)

lim Pngs [(azmax — \/ZN)\/§N1/6 < s] = F3(s)

N —o0

GUE (GOE) Tracy-Widom distribution

17
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Tracy-Widom distributions
GUE Tracy-Widom distribution

F>(s) = det(1 — Ps Ky P;)

where Ps: projection onto [s,00) and K3 is the Airy kernel

oo

Ko(x,y) = /0 dAAi(xz + M) Ai(y + )

Painlevé Il representation

F>(s) = exp [— /:o(:c — s)u(x)?*dx

where u(x) is the solution of the Painlevé Il equation
82
——u = 2u’ +zu, u(x)~ Ai(x) x— o0
ox?
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GOE Tracy-Widom distribution
1 o @)

Fi(s) = exp |~ [ u@)de| (Fa(s))/3
GSE Tracy-Widom distribution

F4(s) = cosh [—; /:O U(m)dw] (Fa(s))'/?

Figures for Tracy-Widom distributions

Probability densities
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Step TASEP and random matrix
e Generalize to discrete TASEP with parallel update.

A waiting time is geometrically distributed.

o A :
J
(™ w;; on (2, 7): geometrically distributed
waiting time of 2th hop of jth particle
(1, 1)
z,>
e Time at which INth particle arrives at the origin

( )

B UP-righl’;r:)E:\‘Eﬁs from < o Z Wi,j > (: G(N7 N))
(191)t0(N,N) \ (7’7.7) on a path )

Zero temperature directed polymer
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LUE formula for TASEP
By RSK algorithm a matrix of size N X IN with non-negative

integer entries is mapped to a pair of semi-standard Young

tableau with the same shape A with entries from
{1,2,..., N}, with G(N,N) = A1.

When the jth particle does 2th hop with parameter |/a;b;,
the measure on A is given by the Schur measure

~ sa(@)sA()

Using a determinant formula of the Schur function and taking

the continuous time limit, one gets

1
PIN() 2 N] = /[ o @) e dar - dax
U < i

21



Generalizations

Flat (or alternating) case: GOE TW distribution

Stationary case: Fy distribution
= Geometry dependence of the limiting distributions
(Sub-universality classes of the KPZ class)

Multi-point distributions: Airys, Airy; processes

Other models: Polynuclear growth (PNG) model

22



Universality: Takeuchi-Sano experiments
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Figure 2 | Family-Vicsek scaling. a,b, Interface width w{l, ¢} against the length scale I at different times t for the circular (a) and flat (b} interfaces.
The four data correspond, from bottom to top, to t = 2.0 5,4.0 5, 12.0 sand 30.0 s for the panel aand to ¢ = 4.0 5, 10.0 5, 25.0 sand 60.0 s for the panel b,

The insets show the same data with the rescaled axes. ¢, Growth of the averall width W(t) =/ {[h{x.t) — {h'plz;: The dashed lines are guides for the eyes
showing the exponent values of the KPZ class.
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Figure 3 | Universal luctuations. a, Histogram of the rescaled local height 3 = [k — 2.0/ (T The blue and red solid symbals show the histograms for
the circular interfaces at ¢ = 10 s and 30 s the light Blue and purple open symbols are for the flat interfaces at ¢ = 20 3 and 80 s, respectively. The dashed
and dotted curves show the GUE and GOE TW distributions, respectively. Note that for the GOE TW distribution y is multiplied by 27" in view of
the theoretical prediction™. b, The skewness (circle) and the kurtosis (cross) of the distribution of the interface fluctustions for the circubar {blue) and flat
[red) interfaces. The dashed and dotted lines indicate the values of the skewness and the kostasis of the GUE and COE TW distributions". ¢, d, Differences
in the cumulants between the experimental data {x%). and the corresponding TW distributions {xf,: ), for the ciroclar interfaces (¢} and {pfoe)

for the flat interfaces [d). The insets show the same data for s = 1 in logarithmic scales, The dashed lines are guides for the eyes with the slope —1/3,

See Takeuchi Sano Sasamoto Spohn, Sci. Rep. 1,34(2011)

24



3. Back to KPZ equation: Cole-Hopf transformation

If we set
Z(x,t) = exp (h(z,1))

the KPZ equation (formally) becomes

0 10%Z(x,t)
—Z(x,t) = — t)Z(x,t
It (z, 1) 9 92 + n(z,t)Z(z, t)

This can be interpreted as a (random) partition function for a

directed polymer in random environment 7.

h(x.t)

2A/d
1

The polymer from the origin: Z(x,0) = d(x) = girr(l)c(se_|m|/5
é

corresponds to narrow wedge for KPZ.

25



The KPZ equation is not well-defined

e With n(x,t)” = ”dB(x,t)/dt, the equation for Z can be
written as (Stochastic heat equation)

10%Z(x,t
dZ(x,t) = s 823332 )dt + Z(x,t) X dB(x,t)

Here B(x,t) is the cylindrical Brownian motion with
covariance dB(x, t)dB(x’,t) = 6(x — x’)dt.

e Interpretation of the product Z(x,t) X dB(x,t) should be
Stratonovich Z(x,t) o dB(x,t) since we used usual
calculus. Switching to Ito by
Z(x,t)odB(x,t) = Z(x,t)dB(x,t)+dZ(x,t)dB(x,t),

we encounter §(0).

26



e On the other hand SHE with lto interpretation from the
beginning

10%Z(x.t
dZ(z,t) = — (2, )dt + Z(x,t)dB(x,t)
2  Ox?
Is well-defined. For this Z one can define the " Cole-Hopf”

solution of the KPZ equation by h = log Z.

So the well-defined version of the KPZ equation may be

written as
Oth(x,t) = %(8wh(a:, t))? + %th(:c, t) — oo + n(x,t)

o found a way to define the KPZ equation without but
equivalent to Cole-Hopf (using ideas from rough path and
renormalization). Also a new RG approach by

27



4. Explicit formula for the 1D KPZ equation

Thm ( )
For the initial condition Z(x,0) = d(x) (narrow wedge for KPZ)

t
_eh(oat)"‘ﬂ —YtS

(e

where ¢ = (t/2)Y/3 and K, is

> = det(l — Ks,t)L2(R_|_)

Koo(z,y) = /°° A+ MAi(Y + M)

— 0o eVt(s—A) +1

28



Explicit formula for the height distribution
Thm

h(z,t) = —x?/2t — L) + 1és

where v¢ = (t/2)1/3. The distribution function of & is

& @)

Fi(s) =P& <s]=1-— / exp | — e"t(s_'“’)}

— OO

X(det(l — P, (Bt — Paj)P,) — det(1 — PuBtPu))d’u,

where Paj(x,y) = Ai(x)Ai(y), P, is the projection onto
[u, 00) and the kernel By is

©  Ai(z + AN)Ai(y + A
Biw.y) = [ axSEL WIS

— OO
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Finite time KPZ distribution and TW

05
0.4 |
0.3
0.2
0.1
0.0:

—: exact KPZ density F}(s) at v+ = 0.94
— —: Tracy-Widom density

e In the large t limit, F} tends to the GUE Tracy-Widom
distribution F5 from random matrix theory.
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Derivation of the formula by replica approach

Feynmann-Kac expression for the partition function,
Z($, t) =E, (ef(f n(b(S),t—S)dsZ(b(t), O))

Because 717 is a Gaussian variable, one can take the average over
the noise 1) to see that the replica partition function can be

written as (for narrow wedge case)

(Z" (z,1)) = (z|e”"N?|0)

where H v is the Hamiltonian of the (attractive) 6-Bose gas,

31



We are interested not only in the average (h) but the full
distribution of h. We expand the quantity of our interest as

oo —e —tS

_eh(O,t)+2L4—7t8 Z
(e

=0

)N

(20, 1) VT

Using the integrability (Bethe ansatz) of the §-Bose gas, one gets
explicit expressions for the moment (Z™) and see that the

generating function can be written as a Fredholm determinant.
But for the KPZ, (ZN) ~ eN’I

One should consider regularized discrete models.
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5. Discrete models: ASEP
ASEP = asymmetric simple exclusion process

q p q p q

+@= <@ O @

-3 -2 -1 0 1 2 3
e TASEP(Totally ASEP, p = 0 or g = 0)

e N(x,t): Integrated current at (x,x + 1) upto time ¢
&< height for surface growth

e In a certain weakly asymmetric limit
ASEP = KPZ equation /\/\1/\

33



g-TASAEP and q-TAZRP

e g-TASEP
A particle ¢ hops with rate 1 — g%i-1—%i—1
m
—~
m m m
o0 e e 06006 e 080 o0 or ‘.‘.‘.‘ ‘.‘.‘ ‘
Te Ty Ty r3 I9 T Ye¢ Ys Y4 Y3 Y2 Y1 Yo

o qg-TAZRP

The dynamics of the gaps y; = ;1 — x; — 1 is a version of
totally asymmetric zero range process in which a particle hops
to the right site with rate 1 — g¥:. The generator of the
process can be written in terms of g-boson operators.

e N(x,t): Integrated current for g-TAZRP

34



Rigorous replica

For ASEP and g-TAZRP, the n-point function like

(I1,; @V ®it)) satisfies the n particle dynamics of the same
process (Duality). This is a discrete generalization of d-Bose
gas for KPZ. One can apply the replica approach to get a
Fredholm det expression for generating function for N (x, t).

Rigorous replica: the one for KPZ (which is not rigorous) can

be thought of as a shadow of the rigorous replica for ASEP or
qg-TAZRP.

For ASEP, the duality is related to Ug(slz2) symmetry.

More generalizations (g-Racah).

35



6. Various generalizations and developments

e Flat case: (replica),

The limiting distribution is GOE TW F}
e Multi-point case: (replica),

e Stochastic integrability...Connections to quantum integrable

systems

quantum Toda lattice, XXZ chain, Macdonald polynomials...

36



Polymer and Toda lattice

Semi-discrete finite temperature directed polymer - -+ quantum
Toda lattice

Partition function

zNE) = |

o<1 <..<tny—-1<t

N
exp O <Z(Bi(ti) — Bi(ti—1)>

B;(t): independent Brownian motions

37



Macdonald process

Measure written as

~ PA(@)Q(b)
where P, Q are Macdonald polynomials.
A generalization of Schur measure
Includes Toda, Schur and KPZ as special and limiting cases

Non-determinantal but expectation value of certain

"observables’ can be written as Fredholm determinants.
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Stationary 2pt correlation

Not only the height/current distributions but correlation functions
show universal behaviors.

e For the KPZ equation, the Brownian motion is stationary.

h(x,0) = B(x)

where B(x),x € R is the two sided BM.
e Two point correlation

h
A
WW
7 Oxh(x,)0.:h(0,0))
. s rf > ‘4"%\ WI{‘“ WM . - An i IW\* > x
" ’// \“"\v\«\ o /M’A'\"’W\f “WAM)' i O \mw;"va./ V\/""‘"m’v ‘u«j’ Y V‘\ W™ /\""urw ’"\»!f-\\
v k
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Figure from the formula

(cf also )
(0:h(,)0:1(0,0)) = (20)~2/3g] 2/ (20)/%)

The figure can be drawn from the exact formula (which is a bit

involved though).

0.5F

0.0

0.5 1.0 1.5 2.0

Stationary 2pt correlation function g;’(y) for ¢ := (%)% = 1.
The solid curve is the scaling limit g’/ (y).
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7. Universality
A simplest example of universality is the central limit theorem.

For any independent random variables with moment
conditions CLT holds.

The Tracy-Widom distributions appear in various contexts
(Universality). Understanding of universality of TW
distributions from the context of random matrix theory has
been developed. Its universality from the context of surface
growth or directed polymer has been much less well
understood.

The KPZ universality and the universality of the KPZ
equation

KPZ behavior for Kuramoto-Shibasinsky?

41



Beijeren-Spohn Conjecture

e The scaled KPZ 2-pt function would appear in rather generic
1D multi-component systems

This would apply to (deterministic) 1D Hamiltonian dynamics
with three conserved quantities, such as the
Fermi-Pasta-Ulam chain with V(x) = %- —|— ooy —|— 54,.

There are two sound modes with veIOC|t|es +c and one heat
mode with velocity 0. The sound modes would be described
by KPZ; the heat mode by 2—Levy.

e Now there have been several attempts to confirm this by

numerical simulations.
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[cf: Poster by ]

MD simulations for shoulder potential
V(i) =00 (0< < %),1(% <x<1l), 0O(x >1)

S (1), t=1024 A S50 (0" x (™ ST (A0 et )
A A
0.004 Inl 025} % Dy{ \
1 Il 920} |\ ?"4 \
| -g || | DJ. 5 \ fPS |I|I
0.002 H | \ \
ik II | lfl- 0.10 If 0.2 I"\
M1 , \ .
| I [ 1) /o ons Y f ol \
[ \ | |
\ JIn TV v N _/ \
-2048  -1024 1024 2048~ 6 -4 -2 2 4 6 -4 -2 2 4
(a) overview (b) heat, A = 1.624 (c) sound, A = 1.442

Figure 1: (Color online) MD simulation of an equal mass chain with shoulder potential as
defined in Eq. (2.2) and parameters N = 4096, p = 1.2, 8 = 2, at t = 1024. (a) Diagonal
matrix entries, S _(j,t), of the correlator. The gray vertical lines show the sound speed
predicted from theory. The tails of the sound peaks reappear on the opposite side due to
periodic boundary conditions. (b) Rescaled heat and (c) right sound peak. The theoretical
scaling exponents are used and X is fitted numerically to minimize the L!-distance between
simulation and prediction. The dashed orange curve is the predicted 3-Levy distribution
f15/3 and the dashed red curve shows fxpz.
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Stochastic model

The conjecture would hold also for stochastic models with more

than one conserved quantities.

model (1998)
e Rules
+03>0+
0— > —0

1
+ - — -+
e Two conserved quantities (numbers of + and — particles).

e Exact stationary measure is known in a matrix product form.
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The KPZ 2pt correlation describes those for the two modes.

Proving the conjecture for this process seems already difficult.
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KPZ in higher dimension?

In higher dimensions, there had been several conjectures for
exponents. There are almost no rigorous results.

New extensive Monte-Carlo simulations in 2D on the distributions.

log Inl"(&,l

FIG. 4 (color online). Universal PDFs: 2 + 1 DPRM point-

point and point-line geometries. Table inset: Distribution
moments.

New universal distributions?
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8. Summary

e KPZ equation is a model equation to describe surface growth.
It is one of the simplest non-equilibrium statistical mechanical

models with non-linearity, noise and many degrees of freedom.

e |t is an exactly solvable non-equilibrium statistical mechanical
model. In a sense it plays a similar role as the Ising model in

equilibrium statistical mechanics.

e There is a strong universality associated with the KPZ
equation. The applicability of the KPZ universality seems
expanding than originally thought. It may appear in your
problems too! Theoretical understanding of its universality is

still an interesting outstanding problem.
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