Unified picture of non-geometric fluxes and geometry of double field theory via supergeometry

Noriaki Ikeda
Ritsumeikan University
JHEP 1702 (2017) 078, arXiv:1611.08346 [hep-th] with M.A.Heller and S.Watamura

Geometry, Duality and Strings, YITP 2017

§1. Introduction

Motivation

T-duality chain of NS fluxes

$$
H_{a b c} \stackrel{T_{a}}{\longleftrightarrow} F_{b c}^{a} \stackrel{T_{b}}{\longleftrightarrow} Q_{c}^{a b} \stackrel{T_{c}}{\longleftrightarrow} R^{a b c}
$$

Fluxes are considered to consist of the Kaloper-Myers algebra,

$$
\begin{aligned}
{\left[e_{a}, e_{b}\right] } & =F_{a b}^{c} e_{c}+H_{a b c} e_{\sharp}^{c}, \\
{\left[e_{a}, e_{\sharp}^{b}\right] } & =Q_{a}^{b c} e_{c}-F_{a c}^{b} e_{\sharp}^{c}, \\
{\left[e_{\sharp}^{a}, e_{\sharp}^{b}\right] } & =R^{a b c} e_{c}+Q_{c}^{a b} e_{\sharp}^{c} .
\end{aligned}
$$

1, $H=d B$, where B is an NS B-field, and

$$
F_{a b}^{c}=\cdots, \quad Q_{a}^{b c}=\cdots, \quad R^{a b c}=\cdots
$$

- What is the background geometric and algebraic structure of fluxes?
- Can we formulate a simple method of complicated equations?

2, A manifest T-duality invariant formulation and double field theory Siegel '93, Hull-Zwiebach '09

- What is the background geometric structure of a double field theory?
- Can we obtain nontrivial new solutions?

Plan of Talk

Supergeometric construction of Lie algebra
Supergeometric formulation of geometry of H-, F-, Q-, R-fluxes
Supergeometric formulation of geometry of double field theory

$\S 2$. Supergeometric construction of algebraic and geometric structures : Lie algebras

motivated by a BRST-BV formalism.
BRST charge of Lie Algebra
$\left[p_{a}, p_{b}\right]=f^{c}{ }_{a b} p_{c}$ with basis p_{a}
1, Introduce the canonical conjugate basis q^{a}.
Take p_{a} and q^{a} as Grassmann odd.
degree (ghost number): $\left|q^{a}\right|=\left|p_{a}\right|=1$.
2, $\left\{q^{a}, p_{b}\right\}=\delta^{a}{ }_{b}$.

3, The BRST charge of a Lie algebra such that $Q(-)=\{\Theta,-\}$ is

$$
\Theta=\frac{1}{2} f^{a}{ }_{b c} p_{a} q^{b} q^{c},
$$

$|Q|=1$ and $Q^{2}=0$ since $f_{e[a}^{d} f_{b c]}^{e}=0$.
The Hamiltonian function Θ satisfies the classical master equation

$$
\{\Theta, \Theta\}=0
$$

Note: The Lie bracket is recovered by the derived bracket,

$$
\left[p_{a}, p_{b}\right]=-\left\{\left\{p_{a}, \Theta\right\}, p_{b}\right\}
$$

Note: $\quad Q$ defines a Chevalley-Eilenberg complex and the CE coboundary operator of a Lie algebra.

The corresponding gauge theory is a three-dimensional BF theory or a Chern-Simons theory.

QP-manifold (differential graded symplectic manifold)

1, local coordinates $\left(q^{a}, p_{a}, \cdots\right)$ are 'super' coordinates.

2, $\{-,-\}$: graded Poisson brackets, $|\{-,-\}|=-2$.
3, Θ : BRST charge (Hamiltonian) such that $Q=\{\Theta,-\}$ satisfies $Q^{2}=0$ and $|Q|=1$.

Note: $|\Theta|=3$.
The derived bracket, $[-,-]=-\{\{-, \Theta\},-\}$, defines a bracket of an algebra.

§3. (Super)Geometry of fluxes

QP-manifold

We introduce a spacetime coordinate x^{i}.
Introduce the canonical conjugate ξ_{i}, such that $\left\{x^{i}, \xi_{j}\right\}=\delta^{i}{ }_{j}$ and $\left|x^{i}\right|=0,\left|\xi_{i}\right|=2$.
(q^{i}, p_{i}) such that $\left\{q^{i}, p_{j}\right\}=\delta^{i}{ }_{j}$ and $\left|q^{i}\right|=\left|p_{i}\right|=1$,
Total coordinates $\left(x^{i}, \xi_{i}, q^{i}, p_{i}\right)$, and $|\{-,-\}|=-2$.

A general form of Θ is of degree 3 ,

$$
\begin{aligned}
\Theta= & \rho^{j}{ }_{i}(x) q^{i} \xi_{j}+\pi^{i j}(x) \xi_{i} p_{i}+\frac{1}{3!} H_{i j k}(x) q^{i} q^{j} q^{k} \\
& +\frac{1}{2} F_{i j}^{k}(x) q^{i} q^{j} p_{k}+\frac{1}{2} Q_{i}^{j k}(x) q^{i} p_{j} p_{k}+\frac{1}{3!} R^{i j k}(x) p_{i} p_{j} p_{k},
\end{aligned}
$$

where H, F, Q, R are defined by this equation.
Note: In fact, a structure is a Courant algebroid.

Q without flux

We start the simplest Hamiltonian function Θ of degree 3 without fluxes (and backgrounds),

$$
\Theta_{\mathrm{S}, 0}=q^{i} \xi_{i},
$$

which satisfies $Q^{2}=0$.

We introduce fluxes by the next technique.

Twisting

Twisting is the exponential adjoint action,

$$
e^{\delta_{\alpha}} f=f+\{f, \alpha\}+\frac{1}{2}\{\{f, \alpha\}, \alpha\}+\cdots,
$$

where $f(x, q, p, \xi)$ is any function. If $|\alpha|=2$, the adjoint action is degree-preserving and obeys

$$
\left\{e^{\delta_{\alpha}} f, e^{\delta_{\alpha}} g\right\}=e^{\delta_{\alpha}}\{f, g\}
$$

B-transformation

$$
B \equiv \frac{1}{2} B_{i j}(x) q^{i} q^{j}
$$

Twisting

$$
\exp \left(-\delta_{B}\right) \Theta_{\mathrm{S}, 0}=q^{i} \xi_{i}+\frac{1}{2} \partial_{i} B_{j k} q^{i} q^{j} q^{k},
$$

so that $H_{i j k}=3 \partial_{[i} B_{j k]}$ or $H=d B$.
$Q^{2}=0$ is equivalent to $d H=0$. This is the condition of an NS H-flux.

β-transformation

$$
\beta \equiv \frac{1}{2} \beta^{i j}(x) p_{i} p_{j} .
$$

Twisting
$\exp \left(-\delta_{\beta}\right) \Theta_{\mathrm{S}, 0}=\xi_{i} q^{i}-\beta^{m i} \xi_{m} p_{i}+\frac{1}{2} \partial_{i} \beta^{j k} q^{i} p_{j} p_{k}+\frac{1}{2} \beta^{i m} \partial_{m} \beta^{j k} p_{i} p_{j} p_{k}$.
The twist induces $Q_{i}^{j k} \equiv \partial_{i} \beta^{j k}$ and $R^{i j k} \equiv 3 \beta^{[i|m|} \partial_{m} \beta^{j k]}$.
$Q=d \beta$ and $R=\frac{1}{2}[\beta, \beta]_{S}$, where $[-,-]_{S}$ is a Schouten bracket.
The classical master equation, $\left\{\Theta_{\beta}, \Theta_{\beta}\right\}=0$, then implies the

Bianchi identities

$$
\begin{aligned}
& \partial_{[m} Q_{i]}^{[j k]}=0 \\
& 3 \beta^{[i|m|} \partial_{m} Q_{n}^{j k]}-\partial_{n} R^{[i j k]}+3 Q_{n}^{[i|m|} Q_{m}^{j k]}=0, \\
& \beta^{[i|m|} \partial_{m} R^{j k l]}-\frac{3}{2} R^{[i j|m|} Q_{m}^{k l]}=0
\end{aligned}
$$

These equations are relations in the β-supergravity.

R-flux under Poisson manifold background (Poisson Courant algebroid)
 Asakawa-Muraki-Sasa-Watamura '15

$$
[\pi, \pi]_{S}=0, \quad R=\frac{1}{2}[\pi, \beta]_{S}
$$

satisfies $[\pi, R]_{S}=0$. These equations are

$$
\begin{aligned}
& \partial_{l} \pi^{[i j} \pi^{k] l}=0, \quad R^{i j k}=\frac{1}{2} \pi^{[i \mid l} \partial_{l} \beta^{j k]}, \\
& \pi^{[i l l} \partial_{l} R^{j k l]}-2 R^{[i j \mid l} \partial_{l} \pi^{k l]}=0 .
\end{aligned}
$$

We take functions of degree 2, $\pi=\frac{1}{2} \pi^{i j}(x) p_{i} p_{j}$ and $\pi^{-1}=$ $\frac{1}{2} \pi_{i j}^{-1}(x) q^{i} q^{j}$ and consider the twisting,

$$
e^{\delta_{\beta}} e^{\delta_{\pi}} e^{-\delta_{\pi^{-1}}} e^{\delta_{\pi}} \Theta_{\mathrm{S}, 0}
$$

This gives
$\Theta_{\pi, R}=e^{\delta_{\beta}} e^{\delta_{\pi}} e^{-\delta_{\pi}-1} e^{\delta_{\pi}} \Theta_{\mathrm{S}, 0}=\pi^{i j} \xi_{j} p_{j}-\partial_{k} \pi^{i j} q^{k} p_{i} p_{j}+\frac{1}{3!} R^{i j k} p_{i} p_{j} p_{k}$.
where $R^{i j k}=\frac{1}{2} \pi^{[i \mid l} \partial_{l} \beta^{j k]} . Q^{2}=0$ gives correct relations.

Fluxes with metric and Bianchi identity

Blumenhagen-Deser-Plauschinn-Rennecke '12

We introduce a vielbein $e^{a}{ }_{i}$, where a, b, \cdots are local Lorentz indices.

$$
\begin{aligned}
H_{a b c} & =3 \nabla_{[a} B_{b c]}, \quad H_{m n s}=3 \partial_{[m} B_{n s]}, \\
F_{b c}^{a} & =f_{b c}^{a}-H_{m n s} \beta^{s i} e^{a}{ }_{i} e_{b}{ }^{m} e_{c}{ }^{n}, \quad f_{b c}^{a}=2 e_{[b}{ }^{m} \partial_{m} e_{c]}^{j} e^{a}{ }_{j}, \\
Q_{a}^{b c} & =\partial_{a} \beta^{b c}+f_{a d}^{b} \beta^{d c}-f_{a d}^{c} \beta^{d b}+H_{i s r} \beta^{s h} \beta^{r k} e_{a}{ }^{i} e^{b}{ }_{h} e^{c}{ }_{k}, \\
R^{a b c} & =3\left(\beta^{[a|m|} \partial_{m} \beta^{b c]}+f_{m n}^{[a} \beta^{b|m|} \beta^{c] n}\right)-H_{m n s} \beta^{m i} \beta^{n h} \beta^{s k} e^{a}{ }_{i} e^{b}{ }_{h} e^{c}{ }_{k} .
\end{aligned}
$$

The Bianchi identity

$$
\begin{aligned}
& e_{[a}^{m} \partial_{|m|} H_{b c d]}-\frac{3}{2} F_{[a b}^{e} H_{|e| c d]}=0 \\
& e^{[a} \beta^{|l m|} \partial_{m} R^{b c d]}-\frac{3}{2} Q_{e}^{[a b} R^{|e| c d]}=0, \\
& e^{d}{ }_{l} \beta^{l n} \partial_{n} H_{[a b c]}-3 e_{[a}^{n} \partial_{n} F_{b c]}^{d}-3 H_{e[a b} Q_{c]}^{e d}+3 F_{e[a}^{d} F_{b c]}^{e}=0 \\
& -2 e^{[c}{ }_{l} \beta^{|n|} \partial_{n} F_{[a b]}^{d]}-2 e_{[a}^{n} \partial_{n} Q_{b]}^{[c d]}+H_{e[a b]} R^{e[c d]} \\
& +Q_{e}^{[c d]} F_{[a b]}^{e}+F_{e[a}^{[c} Q_{b]}^{|e| d]}=0, \\
& 3 e_{l}^{[b} \beta^{|l n|} \partial_{n} Q_{a}^{c d]}-e_{a}^{n} \partial_{n} R^{[b c d]}+3 F_{e a}^{[b} R^{|e| c d]}-3 Q_{e}^{[b c} Q_{a}^{|e| d]}=0 .
\end{aligned}
$$

Introduction of vielbein

We introduce local Lorentz supercoordinates $\left(q^{a}, p_{a}\right)$ such that $\left\{q^{a}, p_{b}\right\}=\delta_{b}^{a}$ and $\left|q^{a}\right|=\left|p_{a}\right|=1$.

All basis are $\left(x^{i}, \xi_{i}, q^{i}, p_{i}, q^{a}, p_{a}\right)$. Let

$$
\begin{aligned}
e & \equiv e_{a}{ }^{i}(x) q^{a} p_{i}, \\
e^{-1} & \equiv e_{i}^{a}(x) q^{i} p_{a} .
\end{aligned}
$$

Twisting

$$
\Theta_{B \beta e}=\exp \left(-\delta_{e}\right) \exp \left(\delta_{e^{-1}}\right) \exp \left(-\delta_{e}\right) \exp \left(-\delta_{\beta}\right) \exp \left(-\delta_{B}\right) \Theta_{\mathrm{S}, 0}
$$

$$
\begin{aligned}
\Theta_{B \beta e}= & e_{b}{ }^{i} q^{b} \xi_{i}+e^{b}{ }_{l} \beta^{l m} p_{b} \xi_{m}-e^{b}{ }_{l} \beta^{l m} \partial_{m} e_{a}{ }^{j} e^{a}{ }_{i} q^{i} p_{j} p_{b} \\
& \quad+e_{b}{ }^{m} \partial_{m} e_{a}^{j} e^{a}{ }_{i} q^{i} q^{b} p_{j} \\
+ & \frac{1}{3!} H_{a b c} q^{a} q^{b} q^{c}+\frac{1}{2} F_{b c}^{a} p_{a} q^{b} q^{c}+\frac{1}{2} Q_{a}^{b c} q^{a} p_{b} p_{c}+\frac{1}{3!} R^{a b c} p_{a} p_{b} p_{c}
\end{aligned}
$$

where H, F, Q, R are proposed forms.
$\left\{\Theta_{B \beta e}, \Theta_{B \beta e}\right\}=0$ gives the correct Bianchi identity.

Summary

Start at the simplest form $\Theta_{\mathrm{S}, 0}=q^{i} \xi_{i}$ and twist. It gives known geometric structures of fluxes.

Other many twistings are possible.

Conjecture

Flux geometries obtained by T-duality have this structure.
T-duality is described by a (discrete) canonical transformation and twisting on a differential graded symplectic manifold (QP-manifold).

§4. Geometry of double field theory

Double field theory is a manifestly T-duality invariant formulation of the effective theory of string theory.

The D-dimensional spacetime is doubled $x^{M}=\left(x^{i}, \tilde{x}_{i}\right)$ in $2 D$ dimensions.

The metric $g_{i j}$ is generalized to the generalized metric,

$$
\mathcal{H}_{M N}=\left(\begin{array}{cc}
g^{i j} & -g^{i k} B_{k j} \\
B_{i k} g^{k j} & g_{i j}-B_{i k} g^{k l} B_{l j}
\end{array}\right) .
$$

The $O(D, D)$-invariance of the theory is required. The $O(D, D)$ -
invariant metric is denoted by

$$
\eta_{M N}=\left(\begin{array}{cc}
0 & \delta^{i}{ }_{j} \\
\delta_{i}{ }^{j} & 0
\end{array}\right) .
$$

The reduction to the physical spacetime is provided by the so called the strong constraint (the section condition),

$$
\eta^{M N} \partial_{M} \phi \partial_{N} \psi=0,
$$

for any field ψ. It can be rewritten as

$$
\tilde{\partial}^{i} \phi \partial_{i} \psi+\partial_{i} \phi \tilde{\partial}^{i} \psi=0
$$

One more condition is

$$
\eta^{M N} \partial_{M} \partial_{N} \psi=0,
$$

We can decompose the generalized metric to generalized vielbeins,

$$
\mathcal{H}_{M N}=E^{A}{ }_{M} S_{A B} E_{N}^{B},
$$

where

$$
\begin{gathered}
S_{A B}=\left(\begin{array}{cc}
\eta^{a b} & 0 \\
0 & \eta_{a b}
\end{array}\right), \\
E^{A}{ }_{M}=\left(\begin{array}{cc}
e_{a}{ }^{i} & e_{a}{ }^{j} B_{j i} \\
e_{j}^{a} \beta^{j i} & e^{a}{ }_{i}+e^{a}{ }_{j} \beta^{j k} B_{k i}
\end{array}\right) .
\end{gathered}
$$

§5. Supergeometry of double field theory

Deser-Stasheff '15, Deser-Saemann '16, Heller-NI-Watamura '16
Doubled graded manifold and Hamiltonian
Super coordinates are doubled,
$\left(x^{M}=\left(x^{i}, \tilde{x}_{i}\right), q^{M}=\left(q^{i}, \tilde{q}_{i}\right), p_{M}=\left(p_{i}, \tilde{p}^{i}\right), \xi_{M}=\left(\xi_{i}, \tilde{\xi}^{i}\right)\right)$ of degrees ($0,1,1,2$) with

$$
\left\{x^{M}, \xi_{N}\right\}=\left\{q^{M}, p_{N}\right\}=\delta^{M}{ }_{N}
$$

An $O(D, D)$-invariant Hamiltonian function without flux is

$$
\Theta_{\mathrm{DFT}, 0}=\xi_{M}\left(q^{M}+\eta^{M N} p_{M}\right)=\xi_{i}\left(q^{i}+\tilde{p}^{i}\right)+\tilde{\xi}^{i}\left(p_{i}+\tilde{q}_{i}\right) .
$$

The D-bracket and the C-bracket are

$$
\begin{aligned}
{[U, V]_{D} } & =-\left\{\left\{U, \Theta_{\mathrm{DFT}, 0}\right\}, V\right\} \\
{[U, V]_{C} } & =[U, V]_{D}-[V, U]_{D}
\end{aligned}
$$

However $Q_{\mathrm{DFT}, 0}^{2} \neq 0$. In fact,

$$
\left\{\Theta_{\mathrm{DFT}, 0}, \Theta_{\mathrm{DFT}, 0}\right\}=4 \xi_{i} \tilde{\xi}^{i}
$$

The variables ξ_{i} and $\tilde{\xi}^{i}$ induce the derivatives ∂_{i} and $\tilde{\partial}^{i} . \xi_{i} \tilde{\xi}^{i}=0$ is equivalent to the section condition, $\partial_{i} f \tilde{\partial}^{i} g+\tilde{\partial}^{i} f \partial_{i} g=0$. In fact,

$$
\left\{\left\{f,\left\{\Theta_{\mathrm{DFT}, 0}, \Theta_{\mathrm{DFT}, 0}\right\}, g\right\}=-4\left(\partial_{i} f \tilde{\partial}^{i} g+\tilde{\partial}^{i} f \partial_{i} g\right)\right.
$$

The strong constraint is equivalent to $Q_{\mathrm{DFT}, 0}^{2}=0$.
We choose a subspace by $Q_{\mathrm{DFT}, 0}^{2}=0$.

Two typical solutions

The supergravity frame Hamiltonian is defined by $\tilde{\xi}^{i}=0$, whereas the winding frame Hamiltonian by $\xi_{i}=0$.

Then, $\Theta_{\text {DFT }, 0}$ reduces to

$$
\begin{aligned}
\Theta_{\mathrm{S}, 0} & =q^{i} \xi_{i}, \\
\Theta_{\mathrm{W}, 0} & =\tilde{q}_{i} \tilde{\xi}^{i}
\end{aligned}
$$

$Q_{\mathrm{S}, 0}^{2}=0$ and $Q_{\mathrm{W}, 0}^{2}=0$.

Twisting

Applying the B-, β - and vielbein e - twists to the untwisted double field theory, fluxes are introduced,

$$
\tilde{\Theta}_{B \beta e}=\exp \left(-\delta_{e}\right) \exp \left(\delta_{e^{-1}}\right) \exp \left(-\delta_{e}\right) \exp \left(-\delta_{\beta}\right) \exp \left(-\delta_{B}\right) \Theta_{\mathrm{DFT}, 0} .
$$

$$
\tilde{\Theta}_{B \beta e}=e_{d}{ }_{d} \xi_{i} q^{d}-e_{d}{ }^{i} B_{m i} \tilde{\xi}^{m} q^{d}+e^{c}{ }_{l} \tilde{\xi}^{l} p_{c}-\beta^{m l} e^{c}{ }_{l} \xi_{m} p_{c}+e^{c}{ }_{l} B_{n m} \beta^{m l} \tilde{\xi}^{n} p_{c}
$$

$$
+e_{d}^{i}\left(\partial_{i}+B_{i m} \tilde{\partial}^{m}\right) e_{a}^{j} e^{a}{ }_{k} p_{j} q^{k} q^{d}
$$

$$
+e^{c}{ }_{l}\left(\tilde{\partial}^{l}+\beta^{l m} \partial_{m}+\beta^{l m} B_{m n} \tilde{\partial}^{n}\right) e_{a}^{j} e^{a}{ }_{k} p_{j} q^{k} p_{c}
$$

$$
+\left(\xi_{i}+\partial_{i} e_{a}^{j} e^{a}{ }_{k} p_{j} q^{k}+\partial_{i} e_{a}^{j} e^{b}{ }_{j} q^{a} p_{b}\right) \tilde{p}^{i}
$$

$$
\begin{aligned}
& +\left(\tilde{\xi}^{i}+\tilde{\partial}^{i} e_{a}{ }^{j} e^{a}{ }_{k} p_{j} q^{k}+\tilde{\partial}^{i} e_{a}{ }^{j} e^{b}{ }_{j} q^{a} p_{b}\right) \tilde{q}_{i} \\
& +\frac{1}{2}\left(\partial_{i} B_{j k} \tilde{p}^{i}+\tilde{\partial}^{i} B_{j k} \tilde{q}_{i}\right) e_{a}{ }^{j} e_{b}{ }^{k} q^{a} q^{b} \\
& +\frac{1}{2}\left(\partial_{i} \beta^{j k} \tilde{p}^{i}+\tilde{\partial}^{i} \beta^{j k} \tilde{q}_{i}\right) e^{b}{ }_{j} e^{c}{ }_{k} p_{b} p_{c} \\
& -\partial_{i} B_{j k} \beta^{k m} e_{b}{ }^{j} e^{c}{ }_{m} \tilde{p}^{i} q^{b} p_{c}-\tilde{\partial}^{i} B_{j k} \beta^{k m} e_{b}{ }^{j} e^{c}{ }_{m} \tilde{q}_{i} q^{b} p_{c} \\
& +\frac{1}{2} \partial_{i} B_{j k} \beta^{j m} \beta^{k n} e^{b}{ }_{m} e^{c}{ }_{n} \tilde{p}^{i} p_{b} p_{c}+\frac{1}{2} \tilde{\partial}^{i} B_{j k} \beta^{j m} \beta^{k n} e_{m}^{b} e^{c}{ }_{n} \tilde{q}_{i} p_{b} p_{c} \\
& +\frac{1}{3!} H_{a b c} q^{a} q^{b} q^{c}+\frac{1}{2} F_{b c}^{a} p_{a} q^{b} q^{c}+\frac{1}{2} Q_{a}^{b c} q^{a} p_{b} p_{c}+\frac{1}{3!} R^{a b c} p_{a} p_{b} p_{c} .
\end{aligned}
$$

$$
\begin{aligned}
H_{a b c}= & 3\left(\nabla_{[a} B_{b c]}+B_{[a|m|} \tilde{\partial}^{m} B_{b c]}+\tilde{f}_{[a}^{m n} B_{b|m|} B_{c] n}\right) \\
F_{b c}^{a}= & f_{b c}^{a}-H_{m n s} \beta^{s i} e_{i}^{a} e_{b}^{m} e_{c}{ }^{n}+\tilde{\partial}^{a} B_{b c}+\tilde{f}_{b}^{a d} B_{d c}-\tilde{f}_{c}^{a d} B_{d b} \\
Q_{a}^{b c}= & \tilde{f}_{a}^{b c}+\partial_{a} \beta^{b c}+f_{a d}^{b} \beta^{d c}-f_{a d}^{c} \beta^{d b}+H_{i s r} \beta^{s h} \beta^{r k} e_{a}^{i} e^{b}{ }_{h} e^{c}{ }_{k} \\
& +B_{a m} \tilde{\partial}^{m} \beta^{b c}+\tilde{\partial}^{[b} B_{a e} \beta^{e \mid c]}+2 B_{[a \mid e} \tilde{f}_{d]}^{b e} \beta^{d c}-2 B_{[a \mid e} \tilde{f}_{d]}^{c e} \beta^{d b} \\
R^{a b c}= & 3\left(\beta^{[a|m|} \partial_{m} \beta^{b c]}+f_{m n}^{[a} \beta^{b|m|} \beta^{c] n}+\tilde{\partial}^{[a} \beta^{b c]}-\tilde{f}_{d}^{[a b} \beta^{|d| c]}\right. \\
& \left.+B_{l n} \tilde{\partial}^{l} \beta^{[a b} \beta^{|n| c]}+\tilde{\partial}^{[a} B_{e d} \beta^{|e| b} \beta^{|d| c]}+\tilde{f}_{n}^{[a|e|} B_{e d} \beta^{|n| b \mid} \beta^{|d| c]}\right) \\
& \quad-H_{m n s} \beta^{m i} \beta^{n h} \beta^{s k} e_{i}^{a} e_{h}^{b} e_{k}^{c} \\
H_{m n s}= & 3\left(\partial_{[m} B_{n s]}+B_{[m|l|} \tilde{\partial}^{l} B_{n s]}\right) \\
\tilde{f}_{c}^{a b}= & 2 e_{m}^{[a} \tilde{\partial}^{m} e_{j}^{b]} e_{c}^{j} .
\end{aligned}
$$

The classical master equation then

$$
\left\{\tilde{\Theta}_{B \beta e}, \tilde{\Theta}_{B \beta e}\right\}=0 .
$$

leads to relations between the fluxes in the double space. Under the section condition, these equations reduce to the Bianchi identity of fluxes.

Nontrivial reduction

Start with the fundamental form $\Theta_{\mathrm{DFT}, 0}=\xi_{M}\left(q^{M}+\eta^{M N} p_{M}\right)=$ $\xi_{i}\left(q^{i}+\tilde{p}^{i}\right)+\tilde{\xi}^{i}\left(p_{i}+\tilde{q}_{i}\right)$,

Twisting, $\pi=\frac{1}{2} \pi^{i j}(x) p_{i} p_{j}$.

$$
\begin{aligned}
\Theta_{\mathrm{DFT}, 0}^{\prime} & =e^{\pi} \Theta_{\mathrm{DFT}, 0} \\
& =\xi_{i}\left(q^{i}+\tilde{p}^{i}\right)+\tilde{\xi}^{i}\left(p_{i}+\tilde{q}_{i}\right)+\pi^{i j} \xi_{i} p_{j}-\frac{1}{2} \frac{\partial \pi^{j k}}{\partial x^{i}}(x)\left(q^{i}+\tilde{p}^{i}\right) p_{j} p_{k}
\end{aligned}
$$

The section condition is deformed to

$$
\tilde{\xi}^{i}\left(4 \xi_{i}-\frac{1}{2} \frac{\partial \pi^{j k}}{\partial x^{i}}(x) p_{j} p_{k}\right)=0
$$

By the projectio n to the standard frame $\tilde{\xi}^{i}=\tilde{q}_{i}=\tilde{p}^{i}=0, \Theta$ becomes the Poisson Courant algebroid with a standard Courant algebroid part without fluxes,

$$
\begin{aligned}
\left.\Theta_{\mathrm{DFT}, 0}^{\prime}\right|_{\tilde{x}=0} & =\Theta_{H=0}+\Theta_{\pi, R=0} \\
& =\left(\xi_{i} q^{i}\right)+\left(\pi^{i j} \xi_{i} p_{j}-\frac{1}{2} \frac{\partial \pi^{j k}}{\partial x^{i}}(x) q^{i} p_{j} p_{k}\right) .
\end{aligned}
$$

Note that, since $\left\{\Theta_{H=0}, \Theta_{\pi, R=0}\right\}=0$, the projected Hamiltonian $\left.\Theta_{\mathrm{DFT}, 0}^{\prime}\right|_{\tilde{x}=0}$ defines a double complex.

Moreover by taking the β-transformation $\beta=\frac{1}{2} \beta^{i j}(x) p_{i} p_{j}$, an R-flux on a Poisson manifold, $R=[\pi, \beta]_{S}$ is obtained.

Note: The Courant bracket is closed.

§6. T-duality as canonical transformation

T-duality as an $O(D, D)$-transformation relates the fluxes and vielbeins associated to different backgrounds. A T-duality in x^{k} direction is the transformation

$$
x^{k} \leftrightarrow \tilde{x}_{k}, \quad \xi_{k} \leftrightarrow \tilde{\xi}^{k}, \quad q^{k} \leftrightarrow \tilde{q}_{k}, \quad p_{k} \leftrightarrow \tilde{p}^{k} .
$$

$\{-,-\}$ and $\Theta_{\text {DFT }}$ are invariant under this transformation, i.e. the transformation is a canonical transformation.

Example: S^{1} isometry

We consider a generalized vielbein,

$$
E_{M}^{A}=\left(\begin{array}{cc}
E_{a}{ }^{i} & E_{a i} \\
E^{a i} & E_{i}^{a}
\end{array}\right)=\left(\begin{array}{cc}
e_{a}{ }^{i} & e_{a}{ }^{l} B_{l i} \\
e^{a}{ }_{l} \beta^{l i} & e^{a}{ }_{i}+e^{a}{ }_{l} B_{i m} \beta^{m l}
\end{array}\right) .
$$

Here we introduce odd local Lorentz basis $q_{A} \equiv\left(q^{a}, p_{a}\right)$ and $\tilde{p}_{A} \equiv$ $\left(\tilde{p}^{a}, \tilde{q}_{a}\right)$. The Hamiltonian function without fluxes is

$$
\Theta_{\mathrm{DFT}, \mathrm{~A}}=E_{M}^{A} \xi^{M}\left(q_{A}+\tilde{p}_{A}\right) .
$$

The easiest example concerns T -duality on an S^{1}-isometry
background without B - and β-fields, where the circle has radius R. It is well known, that T -duality maps the radius $R \mapsto R^{\prime}=\frac{1}{R}$.
The corresponding Hamiltonian is given by

$$
\Theta_{R}=e_{1}{ }^{1} \xi_{1}\left(q^{1}+\tilde{p}^{1}\right)+e^{1}{ }_{1} \tilde{\xi}^{1}\left(p_{1}+\tilde{q}_{1}\right)=R \xi_{1}\left(q^{1}+\tilde{p}^{1}\right)+R^{-1} \tilde{\xi}^{1}\left(p_{1}+\tilde{q}_{1}\right)
$$

The canonical transformation is

$$
x^{1} \leftrightarrow \tilde{x}_{1}, \quad \xi_{1} \leftrightarrow \tilde{\xi}^{1}, \quad q^{1} \leftrightarrow \tilde{q}_{1}, \quad p_{1} \leftrightarrow \tilde{p}^{1} .
$$

Under this transformation, Θ_{R} is invariant,

$$
\Theta_{R} \leftrightarrow \Theta_{R} .
$$

We can project into the supergravity frame by taking ($\tilde{\xi}^{1}=0$, $\tilde{q}_{1}=0, \tilde{p}^{1}=0$) leading to

$$
\Theta_{R}=R \xi_{1} q^{1}
$$

Applying the transformation described above, the Hamiltonian, which models the T-dual background, is given by

$$
\Theta_{R^{-1}}^{\prime}=R^{-1} \xi_{1}\left(q^{1}+\tilde{p}^{1}\right)+R \tilde{\xi}^{1}\left(p_{1}+\tilde{q}_{1}\right) .
$$

In this case, the projection into the supergravity frame gives

$$
\Theta_{R^{-1}}^{\prime}=R^{-1} \xi_{1} q^{1}
$$

Another derivation is that we project into the winding frame directly by ($\xi_{1}=0, q^{1}=0, p_{1}=0$) to get the result

$$
\Theta_{R}=R^{-1} \tilde{\xi}^{1} \tilde{q}_{1}
$$

- This formalism works for the case with fulxes.

§7. Conclusions

- We have formulated geometry of fluxes by a supermanifold with a Poisson bracket and a BRST charge called a QP-manifold.
- All known proposals of nongeometric fluxes and R-fluxes, and their identities are obtained by twisting of the simple form $\Theta_{\mathrm{S}, 0}$.
- The section conditions in double field theory is formulated as the nilpotent condition of the $O(D, D)$-invariant BRST charge on the doubled space.
- T-duality transformations are reformulated as canonical transformations on a supermanifold.

Future Outlook

- New flux solutions
- Actions and dynamics
- α^{\prime}-corrections
- Quantizations
- Exceptional field theory

Thank you for your attention!

