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§1. Introduction

Motivation

T-duality chain of NS fluxes Shelton-Taylor-Wecht ’05

Habc
Ta←→ F a

bc

Tb←→ Qab
c

Tc←→ Rabc,

Fluxes are considered to consist of the Kaloper-Myers algebra,

[ea, eb] = F c
abec +Habce

c
♯,

[ea, e
b
♯] = Qbc

a ec − F b
ace

c
♯,

[ea♯ , e
b
♯] = Rabcec +Qab

c e
c
♯.
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1, H = dB, where B is an NS B-field, and

F c
ab = · · · , Qbc

a = · · · , Rabc = · · · .

• What is the background geometric and algebraic structure of

fluxes?

• Can we formulate a simple method of complicated equations?

2, A manifest T-duality invariant formulation and double field theory

Siegel ’93, Hull-Zwiebach ’09

• What is the background geometric structure of a double field

theory?

• Can we obtain nontrivial new solutions?
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Plan of Talk

Supergeometric construction of Lie algebra

Supergeometric formulation of geometry of H-, F-, Q-, R-fluxes

Supergeometric formulation of geometry of double field theory

3



§2. Supergeometric construction of algebraic and
geometric structures : Lie algebras

motivated by a BRST-BV formalism.

BRST charge of Lie Algebra

[pa, pb] = f cabpc with basis pa

1, Introduce the canonical conjugate basis qa.

Take pa and qa as Grassmann odd.

degree (ghost number): |qa| = |pa| = 1.

2, {qa, pb} = δab.
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3, The BRST charge of a Lie algebra such that Q(−) = {Θ,−} is

Θ =
1

2
fabcpaq

bqc,

|Q| = 1 and Q2 = 0 since fde[af
e
bc] = 0.

The Hamiltonian function Θ satisfies the classical master equation

{Θ,Θ} = 0.

Note: The Lie bracket is recovered by the derived bracket,

[pa, pb] = −{{pa,Θ}, pb}.
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Note: Q defines a Chevalley-Eilenberg complex and the CE

coboundary operator of a Lie algebra.

The corresponding gauge theory is a three-dimensional BF theory or

a Chern-Simons theory.
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QP-manifold (differential graded symplectic manifold)� �
1, local coordinates (qa, pa, · · · ) are ’super’ coordinates.

2, {−,−}: graded Poisson brackets, |{−,−}| = −2.

3, Θ: BRST charge (Hamiltonian) such that Q = {Θ,−} satisfies
Q2 = 0 and |Q| = 1.� �
Note: |Θ| = 3.

The derived bracket, [−,−] = −{{−,Θ},−}, defines a bracket of

an algebra.
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§3. (Super)Geometry of fluxes Heller-NI-Watamura ’16

QP-manifold

We introduce a spacetime coordinate xi.

Introduce the canonical conjugate ξi, such that {xi, ξj} = δij and

|xi| = 0, |ξi| = 2.

(qi, pi) such that {qi, pj} = δij and |qi| = |pi| = 1,

Total coordinates (xi, ξi, q
i, pi), and |{−,−}| = −2.
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A general form of Θ is of degree 3,

Θ = ρji(x)q
iξj + πij(x)ξipi +

1

3!
Hijk(x)q

iqjqk

+
1

2
F k
ij(x)q

iqjpk +
1

2
Qjk

i (x)qipjpk +
1

3!
Rijk(x)pipjpk,

where H,F,Q,R are defined by this equation.

Note: In fact, a structure is a Courant algebroid.
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Q without flux

We start the simplest Hamiltonian function Θ of degree 3 without

fluxes (and backgrounds),

ΘS,0 = qiξi,

which satisfies Q2 = 0.

We introduce fluxes by the next technique.
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Twisting

Twisting is the exponential adjoint action,

eδαf = f + {f, α}+ 1

2
{{f, α}, α}+ · · · ,

where f(x, q, p, ξ) is any function. If |α| = 2, the adjoint action is

degree-preserving and obeys

{eδαf, eδαg} = eδα{f, g}.
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B-transformation

B ≡ 1

2
Bij(x)q

iqj.

Twisting

exp(−δB)ΘS,0 = qiξi +
1

2
∂iBjkq

iqjqk,

so that Hijk = 3∂[iBjk] or H = dB.

Q2 = 0 is equivalent to dH = 0. This is the condition of an NS

H-flux.

12



β-transformation

β ≡ 1

2
βij(x)pipj.

Twisting

exp(−δβ)ΘS,0 = ξiq
i−βmiξmpi+

1

2
∂iβ

jkqipjpk+
1

2
βim∂mβ

jkpipjpk.

The twist induces Qjk
i ≡ ∂iβjk and Rijk ≡ 3β[i|m|∂mβ

jk].

Q = dβ and R = 1
2[β, β]S, where [−,−]S is a Schouten bracket.

The classical master equation, {Θβ,Θβ} = 0, then implies the
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Bianchi identities

∂[mQ
[jk]
i] = 0,

3β[i|m|∂mQ
jk]
n − ∂nR[ijk] + 3Q[i|m|

n Qjk]
m = 0,

β[i|m|∂mR
jkl] − 3

2
R[ij|m|Qkl]

m = 0.

These equations are relations in the β-supergravity.

Aldazabal-Baron-Marques-Nunez, ’11
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R-flux under Poisson manifold background (Poisson
Courant algebroid) Asakawa-Muraki-Sasa-Watamura ’15

[π, π]S = 0, R =
1

2
[π, β]S.

satisfies [π,R]S = 0. These equations are

∂lπ
[ijπk]l = 0, Rijk =

1

2
π[i|l∂lβ

jk],

π[i|l∂lR
jkl] − 2R[ij|l∂lπ

kl] = 0.
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We take functions of degree 2, π = 1
2π

ij(x)pipj and π−1 =
1
2π

−1
ij (x)qiqj and consider the twisting,

eδβeδπe−δ
π−1eδπΘS,0

This gives

Θπ,R = eδβeδπe−δ
π−1eδπΘS,0 = πijξjpj−∂kπijqkpipj+

1

3!
Rijkpipjpk.

where Rijk = 1
2π

[i|l∂lβ
jk]. Q2 = 0 gives correct relations.
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Fluxes with metric and Bianchi identity
Blumenhagen-Deser-Plauschinn-Rennecke ’12

We introduce a vielbein eai, where a, b, · · · are local Lorentz indices.

Habc = 3∇[aBbc], Hmns = 3∂[mBns],

F a
bc = fabc −Hmnsβ

sieaie
m

b e n
c , fabc = 2e m

[b ∂me
j

c] e
a
j,

Qbc
a = ∂aβ

bc + f badβ
dc − f cadβdb +Hisrβ

shβrke i
a e

b
he

c
k,

Rabc = 3(β[a|m|∂mβ
bc] + f [amnβ

b|m|βc]n)−Hmnsβ
miβnhβskeaie

b
he

c
k.
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The Bianchi identity

e m
[a ∂|m|Hbcd] −

3

2
F e
[abH|e|cd] = 0,

e
[a
lβ

|lm|∂mR
bcd] − 3

2
Q[ab

e R|e|cd] = 0,

edlβ
ln∂nH[abc] − 3e n

[a ∂nF
d
bc] − 3He[abQ

ed
c] + 3F d

e[aF
e
bc] = 0,

− 2e
[c
lβ

|ln|∂nF
d]
[ab] − 2e n

[a ∂nQ
[cd]
b] +He[ab]R

e[cd]

+Q[cd]
e F e

[ab] + F
[c
e[aQ

|e|d]
b] = 0,

3e
[b
lβ

|ln|∂nQ
cd]
a − e n

a ∂nR
[bcd] + 3F [b

eaR
|e|cd] − 3Q[bc

e Q|e|d]
a = 0.
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Introduction of vielbein

We introduce local Lorentz supercoordinates (qa, pa) such that

{qa, pb} = δab and |qa| = |pa| = 1.

All basis are (xi, ξi, q
i, pi, q

a, pa). Let

e ≡ e i
a (x)q

api,

e−1 ≡ eai(x)qipa.

Twisting

ΘBβe = exp(−δe) exp(δe−1) exp(−δe) exp(−δβ) exp(−δB)ΘS,0
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ΘBβe = e i
b q

bξi + eblβ
lmpbξm − eblβlm∂me

j
a e

a
iq

ipjpb

+ e m
b ∂me

j
a e

a
iq

iqbpj

+
1

3!
Habcq

aqbqc +
1

2
F a
bcpaq

bqc +
1

2
Qbc

a q
apbpc +

1

3!
Rabcpapbpc,

where H,F,Q,R are proposed forms.

{ΘBβe,ΘBβe} = 0 gives the correct Bianchi identity.
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Summary

Start at the simplest form ΘS,0 = qiξi and twist. It gives known

geometric structures of fluxes.

Other many twistings are possible.

Conjecture

Flux geometries obtained by T-duality have this structure.

T-duality is described by a (discrete) canonical transformation and

twisting on a differential graded symplectic manifold (QP-manifold).
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§4. Geometry of double field theory Hull-Zwiebach ’09

Double field theory is a manifestly T-duality invariant formulation

of the effective theory of string theory.

The D-dimensional spacetime is doubled xM = (xi, x̃i) in 2D-

dimensions.

The metric gij is generalized to the generalized metric,

HMN =

(
gij −gikBkj

Bikg
kj gij −Bikg

klBlj

)
.

The O(D,D)-invariance of the theory is required. The O(D,D)-
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invariant metric is denoted by

ηMN =

(
0 δij
δ j
i 0

)
.

The reduction to the physical spacetime is provided by the so called

the strong constraint (the section condition),

ηMN∂Mϕ∂Nψ = 0,

for any field ψ. It can be rewritten as

∂̃iϕ∂iψ + ∂iϕ∂̃
iψ = 0.
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One more condition is

ηMN∂M∂Nψ = 0,

We can decompose the generalized metric to generalized vielbeins,

HMN = EA
MSABE

B
N ,

where

SAB =

(
ηab 0

0 ηab

)
,

EA
M =

(
e i
a e j

a Bji

eajβ
ji eai + eajβ

jkBki

)
.
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§5. Supergeometry of double field theory
Deser-Stasheff ’15, Deser-Saemann ’16, Heller-NI-Watamura ’16

Doubled graded manifold and Hamiltonian
Super coordinates are doubled,

(xM = (xi, x̃i), q
M = (qi, q̃i), pM = (pi, p̃

i), ξM = (ξi, ξ̃
i)) of

degrees (0, 1, 1, 2) with

{xM , ξN} = {qM , pN} = δMN .

An O(D,D)-invariant Hamiltonian function without flux is
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ΘDFT,0 = ξM(qM + ηMNpM) = ξi(q
i + p̃i) + ξ̃i(pi + q̃i).

The D-bracket and the C-bracket are

[U, V ]D = −{{U,ΘDFT,0}, V },
[U, V ]C = [U, V ]D − [V,U ]D.

However Q2
DFT,0 ̸= 0. In fact,

{ΘDFT,0,ΘDFT,0} = 4ξiξ̃
i.
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The variables ξi and ξ̃
i induce the derivatives ∂i and ∂̃

i. ξiξ̃
i = 0 is

equivalent to the section condition, ∂if∂̃
ig + ∂̃if∂ig = 0. In fact,

{{f, {ΘDFT,0,ΘDFT,0}, g} = −4(∂if∂̃ig + ∂̃if∂ig).

The strong constraint is equivalent to Q2
DFT,0 = 0.

We choose a subspace by Q2
DFT,0 = 0.
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Two typical solutions

The supergravity frame Hamiltonian is defined by ξ̃i = 0,

whereas the winding frame Hamiltonian by ξi = 0.

Then, ΘDFT,0 reduces to

ΘS,0 = qiξi,

ΘW,0 = q̃iξ̃
i.

Q2
S,0 = 0 and Q2

W,0 = 0.
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Twisting

Applying the B-, β- and vielbein e- twists to the untwisted double

field theory, fluxes are introduced,

Θ̃Bβe = exp(−δe) exp(δe−1) exp(−δe) exp(−δβ) exp(−δB)ΘDFT,0.

Θ̃Bβe = e i
d ξiq

d − e i
d Bmiξ̃

mqd + eclξ̃
lpc − βmleclξmpc + eclBnmβ

mlξ̃npc

+ e i
d (∂i +Bim∂̃

m)e j
a e

a
kpjq

kqd

+ ecl(∂̃
l + βlm∂m + βlmBmn∂̃

n)e j
a e

a
kpjq

kpc

+ (ξi + ∂ie
j

a e
a
kpjq

k + ∂ie
j

a e
b
jq

apb)p̃
i
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+ (ξ̃i + ∂̃ie j
a e

a
kpjq

k + ∂̃ie j
a e

b
jq

apb)q̃i

+
1

2
(∂iBjkp̃

i + ∂̃iBjkq̃i)e
j

a e
k

b q
aqb

+
1

2
(∂iβ

jkp̃i + ∂̃iβjkq̃i)e
b
je

c
kpbpc

− ∂iBjkβ
kme j

b e
c
mp̃

iqbpc − ∂̃iBjkβ
kme j

b e
c
mq̃iq

bpc

+
1

2
∂iBjkβ

jmβknebme
c
np̃

ipbpc +
1

2
∂̃iBjkβ

jmβknebme
c
nq̃ipbpc

+
1

3!
Habcq

aqbqc +
1

2
F a
bcpaq

bqc +
1

2
Qbc

a q
apbpc +

1

3!
Rabcpapbpc.
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Habc = 3(∇[aBbc] +B[a|m|∂̃
mBbc] + f̃mn

[a Bb|m|Bc]n),

F a
bc = fabc −Hmnsβ

sieaie
m

b e n
c + ∂̃aBbc + f̃adb Bdc − f̃adc Bdb,

Qbc
a = f̃ bca + ∂aβ

bc + f badβ
dc − f cadβdb +Hisrβ

shβrke i
a e

b
he

c
k

+Bam∂̃
mβbc + ∂̃[bBaeβ

e|c] + 2B[a|ef̃
be
d] β

dc − 2B[a|ef̃
ce
d] β

db,

Rabc = 3(β[a|m|∂mβ
bc] + f [amnβ

b|m|βc]n + ∂̃[aβbc] − f̃ [abd β|d|c]

+Bln∂̃
lβ[abβ|n|c] + ∂̃[aBedβ

|e|bβ|d|c] + f̃ [a|e|n Bedβ
|n|b|β|d|c])

−Hmnsβ
miβnhβskeaie

b
he

c
k,

Hmns = 3(∂[mBns] +B[m|l|∂̃
lBns]),

f̃abc = 2e[am∂̃
me

b]
je

j
c .
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The classical master equation then

{Θ̃Bβe, Θ̃Bβe} = 0.

leads to relations between the fluxes in the double space. Under the

section condition, these equations reduce to the Bianchi identity of

fluxes.
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Nontrivial reduction

Start with the fundamental form ΘDFT,0 = ξM(qM + ηMNpM) =

ξi(q
i + p̃i) + ξ̃i(pi + q̃i),

Twisting, π = 1
2π

ij(x)pipj.

Θ′
DFT,0 = eπΘDFT,0

= ξi(q
i + p̃i) + ξ̃i(pi + q̃i) + πijξipj −

1

2

∂πjk

∂xi
(x)(qi + p̃i)pjpk.
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The section condition is deformed to

ξ̃i
(
4ξi −

1

2

∂πjk

∂xi
(x)pjpk

)
= 0.

By the projectio n to the standard frame ξ̃i = q̃i = p̃i = 0, Θ

becomes the Poisson Courant algebroid with a standard Courant

algebroid part without fluxes,

Θ′
DFT,0|x̃=0 = ΘH=0 +Θπ,R=0

= (ξiq
i) +

(
πijξipj −

1

2

∂πjk

∂xi
(x)qipjpk

)
.
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Note that, since {ΘH=0,Θπ,R=0} = 0, the projected Hamiltonian

Θ′
DFT,0|x̃=0 defines a double complex.

Moreover by taking the β-transformation β = 1
2β

ij(x)pipj, an R-flux

on a Poisson manifold, R = [π, β]S is obtained.

Note: The Courant bracket is closed.
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§6. T-duality as canonical transformation

T-duality as an O(D,D)-transformation relates the fluxes and

vielbeins associated to different backgrounds. A T-duality in xk-

direction is the transformation

xk ↔ x̃k, ξk ↔ ξ̃k, qk ↔ q̃k, pk ↔ p̃k.

{−,−} and ΘDFT are invariant under this transformation, i.e.

the transformation is a canonical transformation.
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Example: S1 isometry

We consider a generalized vielbein,

EA
M =

(
E i

a Eai

Eai Ea
i

)
=

(
e i
a e l

aBli

ealβ
li eai + ealBimβ

ml

)
.

Here we introduce odd local Lorentz basis qA ≡ (qa, pa) and p̃A ≡
(p̃a, q̃a). The Hamiltonian function without fluxes is

ΘDFT,A = EA
Mξ

M(qA + p̃A).

The easiest example concerns T-duality on an S1-isometry
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background without B- and β-fields, where the circle has radius

R. It is well known, that T-duality maps the radius R 7→ R′ = 1
R.

The corresponding Hamiltonian is given by

ΘR = e 1
1 ξ1(q

1 + p̃1) + e11ξ̃
1(p1 + q̃1) = Rξ1(q

1 + p̃1) +R−1ξ̃1(p1 + q̃1).

The canonical transformation is

x1↔ x̃1, ξ1↔ ξ̃1, q1↔ q̃1, p1↔ p̃1.

Under this transformation, ΘR is invariant,

ΘR ↔ ΘR.

38



We can project into the supergravity frame by taking (ξ̃1 = 0,

q̃1 = 0, p̃1 = 0) leading to

ΘR = Rξ1q
1.

Applying the transformation described above, the Hamiltonian,

which models the T-dual background, is given by

Θ′
R−1 = R−1ξ1(q

1 + p̃1) +Rξ̃1(p1 + q̃1).

In this case, the projection into the supergravity frame gives

Θ′
R−1 = R−1ξ1q

1.
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Another derivation is that we project into the winding frame directly

by (ξ1 = 0, q1 = 0, p1 = 0) to get the result

ΘR = R−1ξ̃1q̃1.

• This formalism works for the case with fulxes.
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§7. Conclusions

• We have formulated geometry of fluxes by a supermanifold with a

Poisson bracket and a BRST charge called a QP-manifold.

• All known proposals of nongeometric fluxes and R-fluxes, and their

identities are obtained by twisting of the simple form ΘS,0.

• The section conditions in double field theory is formulated as the

nilpotent condition of the O(D,D)-invariant BRST charge on the

doubled space.

• T-duality transformations are reformulated as canonical

transformations on a supermanifold.
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Future Outlook

• New flux solutions

• Actions and dynamics

• α′-corrections

• Quantizations

• Exceptional field theory
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Thank you for your attention!
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