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§1. Introduction

Motivation

T-duality chain of NS fluxes Shelton-Taylor-Wecht '05
Ta T Te
Hpe <% F2 5 Q0 <5 RObe
Fluxes are considered to consist of the Kaloper-Myers algebra,

' ' c c
€as €b] — Fabec + Habcejja
I b1 bc b ¢
€as €y = Qq €c — Fe3,

:ejcj", e§: — R%ce + ngeﬁ.




1, H = dB, where B is an NS B-field, and
€ = ..., QZC:”'a Robe — ..

e What is the background geometric and algebraic structure of

fluxes?
e Can we formulate a simple method of complicated equations?

2, A manifest T-duality invariant formulation and double field theory
Siegel '93, Hull-Zwiebach '09

e What is the background geometric structure of a double field

theory?
e Can we obtain nontrivial new solutions?



Plan of Talk
Supergeometric construction of Lie algebra
Supergeometric formulation of geometry of H-, F-, Q-, R-fluxes

Supergeometric formulation of geometry of double field theory



§2. Supergeometric construction of algebraic and
geometric structures : Lie algebras

motivated by a BRST-BV formalism.
BRST charge of Lie Algebra

[Das Pb] = fCappe With basis p,

1, Introduce the canonical conjugate basis ¢“.
Take p, and ¢® as Grassmann odd.

degree (ghost number): |¢%| = |pa| = 1.
21 {qa7pb} — 5ab'



3, The BRST charge of a Lie algebra such that Q(—) = {©,—} is
1
O = §fabcpaqchv

Q| =1 and Q? = 0 since f¢ f¢. = 0.
ela’ bc]

The Hamiltonian function © satisfies the classical master equation
{6,0} =0.
Note: The Lie bracket is recovered by the derived bracket,

Pas o] = —{{Pa, OF, Do}



Note: () defines a Chevalley-Eilenberg complex and the CE
coboundary operator of a Lie algebra.

The corresponding gauge theory is a three-dimensional BF theory or
a Chern-Simons theory.



- QP-manifold (differential graded symplectic manifold)

1, local coordinates (g%, pg,- -+ ) are 'super’ coordinates.
2, {—, —}: graded Poisson brackets, [{—,—}| = —2.

3, ©: BRST charge (Hamiltonian) such that @ = {©, —} satisfies
Q?=0and |Q| = 1.
o

J

Note: |©| = 3.

The derived bracket, |—, —] = —{{—, 0}, —}, defines a bracket of
an algebra.



§3. (Super)Geometry of fluxes Heller-NI-Watamura '16
QP-manifold
We introduce a spacetime coordinate z*.

Introduce the canonical conjugate &;, such that {z*,&;} = §*; and
'] =0, |&] =2.

(¢",p;) such that {q*,p;} = ¢%; and |¢'| = |ps| = 1,

Total coordinates (2%, &;,¢%, p;), and |{—, =} = —2.



A general form of O is of degree 3,

| | y 1 .
© = pi(z)d’¢ + 7 (x)ipi + yHijk(aj)q ¢ q"
1

. 1 . . 1 ..
+§F¢'§($)qzq”pk + 5@2 “(x)q'pjpr + §R” “(2)pip;prs
where H, F, (), R are defined by this equation.

Note: In fact, a structure is a Courant algebroid.



(2 without flux

We start the simplest Hamiltonian function © of degree 3 without
fluxes (and backgrounds),

Os.0 = ¢'&;,

which satisfies Q% = 0.

We introduce fluxes by the next technique.
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Twisting

Twisting is the exponential adjoint action,

f = 4 {f.a) + p{{f.a} 0l oo

where f(x,q,p, &) is any function. If |a| = 2, the adjoint action is
degree-preserving and obeys

{e%f,e%g} = e*{f, g}
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B-transformation

Twisting
| 1 o
exp(—0p)Os o = q'§; + §aiBjquqjqka
so that H;;, = 30;Bj or H = dB.

Q* = 0 is equivalent to dH = 0. This is the condition of an NS
H-flux.
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p-transformation

Twisting
i ami 1 ik i 1 im ik
exp(—65)Os o = &q"'—f Smpq;+§&ﬁ qupk+§ﬁ Om B " Dip Dk

The twist induces Q7" = 9;87% and R7* = 3a[lmlg,, Gk,
@ = dS and R = (8, 8]s, where [—, —]s is a Schouten bracket.

The classical master equation, {Og,0©3} = 0, then implies the
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Bianchi identities

k] _
3811m10,,QIF — 0, RIM 4 3QLiImIQk — o,
6[i|m|a RIkl _ §R[ij|m|le] — 0

These equations are relations in the S-supergravity.
Aldazabal-Baron-Marques-Nunez, '11
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R-flux under Poisson manifold background (Poisson

Courant algebroid) Asakawa-Muraki-Sasa-Watamura '15
1
[’7‘(‘,7‘(‘]5 :Oa Rzi[ﬂ-aﬁ]S-
satisfies [, R|s = 0. These equations are
i Kl U R
oyl hll — 0, RY"Y = §7T[7’| 0,3’ ],

rlillg RV — 2 RliTlg k1) — g,
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We take functions of degree 2, © = In%(z)p;p; and 71 =

57 (#)g'q? and consider the twisting,
65565”6_5w—1e5“@570
This gives
55 O6r —8 1 6x ij ij k L ik
Or r=ePe’"e n1e"0s o = wVE;p;—Opmq pz'pj"|_§R PiD;jPk-

where RU* = 1xlillg, % (2 = 0 gives correct relations.
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Fluxes with metric and Bianchi identity

Blumenhagen-Deser-Plauschinn-Rennecke '12
We introduce a vielbein e%;, where a, b, - - - are local Lorentz indices.
H, . = Sv[aBbc]a Hpns = 38 Bn8]7
Fbc fbc mnsﬁszea 6b ec ) fz?c — 2€[m m€ feaja

QZC — aaﬁbc T fgdﬁdc o 6db T strﬁShﬁrke 6 h6 k>
Rabc _ S(ﬂ[a|m|am5bc] 4+ fmnﬁb|m\ﬂc]n) mnsﬁmzﬁnhﬁske 6 he L
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The Bianchi identity

m 3 e
€ra Olm|Hped) — §F[abH|e|cd] =0,

o glimlg, Roed] _ §Q[abR\e|cd] 0,
ey3"" On Hiape) — 3€pq OnFiy — 3H oy Q5f + 3F]
— 261581, FY — 26 10,Q5" + Hpop R
+QY¥IFe, +F[f |]|d] =0,

3elbglinlg, Qedl — ¢ g, RIbedl 4 3D Rleled] _ gqlbeqleld — g

Fbec] — O,

ela
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Introduction of vielbein

We introduce local Lorentz supercoordinates (¢%, p,) such that
{q% pv} =97 and |¢?| = |pa| = 1.

All basis are (2%, &, ¢*, pi, ¢, pa). Let

eai (33) qapia
€ = eai(x)qipa-

Q)
]

Twisting

O©pge = exp(—0d.) exp(6,.-1) exp(—Je) exp(—dg) exp(—d)0Os.g

19



OBge = Gbi bﬁi + ebzﬁlmp Em — €bzﬁlm5’m€aj€a¢qipjpb
+ e, Ome, e%q'q"p;
1

1
+ _Habcqaqch + =

3' 2 'Rabcpap pC?

a C 1 C _Qa
Fypad’d” + 5Qa 0" pope + 55
where H, F', (), R are proposed forms.

{©pse, Opge} = 0 gives the correct Bianchi identity.

20



Summary

Start at the simplest form Os ¢ = ¢'¢; and twist. It gives known
geometric structures of fluxes.

Other many twistings are possible.
Conjecture
Flux geometries obtained by T-duality have this structure.

T-duality is described by a (discrete) canonical transformation and
twisting on a differential graded symplectic manifold (QP-manifold).
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4. Geometry of double field theory  Hull-Zwiebach '09

Double field theory is a manifestly T-duality invariant formulation
of the effective theory of string theory.

The D-dimensional spacetime is doubled ™ = (2%, %;) in 2D-
dimensions.

The metric g;; i1s generalized to the generalized metric,

N ( 417 —g* By, )
MN = - .
Bikg™  gij — Birg™' By,

The O(D, D)-invariance of the theory is required. The O(D, D)-

22



invariant metric is denoted by

— O. 5ij
NMN = 5i] 0 |-

The reduction to the physical spacetime is provided by the so called
the strong constraint (the section condition),

for any field 1. It can be rewritten as

23



One more condition is
MN
n" " OmoNyY =0,
We can decompose the generalized metric to generalized vielbeins,

ab
0
MNab

( IR ..
EA _ ( ea 6CL B]Z )
— iy " .
e’ 07" €% + €% 07" B

where
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§b. Supergeometry of double field theory
Deser-Stasheff '15, Deser-Saemann '16, Heller-NI-Watamura '16

Doubled graded manifold and Hamiltonian
Super coordinates are doubled,

(xM — (xiajji)v QM — (qiagi)' PM = (pi,ﬁi), v = (fi,@)) of
degrees (0, 1, 1, 2) with

An O(D, D)-invariant Hamiltonian function without flux is

25



Oorro = Eml(g™ +0MVpu) = &g + 1) + gz(pz +4i)-

The D-bracket and the C-bracket are

=
=~
S

[

—{{U, Oorr0}, V1,
[UvV]C — [U7V]D_[V7U]D-

However Q3rt o # 0. In fact,

{OpFT.0, OpFT .0} = 4&:E°.

26



The variables &; and €% induce the derivatives 9; and 9%, &8 =0 is
equivalent to the section condition, 9;f0'q + 0'f0;g = 0. In fact,

{{f:{OvF1,0,O0FT,0}, 9} = —4(0:f0'g + 0'fDig).

The strong constraint is equivalent to Q31 , = 0.

We choose a subspace by Qf¢r , = 0.

27



Two typical solutions

The supergravity frame Hamiltonian is defined by £ = 0,
whereas the winding frame Hamiltonian by &, = 0.

Then, Opgt o reduces to

@S,O — quu

~ -1

Ow,0 = ¢

Qs o =0and Qy , = 0.

28



Twisting
Applying the B-, 8- and vielbein e- twists to the untwisted double

field theory, fluxes are introduced,

(:)Bﬁe = exp(—0e) exp(0.-1) exp(—de) exp(—dp) exp(—I5)OpFT 0.

(:)Bﬁe — Gdi&;qd — edi mz'gqu + eclglpc — 5mlecl€mpc + ecanmﬁmlgnpc
+ e (95 + Bim0™)e e%piq"q°
+ ecl(él + 5lmam + Blmanén)eajeakqukpc
+ (& + Ose, et piq” + ﬁieajequapb)ﬁi

29



+ (5‘ + 5i€aj6akquk + 5i€aj€quapb)6_7i
1 ~] Y a

+ 5(87;Bjkp +0'B gkC]z)e ebkq (]b

1

@B + 0" i )e” e pupe
— 0, B;pf e, e, 5iq pe — 5iBjkﬁkmebj €°,,Giq"pe
+§8szkﬂ]mﬁkn bm Cnﬁzpbpc_'_ 5iBjkﬁjmﬁknebmecnqipbpc

1 a C 1 a C 1 C _.a aoc
+ grHabed"q'q" + S F5pad”q + 5Q070 pupe + yR " Dapope-
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Hape = 3(VaBpe + Biajm|0™ Bpe) + f[Zme|m|BC]n)a
Fy. = ff. — HpnsB*'e%e e, + 0" By + £ Bac — ' Ba,
Qb = ¢ 4 9,8 + fb gde — fe gdb L gL gshgrhe igh ce
+ Bam0™ 8% + 0V Bae S + 2By fgf B — 2Bajefif B,
Rabe — 3(glelmlg, gbel 4 fla gblmlgeln 4 Flaghe] _ fc[zabﬁ|d|c]
+ B, 0'plebglinld 4 glep, ,glelbgldle] 4 fT[La\elBedﬁln\blﬁ\dIC])
Hypns 87 87" 3% % €% 6%,
Hiypns = 3(0pmBrs) + B[mu@ Bps),
Fab = 26[%5””6%667..
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The classical master equation then

{(:)Bﬁea (:)Bﬁe} = 0.
leads to relations between the fluxes in the double space. Under the

section condition, these equations reduce to the Bianchi identity of
fluxes.
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Nontrivial reduction

M‘I‘UMN

Start with the fundamental form Oprr o = &ar(q PMm) =

&g+ PY) + Eps + @),

Twisting, ™ = 27 () p;p;.

/ T

DFT,0 — € ODFT,0

10wk
2 Ox*

= &i(q" + DY)+ E(pi + @) + T Ep; — (2)(¢" + p))p;pr-
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The section condition is deformed to

~ 19mI*
& (4@' T 9 9y (x)pjpk> = 0.

By the projectio n to the standard frame & = ¢, = p* = 0, ©
becomes the Poisson Courant algebroid with a standard Courant
algebroid part without fluxes,

/
DFT.0lz=0 = Op=0+ Ox r=0

i ij 107" i
= (&q") + <7T T&ipj — 2 (7)q ijk) :
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Note that, since {Or—0,0, r=0} = 0, the projected Hamiltonian
7—0 defines a double complex.

/
DFT,0

Moreover by taking the S-transformation 3 = 3% (x)p;p;, an R-flux
on a Poisson manifold, R = |m, B]s is obtained.

Note: The Courant bracket is closed.
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§60. T-duality as canonical transformation

T-duality as an O(D, D)-transformation relates the fluxes and
vielbeins associated to different backgrounds. A T-duality in z*-

direction is the transformation
k ~ “k k ~ ~k
" > Tk, Sk &, ¢ Ok, Pr&D

{—,—1} and Opg7 are invariant under this transformation, i.e.
the transformation is a canonical transformation.

36



Example: S' isometry

We consider a generalized vielbein,

EA, = (Ea Eai) _ ( o' o B >
E Ea’i 6al6lz eai 4 ealBimBml
Here we introduce odd local Lorentz basis ¢4 = (¢%, p,) and pa =
(p*, o). The Hamiltonian function without fluxes is

OprT.A = E5EM(qa+Da).

The easiest example concerns T-duality on an S'-isometry

37



background without B- and (-fields, where the circle has radius
R. It is well known, that T-duality maps the radius R — R’ = %.
The corresponding Hamiltonian is given by

Or = e '61(q' +5') + "€ (pr1+ @) = Ra(g' +5Y) + R (b1 + @),
The canonical transformation is

e F, G, ¢ eq, preph
Under this transformation, O is invariant,

@R < @R.

38



We can project into the supergravity frame by taking (£' = 0,
¢1 = 0, p* = 0) leading to

Or = Ré1q

Applying the transformation described above, the Hamiltonian,
which models the T-dual background, is given by

=R+ ) + REY (p + @)

In this case, the projection into the supergravity frame gives

Rl_R glq

39



Another derivation is that we project into the winding frame directly
by (£, =0, ¢ =0, p1 = 0) to get the result

Or = R_lglql-

e [ his formalism works for the case with fulxes.
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§7. Conclusions

e \We have formulated geometry of fluxes by a supermanifold with a
Poisson bracket and a BRST charge called a QP-manifold.

e All known proposals of nongeometric fluxes and R-fluxes, and their
identities are obtained by twisting of the simple form Os .

e The section conditions in double field theory is formulated as the
nilpotent condition of the O(D, D)-invariant BRST charge on the
doubled space.

e T-duality transformations are reformulated as canonical
transformations on a supermanifold.
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Future Outlook

e New flux solutions

e Actions and dynamics
e a’-corrections

e Quantizations

e Exceptional field theory
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Thank you for your attention!
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