Theoretical study of photoproduction of an η'N bound state on a deuteron target with forward proton emission

Takayasu SEKIHARA (JAEA)

in collaboration with

Daisuke JIDO (Tokyo Metropolitan Univ.)

Shuntaro SAKAI (RCNP, Osaka Univ.)

1. Introduction

2. Formulation

3. Results and discussions

4. Summary

[1] <u>T. S.</u>, D. Jido and S. Sakai, *Phys. Rev.* <u>C</u> (2016), in press [arXiv:1604.03634 [nucl-th]].

Meson in Nucleus 2016 @ YITP (Jul. 31 - Aug. 2, 2016)

++ The properties of the η ' meson ++

 $I^{G}(J^{PC}) = 0^{+}(0^{-+})$

Mass $m = 957.78 \pm 0.06$ MeV Full width $\Gamma = 0.198 \pm 0.009$ MeV

$\eta'(958)$ DECAY MODES	Fraction (Γ_i/Γ)	Confidence level (MeV/c)
$\pi^+\pi^-\eta$	(42.9 ± 0.7)%	232
$\rho^0 \gamma$ (including non-resonant	(29.1 ± 0.5)%	165
$\pi^{-}\pi^{-}\gamma)$ $\pi^{0}\pi^{0}\eta$	(22.2 ±0.8)%	239
$\omega\gamma$	(2.75±0.23) %	159
$\gamma \gamma_{-}$	(2.20±0.08) %	479
-3π ⁰	(2.14+0.20) × 10	-3 430

Particle Data Group.

η

 Large mass compared to the lowest pseudoscalar meson octet, (π, K, η).
 --- U_A(1) problem:

Where has the 9th NG boson gone ?

Weinberg (1975).

• The $U_A(1)$ problem can be solved by instantons (non-trivial classical solutions of EOM) through the $U_A(1)$ anomaly.

't Hooft (1976); Witten (1979); Veneziano (1979).

The η' meson has a direct connection to the dynamics of QCD.

++ The properties of the η ' meson ++

• There are several approaches to investigate the η ' properties.

- \square Behavior of the η ' meson in vacuum.
- ---- Decay modes, mixings,

Behavior of the η' meson in medium.
 Finite temperatures, finite nuclear densities.

 \square "Numerical experiments" for the η ' meson on a lattice.

++ The $\eta' N$ interaction ++

• So far, the interaction between η ' and N is not well known.

- ---- We do not know even whether it is attractive or repulsive.
- Recently, <u>based on the linear sigma model</u>, the η' N interaction was studied. Sakai and Jido, *Phys. Rev.* <u>C88</u> (2013) 064906; arXiv:1607.07116 [nucl-th].

JAEA Hidron A large part of the η' mass is generated by the spontaneous breaking of chiral symmetry through the U_A(1) anomaly.

S. H. Lee and T. Hatsuda (1996); T. D. Cohen (1996).

++ The $\eta' N$ interaction ++

• So far, the interaction between η ' and N is not well known.

- ---- We do not know even whether it is attractive or repulsive.
- Recently, based on the linear sigma model, the η' N interaction was studied. Sakai and Jido, *Phys. Rev.* <u>C88</u> (2013) 064906; arXiv:1607.07116 [nucl-th].

++ The $\eta' N$ interaction ++

- So far, the interaction between η ' and N is not well known.
- ---- We do not know even whether it is attractive or repulsive.
- Recently, based on the linear sigma model, the η' N interaction was studied. Sakai and Jido, *Phys. Rev.* <u>C88</u> (2013) 064906; arXiv:1607.07116 [nucl-th].

Taken from talk in ELPH workshop C008 given by S. Sakai.

 Mass modification is represented by <u>self-energy</u>, which can be translated into a potential between two particles.
 Indeed, in this model, the attraction between η' N is sufficiently attractive to generate an η' N bound state (B_E ~ 10 MeV).

++ The $\eta' N$ interaction ++

- So far, the interaction between η ' and N is not well known.
- ---- We do not know even whether it is attractive or repulsive.
- Recently, based on the linear sigma model, the η' N interaction was studied. Sakai and Jido, *Phys. Rev.* <u>C88</u> (2013) 064906; arXiv:1607.07116 [nucl-th].

Taken from talk in ELPH workshop C008 given by S. Sakai.

++ Motivation ++

- Such an η' N bound state, if it exists, may be observed in Exps.
 --- Which reactions ?
- The photoproduction of η(*) on a deuteron with forward proton emission will be suited for the observation.

- The forward proton emission gives a good kinematical condition for the production of the η' N bound system.
- This reaction can be observed in LEPS(2) experiments.
- It may also contain some clue to the $\eta' N$ interaction.
- --> Against the quasi-free η ', can we really observe the signal ?

++ γp --> ηp and $\eta' p$ reactions ++

We first consider the free proton γ p --> η p and η' p reactions as an elementary part of the photoproduction on a deuteron target.

The cross section can be expressed as:

$$rac{d\sigma_{\gamma p o mp}}{d\Omega} = rac{p'_{
m cm} M_p}{16\pi^2 E_{\gamma}^{
m lab} W_2} |T_{\gamma p o mp}|^2, \quad m = \eta, \ \eta'$$

- --- E_{γ}^{lab} : Initial photon energy in the Lab. frame,
 - Ω: CM solid angle for the final proton momentum, p_{cm} ': CM momentum of the final proton,
 - W₂: CM energy of the system,
 - $T_{\gamma p \rightarrow m p}$: The $\gamma p \rightarrow m p (m = \eta, \eta')$ scattering amplitude.

• Only the $\gamma p \rightarrow m p$ scattering amplitude $T_{\gamma p \rightarrow m p}$ is unknown.

++ γp --> ηp and $\eta' p$ reactions ++

We first consider the free proton γ p --> η p and η' p reactions as an elementary part of the photoproduction on a deuteron target.

- In this study we are interested in the ratio of the signal of the η' *n* bound state to the quasi-free η' production contribution.
- --> We need only a "rough" scattering amplitude for the γp --> m p reaction, $T_{\gamma p --> m p}$, since the magnitude of the amplitude is irrelevant to the ratio of signal to quasi-free.

η, η

++ γp --> ηp and $\eta' p$ reactions ++

We first consider the free proton γ p --> η p and η' p reactions as an elementary part of the photoproduction on a deuteron target.

- In this study we are interested in the ratio of the signal of the η' *n* bound state to the quasi-free η' production contribution.
- --> We need only a "rough" scattering amplitude for the γ p --> m p reaction, T_{γp-->mp}, since the magnitude of the amplitude is irrelevant to the ratio of signal to quasi-free.

++ $\gamma d \rightarrow p X$ reaction with $X = \eta n, \eta' n ++$ • Next we consider the $\gamma d \rightarrow p X$ reaction with $X = \eta n, \eta' n$ on a deuteron target.

• Again only the $\gamma d \rightarrow p X$ scattering amp. $T_{\gamma d \rightarrow p X}$ is unknown.

п

++ $\gamma d \rightarrow p X$ reaction with $X = \eta n, \eta' n ++$ • Next we consider the $\gamma d \rightarrow p X$ reaction with $X = \eta n, \eta' n$ on a deuteron target.

 In this study we calculate the γ d --> p X amp.
 from diagrams favored by the kinematics of the forward fast proton emission.

--- 1. Single scattering on a bound proton.

- **2.** Double scattering with $\eta' n \rightarrow X$ transition $\rightarrow \eta'$ exchange.
- 3. Double scattering with $\eta n \rightarrow X$ transition --- η exchange.

3. Double scattering with $\eta n \rightarrow X$ transition --- η exchange.

++ γd --> p X reaction with $X = \eta n, \eta' n$ ++ • Next we consider the $\gamma d \rightarrow p X$ reaction with $X = \eta n, \eta' n$ on a deuteron target. п nn pD calcu In amp. **fr(**m mт vore st pro 01 T_1 T_1 γ_γγ_γ Y L L п Diagram 3 Diagram 1 Diagram 2

× We do not consider scatterings on a bound neutron, which will lead to forward fast neutron in the final state and gives <u>only small momentum to the final proton</u>.

++ γd --> p X reaction with $X = \eta n, \eta' n$ ++ • Next we consider the $\gamma d \rightarrow p X$ reaction with $X = \eta n, \eta' n$ on a deuteron target. mScattering amplitudes from these diagrams are obtained as: D. Jido, E. Oset and <u>T. S.</u> (2009); (2013). $T_{\gamma d \to pX} = T_1^{(m)} + T_2^{(m)} + T_3^{(m)}$ $\mathcal{T}_1^{(m)} = T_{\gamma p \to mp} \times \tilde{\varphi}(\vec{p}_n)$ Diagram 1 Diagram 2 $\mathcal{T}_{2}^{(m)} = T_{\gamma p \to \eta' p} T_{\eta' n \to X}(M_X) \int \frac{d^3 q}{(2\pi)^3} \frac{\tilde{\varphi}(\vec{q} + \vec{p}_p - k)}{q^2 - M_{n'}^2 + i\epsilon}$ $q^0 = M_d + E_{\gamma}^{\rm lab} - p_p^0 - M_n - \frac{|\vec{q} + \vec{p}_p - \vec{k}|^2}{2M_n}$ $\mathcal{T}_{3}^{(m)} = T_{\gamma p \to \eta p} T_{\eta n \to X}(M_{X}) \int \frac{d^{3}q}{(2\pi)^{3}} \frac{\tilde{\varphi}(\vec{q} + \vec{p}_{p} - \vec{k})}{q^{2} - M_{r}^{2} + i\epsilon}$ Diagram 3

++ γd --> p X reaction with $X = \eta n, \eta' n$ ++ • Next we consider the $\gamma d \rightarrow p X$ reaction with $\overline{X} = \eta n, \eta' n$ on a deuteron target. mScattering amplitudes from these diagrams are obtained as: D. Jido, E. Oset and T.S. (2009); (2013). $T_{\gamma d \to pX} = T_1^{(m)} + T_2^{(m)} + T_3^{(m)}$ $\mathcal{T}_1^{(m)} = T_{\gamma p \to mp} \times \tilde{\varphi}(\vec{p_n})$ Diagram 1 Diagram 2 $\mathcal{T}_{2}^{(m)} = T_{\gamma p \to \eta' p} T_{\eta' n \to X}(M_X) \int \frac{d^3 q}{(2\pi)^3} \frac{\tilde{\varphi}(\vec{q} + \vec{p}_p - k)}{q^2 - M_{n'}^2 + i\epsilon}$ $q^0 = M_d + E_{\gamma}^{\rm lab} - p_p^0 - M_n - \frac{|\vec{q} + \vec{p}_p - \vec{k}|^2}{2M_n}$ $\mathcal{T}_{3}^{(m)} = T_{\gamma p \to \eta p} T_{\eta n \to X}(M_{X}) \int \frac{d^{3}q}{(2\pi)^{3}} \frac{\tilde{\varphi}(\vec{q} + \vec{p}_{p} - \vec{k})}{q^{2} - M_{n}^{2} + i\epsilon}$ Diagram 3 **1.** The $\gamma p \rightarrow \eta p$, $\eta' p$ amplitude $T_{\gamma p \rightarrow \eta p, \eta' p}$ is

<u>already fixed</u> from the free proton reaction.

++ γd --> p X reaction with $X = \eta n, \eta' n$ ++ • Next we consider the $\gamma d \rightarrow p X$ reaction with $X = \eta n, \eta' n$ on a deuteron target. mScattering amplitudes from these diagrams are obtained as: D. Jido, E. Oset and <u>T. S.</u> (2009); (2013). $T_{\gamma d \to pX} = T_1^{(m)} + T_2^{(m)} + T_3^{(m)}$ $\mathcal{T}_1^{(m)} = T_{\gamma p \to mp} \times \tilde{\varphi}(\vec{p}_n)$ Diagram 1 Diagram 2 $\mathcal{T}_{2}^{(m)} = T_{\gamma p \to \eta' p} T_{\eta' n \to X}(M_X) \int \frac{d^3 q}{(2\pi)^3} \frac{\tilde{\varphi}(\vec{q} + \vec{p}_p - k)}{q^2 - M_{n'}^2 + i\epsilon}$ $q^0 = M_d + E_{\gamma}^{\rm lab} - p_p^0 - M_n - \frac{|\vec{q} + \vec{p}_p - \vec{k}|^2}{2M_n}$ $\mathcal{T}_{3}^{(m)} = T_{\gamma p \to \eta p} T_{\eta n \to X}(M_{X}) \int \frac{d^{3}q}{(2\pi)^{3}} \frac{\tilde{\varphi}(\vec{q} + \vec{p}_{p} - \vec{k})}{q^{2} - M_{n}^{2} + i\epsilon}$ Diagram 3

2. The η *n*, η ' *n* --> *X* amplitude $T_{\eta n, \eta' n --> X}$ is taken from the linear sigma model (already discussed in Intro.).

++ γd --> p X reaction with $X = \eta n, \eta' n$ ++ • Next we consider the $\gamma d \rightarrow p X$ reaction with $X = \eta n, \eta' n$ on a deuteron target. mScattering amplitudes from these diagrams are obtained as: D. Jido, E. Oset and T.S. (2009); (2013). $T_{\gamma d \to pX} = T_1^{(m)} + T_2^{(m)} + T_3^{(m)}$ $T_1^{(m)} = T_{\gamma p \to mp} \times \tilde{\varphi}(\vec{p}_n)$ Diagram 1 Diagram 2 $\mathcal{T}_{2}^{(m)} = T_{\gamma p \to \eta' p} T_{\eta' n \to X}(M_X) \int \frac{d^3 q}{(2\pi)^3} \frac{\tilde{\varphi}(\vec{q} + \vec{p}_p - k)}{q^2 - M_{\pi'}^2 + i\epsilon}$ $q^0 = M_d + E_{\gamma}^{
m lab} - p_p^0 - M_n - rac{|ec{q} + ec{p}_p - ec{k}|^2}{2M_n}$ $\mathcal{T}_{3}^{(m)} = T_{\gamma p \to \eta p} T_{\eta n \to X}(M_{X}) \int \frac{d^{3}q}{(2\pi)^{3}} \frac{\tilde{\varphi}(\vec{q} + \vec{p}_{p} - \vec{k})}{q^{2} - M_{n}^{2} + i\epsilon}$ Diagram 3 3. Deuteron wave function is an analytic form $\tilde{\varphi}(\vec{q}) = \sum_{i=1}^{m} \frac{C_j}{\vec{q}^2 + m_j^2}$ taken from the Bonn potential with s wave only:

Machleidt, Phys. Rev. C63 (2001) 024001.

19

Meson in Nucleus 2016 @ YITP (Jul. 31 - Aug. 2, 2016)

++ $\gamma d \rightarrow p \eta n$ reaction ++

• We first consider $\gamma d \rightarrow p \eta n$ reaction with $E_{\gamma}^{\text{lab}} = 2.1 \text{ GeV}, \theta p = 0^{\circ}$ and calculate the differential cross section.

++ $\gamma d \rightarrow p \eta n$ reaction ++

• We first consider $\gamma d \rightarrow p \eta n$ reaction with $E_{\gamma}^{\text{lab}} = 2.1 \text{ GeV}, \theta p = 0^{\circ}$ and calculate the differential cross section.

++ $\gamma d \rightarrow p \eta' n$ reaction ++

• We next consider $\gamma d \rightarrow p \eta$ *n* reaction with $E_{\gamma}^{\text{lab}} = 2.1 \text{ GeV}, \theta p = 0^{\circ}$ and calculate the differential cross section so as to compare quasi-free η production with the signal of the η *n* bound state.

++ $\gamma d \rightarrow p \eta' n$ reaction ++

• We next consider $\gamma d \rightarrow p \eta$ *n* reaction with $E_{\gamma}^{lab} = 2.1 \text{ GeV}, \theta p = 0^{\circ}$ and calculate the differential cross section so as to compare quasi-free η production with the signal of the η *n* bound state.

++ $\gamma d \rightarrow p \eta' n$ reaction ++

• We next consider $\gamma d \rightarrow p \eta$ *n* reaction with $E_{\gamma}^{\text{lab}} = 2.1 \text{ GeV}, \theta p = 0^{\circ}$ and calculate the differential cross section so as to compare quasi-free η production with the signal of the η *n* bound state.

++ γ d --> p X (X = η n, η' n) reaction from the sum ++
For observation of the signal of the η' n bound state in real Exps., the signal should be comparable to the quasi-free η' contribution.
-> We plot sum of two differential cross sections for γ d --> p η' n and γ d --> p η' n reactions with E_γlab = 2.1 GeV, θp = 0°.

We clearly find two peaks 1.6 [µb / GeV sr around the η ' *n* threshold. 1.4 --- The lower is the bound 1.2 state signal, and the higher 1 is the <u>quasi-free η ' part</u>. $d^2 \sigma / dM_X d\Omega_p$ 0.8 Both the contributions are 0.6 comparable with each other. 0.4 --> In our model we can 0.2 observe the signal of 1.9 1.87 1.88 1.89 1.91 1.92 1.86 1.93 1.94 the $\eta' n$ bound state. M_X [GeV]

++ Model dependence ++

We want to study model dependence of our results.

Other diagrams ?

- <-- Other diagrams will be kinematically unfavored, or give only background. --- The forward emission of a fast proton.
- □ Changing the η'*N* interaction in $T_{\eta p, \eta' p \rightarrow X}(T_2)$. <-- We now examine this !

++ Model dependence ++

• Change the $\eta'N$ interaction and <u>check the interaction dependence</u>.

					~
	Shift parar	neter g		$V_{11} = -\frac{0}{\sqrt{2}}, V_{12} = V_{21} = +\frac{0}{\sqrt{2}}, V_{22} = -\frac{0}{\sqrt{2}}$: 0,
8	$g_{\eta' n}$	$B_{\rm E}~({\rm MeV})$	Γ (MeV)	$\sqrt{5m_{\sigma 0}^2}$ $\sqrt{5m_{\sigma 8}^2}$	
5.0	No structure			10	
6.0	Cusp only		,	r = 50	7
7.0	1.63 + 0.56i	0.9	5.4		-
8.0	2.71 + 0.43i	12.8	16.0		
9.0	3.49 + 0.40i	31.8	26.0		1
	Shift param	eter $m_{\sigma 8}$			1
$m_{\sigma 8}$ (GeV)	$g_{\eta'n}$	$B_{\rm E}~({\rm MeV})$	Γ (MeV		
0.9	3.19 + 1.25i	9.5	60.9		1
1.0	2.79 + 0.91i	8.8	34.4		
1.1	2.57 + 0.67i	8.4	21.2		
1.2	2.43 + 0.49i	8.0	14.1	N 0.6	۲. ۲
1.3	2.34 + 0.37i	7.7	9.8		
	Introduce πN	V channel		8 0.4	1
	$g_{\eta' n}$	$B_{\rm E}~({\rm MeV})$	Γ (MeV	0 02	-
	4.10 + 0.15i	57.0	14.5		
	I.I.I.I.I.I.			186 187 188 189 19 191 192 193 1	
				$M_{}$ [GeV]	.54

++ Model dependence ++

• Change the $\eta'N$ interaction and <u>check the interaction dependence</u>.

						6gB			6gB	
	Shift paran	neter g		V_{11}	$1 = \cdot$	$-\frac{1}{\sqrt{2}},$	$V_{12} =$	$V_{21} = +$	<u> </u>	$V_{22} = 0$
8	$g_{\eta' n}$	$B_{\rm E}~({\rm MeV})$	Γ (MeV)			$\sqrt{3m_{\sigma 0}^2}$			$\sqrt{6m_{\sigma 8}^2}$	
5.0	No structure		[
6.0	Cusp only				1.8	$m_{-0} = 0.9 \text{Ge}$	ý			'
7.0	1.63 + 0.56i	0.9	5.4	\mathbf{SI}	1.6	10 Ge	V			_
8.0	2.71 + 0.43i	12.8	16.0	\geq		1.0 Ge	V		A 100	
9.0	3.49 + 0.40i	31.8	26.0	Ğ	1.4	. 1.1 Ge	V			-
	Shift parame	eter m_{a8}		~	12	1.2 Ge	V			\
$m_{\sigma 8}$ (GeV)	$g_{\eta'n}$	$B_{\rm E}$ (MeV)	Γ (MeV)	qn	1.2	1.3 Ge	V		8	3
0.9	3.19 + 1.25i	9.5	60.9	-	1		- A		6	N 1
1.0	2.79 + 0.91i	8.8	34.4	2ª	0.8		$= I\Lambda$		7	
1.1	2.57 + 0.67i	8.4	21.2	Σp	0.0	-	$-l \cdot \lambda$	k		
1.2	2.43 + 0.49i	8.0	14.1	×	0.6		- <u>/</u> ```			-
1.3	2.34 + 0.37i	7.7	9.8	N	~ .		and the second			
	Introduce πN	channel		/q	0.4		1 in the second			1
	$g_{\eta' n}$	$B_{\rm E}~({\rm MeV})$	Γ (MeV)	ь	0.2		3			-
	4.10 + 0.15i	57.0	14.5	q_{j}^{2}	_	19-19-91-10-1				
1,					1.8	86 1.87 1	.88 1.89	1.9 1.	.91 1.92	1.93 1.94
							M	v [GeV]		
								A [OC /]		
					_					

Haron

++ Model dependence ++

• Change the $\eta' N$ interaction and <u>check the interaction dependence</u>.

firon.

++ Model dependence ++

Change the η'N interaction and <u>check the interaction dependence</u>.

--- We can observe the signal of the $\eta' N$ bound state in experiments if the bound state exists at more than several MeV below the n'N threshold with a small decay width. JAEA Hidron

Meson in Nucleus 2016 @ YITP (Jul. 31 - Aug. 2, 2016)

JAEA

4. Summary

++ Summary ++

We investigate photoproduction of an η' n bound state

in the $\gamma d \rightarrow p X$ reaction with $X = \eta n, \eta' n$.

- --- The forward proton emission allows us to consider selectively the η' N photoproduction.
- Using the η' n interaction based on the linear sigma model, we can observe the bound-state signal against the quasi-free η', if the bound state is more than several MeV below the η'N threshold with a small decay width.
- The quasi-free η ' production yield compared to free-proton case may be a clue to the η ' *N* interaction.

Thank you very much for your kind attention !

--- Based on the Watson formalism, in which the Green's function contains effect of NN interaction.

D. Jido, E. Oset and <u>T. S.</u> (2013).

 On the other hand, when we take "truncated" Faddeev approach, the energy of exchanged η^(*) meson is: Miyagawa and Haidenbauer (2012); D. Jido, E. Oset and <u>T. S.</u> (2013).

$$q^0 = M_d + E_{\gamma}^{
m lab} - p_p^0 - M_n - rac{|ec{q} + ec{p}_p - ec{k}|^2}{2M_n}$$

--- This contains <u>less diagrams</u> concerned with NN interaction, but we can calculate <u>correct two-body threshold</u> in loops.

--> How is the dependence with respect to the prescription ?

++ Model dependence ++

Calculate the differential cross section in two prescriptions of double scattering (the Watson and "truncated" Faddeev).

We find the signal of the η' n bound state in two approaches --> The prescription does not contaminate the bound-state signal, although the strength is weak for "truncated" Faddeev. J AEA (JAEA

Meson in Nucleus 2016 @ YITP (Jul. 31 - Aug. 2, 2016)