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Motivation

• Presence of a local peak near threshold at Eγ ∼ 2.0 GeV
in the differential cross-section (DCS) of γp → φp at
forward angle by Mibe and Chang, et al. [PRL 95
182001 (2005)] from the LEPS Collaboration.
−→ Observed also recently by JLAB: B. Dey et al. [PRC
89 055208 (2014)], and Seraydaryan et al. [PRC 89 055206
(2014)].

• Conventional model of Pomeron plus π and η ex-
changes usually can only give rise to a monotonically-
increasing behavior.

• We would like to see whether this local peak can be explained
as a resonance.

• In order to check this assumption, we apply the results on γp →
φp to γd → φpn to see if we can describe the latter.
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Reaction model for γp → φp

• Here are the tree-level diagrams calculated in our model in
an effective Lagrangian approach.
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N ∗ is the postulated resonance.

– pi is the 4-momentum of the proton in the initial state,

– k is the 4-momentum of the photon in the initial state,

– pf is the 4-momentum of the proton in the final state,

– q is the 4-momentum of the φ in the final state.
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• Pomeron exchange
We follow the work of Donnachie, Landshoff, and Nacht-
mann
−→ Pomeron-isoscalar-photon analogy

• π and η exchanges
For t-channel exchange involving π and η, we use effec-
tive Lagrangian approach.

• Resonances
Only spin 1/2 or 3/2 because the resonance is close to the
threshold.
−→ Effective Lagrangian approach for the vertices, and
Breit-Wigner form for the propagators.
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Fitting to γp → φp experimental data

• We include only one resonance at a time.

• We fit only masses, widths, and coupling constants of the
resonances to the experimental data, while other parameters
are fixed during fitting.

• Experimental data to fit

– Differential cross sections (DCS) at forward angle

– DCS as a function of t at eight incoming photon energy
bins

– Nine spin-density matrix elements (SDME) at three
incoming photon energy bins
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Results for γp → φp

• Both JP = 1/2± resonances cannot fit the data.

• DCS at forward angle and as a function of t are
markedly improved by the inclusion of the JP = 3/2± reso-
nances.

• In general, SDME are also improved by both JP = 3/2±

resonances.

• Decay angular distributions, not used in the fitting proce-
dure, can also be explained well.

• We study the effect of the resonance to the DCS of γp → ωp.
−→ The resonance seems to have a considerable amount of
strangeness content.

5



•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

JP = 3/2+ JP = 3/2−

MN∗(GeV) 2.08 ± 0.04 2.08 ± 0.04
ΓN∗(GeV) 0.501 ± 0.117 0.570 ± 0.159

eg
(1)
γNN∗g

(1)
φNN∗ 0.003 ± 0.009 −0.205 ± 0.083

eg
(1)
γNN∗g

(2)
φNN∗ −0.084 ± 0.057 −0.025 ± 0.017

eg
(1)
γNN∗g

(3)
φNN∗ 0.025 ± 0.076 −0.033 ± 0.017

eg
(2)
γNN∗g

(1)
φNN∗ 0.002 ± 0.006 −0.266 ± 0.127

eg
(2)
γNN∗g

(2)
φNN∗ −0.048 ± 0.047 −0.033 ± 0.032

eg
(2)
γNN∗g

(3)
φNN∗ 0.014 ± 0.040 −0.043 ± 0.032

χ2/N 0.891 0.821

• The ratio A1/2/A3/2 = 1.05 for the JP = 3/2− resonance.

• The ratio A1/2/A3/2 = 0.89 for the JP = 3/2+ resonance.
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Reaction model for γd → φpn
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• We calculate only (a) and (b), as (c), (d), and (e) are
estimated to be small.

• We want to know if the resonance would manifest itself in dif-
ferent reaction.
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• Fermi motion of the proton and neutron inside the deuteron
is included using deuteron wave function calculated by
Machleidt in PRC 63 024001 (2001).

• Final-state interactions (FSI) of pn system is included
using Nijmegen pn scattering amplitude.

• On- and off-shell parts of the pn propagator are included.
−→ 1

Ep+En−E′
1−E2+iε

= P
Ep+En−E′

1−E2
− iπδ(Ep + En − E ′

1 − E2)
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• The same model for the amplitude of γp → φp.
−→ Realistic model
−→ Correct spin structure is maintained

• A JP = 3/2− resonance is also present in the γn → φn
amplitude

– For φnn∗ vertex, φp and φn cases are the same since
φ is an I = 0 particle.

– For γnn∗ vertex, we assume that the resonance would
have the same properties, including its coupling to
γn, as a CQM state with the same isospin, JP , and
similar value of A1/2/A3/2 for the γp decay

−→N 3
2
−
(2095)[D13]5 in Capstick’s work in PRD 46, 2864

(1992), the only one with positive value of A1/2/A3/2
for γp in the energy region.
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Results for γd → φpn

• Notice that no fitting is performed to the LEPS data on
DCS [PLB 684 6-10 (2010)] and SDME [PRC 82 015205 (2010)]
of γd → φpn from Chang et al..
−→ We use directly the parameters resulting from
γp → φp.

• We found a fair agreement with the LEPS experimental data
on both observables.

• Resonance, Fermi motion, and pn FSI effects are found to
be large.
−→ Without them, the DCS data cannot be described.
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DCS of γd → φpn
Not fitted
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DCS of γd → φpn
Not fitted
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DCS of γd → φpn
Not fitted
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DCS of γd → φpn
Not fitted
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DCS of γd → φpn
Not fitted
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DCS of γd → φpn and
its ratio to twice DCS of γp → φp at forward angle

Not fitted
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SDME of γd → φpn as a function of t
Not fitted
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SDME of γd → φpn as a function of t
Not fitted
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SDME of γd → φpn as a function of t
Not fitted
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Summary and conclusions

• Inclusion of a resonance is needed to explain the non-
monotonic behavior in the DCS γp → φp near threshold.

• Resonance with J = 3/2 of either parity is preferred for γp →
φp, while JP = 1/2± cannot fit the data.

• The resonance seems to have a considerable amount of
strangeness content.
−→ Based on a separate study on its effect on γp → ωp.

• Agreement to the experimental data on the DCS and SDME of
γd → φpn is only quite reasonable using JP = 3/2− resonance.

• Fermi motion, final-state interaction of pn, and reso-
nance effects are found to be large and important to de-
scribe the data.
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THANK YOU!
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Pomeron exchange

We follow the work of Donnachie, Landshoff, and Nacht-
mann

iM = iūf(pf)ε
∗µ
φ Mµνui(pi)ε

ν
γ

Mµν = ΓµνM(s, t)

with

Γµν = k/

(
gµν −

qµqν

q2

)
− γν

(
kµ − qµ

k · q
q2

)
−

(
qν − p̄ν

k · q
p · k

) (
γµ − q/

qµ

q2

)
; p̄ =

1

2
(pf + pi)

where Γµν is chosen to maintain gauge invariance, and

A1
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M(s, t) = CPF1(t)F2(t)
1

s

(
s− sth

4

)αP (t)

exp [−iπαP (t)/2]

in which

F1(t) =
4m2

N − 2.8t

(4m2
N − t)(1− t/0.7)2

F2(t) =
2µ2

0

(1− t/M 2
φ)(2µ2

0 + M 2
φ − t)

; µ2
0 = 1.1 GeV2

F1(t) → isoscalar EM form-factor of the nucleon
F2(t) → form-factor for the φ-γ-Pomeron coupling
Pomeron trajectory αP = 1.08 + 0.25t.

• The strength factor CP = 3.65 is chosen to fit the total
cross sections data at high energy.

• The threshold factor sth = 1.3 GeV2 is chosen to match the
forward differential cross sections data at around Eγ = 6
GeV.
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Effects on γp → ωp

• From the φ − ω mixing, we expect the resonance to also con-
tribute to ω photoproduction.

• The coupling constants gφNN∗ and gωNN∗ are related, and
in our study we choose to use the so-called “minimal”
parametrization,

gφNN∗ = −xOZItan∆θV gωNN∗

where xOZI = 1 is the ordinary φ− ω mixing.

• By using xOZI = 12 for the JP = 3/2− resonance and xOZI = 9
for the JP = 3/2+ resonance, we found that we can explain
quite well the DCS of ω photoproduction.

• The large value of xOZI indicates that the resonance has a
considerable amount of strangeness content.

B1
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DCS of γp → ωp as a function of t
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