# Precision spectroscopy of deeply bound pionic states in tin isotopes at RIBF

#### Takahiro Nishi Advanced Meson Science Laboratory, RIKEN

DeukSoon Ahn, Georg P.A. Berg, Masanori Dozono, Daijiro Etoh, Hiroyuki Fujioka, Naoki Fukuda, Nobuhisa Fukunishi, Hans Geissel, Emma Haettner, Tadashi Hashimoto, Ryugo S. Hayano, Satoru Hirenzaki, Hiroshi Horii, Natsumi Ikeno, Naoto Inabe, Kenta Itahashi\*, Sathoshi Itoh, Masahiko Iwasaki, Daisuke Kameda, Shouichiro Kawase, Keichi Kisamori, Yu Kiyokawa, Toshiyuki Kubo, Kensuke Kusaka, Hiroaki Matsubara, Masafumi Matsushita, Shin'ichiro Michimasa, Kenjiro Miki, Go Mishima, Hiroyuki Miya, Daichi Murai, Yohei Murakami, Hideko Nagahiro, Masaki Nakamura, Megumi Niikura, Takahiro Nishi\*\*, Shumpei Noji, Kota Okochi, Shinsuke Ota, Naruhiko Sakamoto, Kimiko Sekiguchi, Hiroshi Suzuki, Ken Suzuki, Motonobu Takaki, Hiroyuki Takeda, Yoshiki K. Tanaka, Koichi Todoroki, Kyo Tsukada, Tomohiro Uesaka, Yasumori Wada, Yuni N. Watanabe, Helmut Weick, Hiroyuki Yamada, Hiroki Yamakami, Yoshiyuki Yanagisawa and Koichi Yoshida

\*spokesperson, \*\* co-spokesperson

University of Tokyo, RIKEN, Nishina Center, University of Notre Dame, Tohoku University, Kyoto University, GSI Helmholtzzentrum für Schwerionenforschung GmbH, Nara Women's University, Osaka University, Stefan Meyer Institute



50 m

#### **Deeply bound pionic states**



deeply bound pionic states  $\rightarrow$  Large overlap between  $\pi$  and A

good probe for strong interaction at finite p







#### Strong interaction and pionic states



N. Ikeno et al., Prog. Theor. Phys. 126 (2011) 483. S. Itoh, Doctoral Dissertation, Univ. of Tokyo (2011)



#### Strong interaction and pionic states



### Production method; (d,<sup>3</sup>He) reaction



## Deeply bound pionic atoms at GSI



K. Suzuki et al., PRL92 072302 (2004)

NuDat



Systematic study of pionic Sn isotopes ~ 3 month measurement for 3 isotopes

#### **Extract b<sub>1</sub> from experimental data**

Contour plot of  $\chi^2$ 



π-A s-wave optical potential

$$V_s(r) = -\frac{2\pi}{\mu} [\epsilon_1 \{b_0 \rho + b_1 \delta \rho\} + \epsilon_2 B_0 \rho^2]$$



\* b<sub>0</sub> , ReB<sub>0</sub> are deduced from data of light / symmetric pionic atoms

#### **Extract b<sub>1</sub> from experimental data**

Contour plot of  $\chi^2$ 





\* b<sub>0</sub> , ReB<sub>0</sub> are deduced from data of light / symmetric pionic atoms

#### **Extract b<sub>1</sub> from experimental data**

Contour plot of  $\chi^2$ 



## Experiment at RIBF, RIKEN

10



|                               | GSI                                | RIBF          | Improvement |
|-------------------------------|------------------------------------|---------------|-------------|
| intensity                     | ~ 10 <sup>11</sup> / 6 s (1 spill) | ~ 10¹²/ s     | × 60        |
| angular acceptance<br>(H / V) | 15 / 10 mrad                       | 40 / 60 mrad  | ×16         |
| resolution (FWHM)             | 400 keV                            | 200 ~ 300 keV | improve     |
| RIKEN                         | by dispersion matching optics      |               |             |

#### MIN2016, Kyoto, August 1st 2016

## *First production experiment in 2014 @ RIKEN (11 days)*



#### aim of the experiment

 $\cdot$  improve the resolution ~ 300 keV



first step of the systematic study with enough statistics

#### MIN2016, Kyoto, August 1st 2016

## First production experiment in 2014 @ RIKEN (11 days)

NuDat





<sup>122</sup>Sn: relatively large cross section
<sup>117</sup>Sn: first odd-A target

**Experimental setup** 



13

## **Experimental setup: detectors**



Multi Wire Drift Chamber

#### **Production run:** <sup>122</sup>**Sn target**







#### **Production run:** <sup>122</sup>**Sn target**





The spectrum seems to achieve the best resolution among the past deeply-bound pionic atom experiment.



The  $E_{ex}$  spectrum is fit by the function with several components  $\rightarrow$  deduce binding energies and widths of pionic states



\* calibration of E<sub>ex</sub> is still on going...





background (solid line / flat)

- + 1*s* pionic state (dashed line)
- + 2p pionic state (dashed line)





background (solid line / flat)

- + 1*s* pionic state (dashed line)
- + 2p pionic state (dashed line)
- + 2*s* pionic state (dashed line)





background (solid line / flat)

- + 1s pionic state (dashed line)
- + 2p pionic state (dashed line)
- + 2s pionic state (dashed line)
- + 3p, 3s state (dashed line)

#### Fitting parameter

- relative strength of each state
- $BE_{1s}$ ,  $BE_{2p}$ ,  $BE_{2s}$
- Г<sub>1s</sub>, Г<sub>2p</sub>

Fixed parameter

- BE<sub>3p</sub>, BE<sub>3s</sub>
- Γ<sub>2s</sub>, Γ<sub>3p</sub>, Γ<sub>3s</sub>



#### Deduced BE<sub>1s</sub>, $\Gamma_{1s}$ , BE<sub>2p</sub> $\rightarrow$ b<sub>1</sub>, ImB<sub>0</sub> in $\pi$ -A s-wave optical potential

$$V_s(r) = -\frac{2\pi}{\mu} [\epsilon_1 \{ b_0 \rho(r) + b_1 \delta \rho(r) \} + \epsilon_2 B_0 \rho(r)^2 \}].$$



\* b<sub>0</sub> , ReB<sub>0</sub> are deduced from data of light / symmetric pionic atoms





#### Deduced BE<sub>1s</sub>, $\Gamma_{1s}$ , BE<sub>2p</sub> $\rightarrow$ b<sub>1</sub>, ImB<sub>0</sub> in $\pi$ -A s-wave optical potential

$$V_s(r) = -\frac{2\pi}{\mu} [\epsilon_1 \{ b_0 \rho(r) + b_1 \delta \rho(r) \} + \epsilon_2 B_0 \rho(r)^2 \}].$$



\* b<sub>0</sub> , ReB<sub>0</sub> are deduced from data of light / symmetric pionic atoms

MIN2016, Kyoto, August 1st 2016

# θ<sub>reac</sub> dependence of each components (pionic states in <sup>121</sup>Sn)



### θ<sub>reac</sub> dependence of each components (pionic states in <sup>116</sup>Sn)



### θ<sub>reac</sub> dependence of each components (pionic states in <sup>116</sup>Sn)



## Summary

- Deeply-bound pionic atom is good probe for QCD in finite density, especially for quark condensate via  $b_1$  parameter in  $\pi$  A potential.
- To determine the b<sub>1</sub> precisely, experiments of pionic Sn isotopes are on going at RIKEN.
  - In the first exp., we measured with the target of <sup>122,116</sup>Sn, and succeed in improvement of the resolution,
    - observation of the pionic 1s, 2p and 2s states in <sup>121, 116</sup>Sn,
    - observation of angular dependence of these states.
- Analysis to deduce  $b_1$  from measured BE<sub>1s</sub>,  $\Gamma_{1s}$ , BE<sub>2p</sub> is in progress.



## (Near) future works

#### NuDat





The next exp. are already approved in PAC at RIKEN with wider range of isotopes.

#### The exp. will be performed in a few years.