Charmed Mesons in Matter

Chihiro Sasaki

Institute of Theoretical Physics, University of Wroclaw, Poland

C.S., Phys. Rev. D 90, no. 11, 114007 (2014).
 C.S. and K. Redlich, Phys. Rev. D 91, no. 7, 074021 (2015).

Introduction: why charm?

• crossover temperatures: *not unique!*

- flavor basis vs. conserved charge basis: strange mesons deconfined at $T_{ch}!$ $\mu_u = \frac{1}{3}\mu_B + \frac{2}{3}\mu_Q, \quad \mu_d = \frac{1}{3}\mu_B - \frac{1}{3}\mu_Q, \quad \mu_s = \frac{1}{3}\mu_B - \frac{1}{3}\mu_Q - \mu_S.$
- charm? \cdots lessons from lattice QCD: (i) EoS not affected by dynamical c-quark around $T_{\rm ch}$ [Borsanyi et al. ('11)] (ii) charm quarks start to appear around $T_{\rm ch}$ [Basavov et al. ('14)] (iii) survival charmed hadrons up to $T/T_c = 1.2$ [Mukherjee et al. ('15)]
- orrelations between light and heavy-flavor physics, beyond HRG
 ⇒ how are heavy-light hadrons modified toward chiral crossover?

 $D_s \sim c\bar{s}$ is like $K \sim q\bar{s}? \cdots \text{NO!}$

Symmetries of QCD in the heavy quark mass limit

• flavor symmetries

 $\label{eq:chiral symmetry} \begin{array}{ll} \mbox{chiral symmetry}: & m_{u,d}/\Lambda_{\rm QCD} \ll 1\,, & m_s/\Lambda_{\rm QCD} < 1\,. \\ \mbox{heavy quark symmetry}: & \Lambda_{\rm QCD}/m_{c,b} \ll 1\,. \end{array}$

• $SU(2N_{Qf})$ spin-flavor symmetry $(m_Q \rightarrow \infty)$: [Shuryak ('81), Isgur-Wise ('89)] light d.o.f. (q) do not feel the flavor and spin of the heavy quark (Q).

spin partners: $D(0^-)$ and $D(1^-)$ $B(0^-)$ and $B(1^-)$

• real world:

$$\begin{split} m_{D^*} - m_D &= 142 \; {\rm MeV} \; , \; m_{B^*} - m_B = 46 \; {\rm MeV} \; \ll \Lambda_{\rm QCD} \; : \; 1/m_Q \; {\rm corr} . \\ m_{Ds} - m_{Dd} &= 100 \; {\rm MeV} \; , \; m_{Bs} - m_{Bd} = 90 \; {\rm MeV} \; \ll \Lambda_{\rm QCD} \; : \; m_q \; {\rm corr} . \end{split}$$

Role of light flavor (chiral) symmetry

• observation: 2nd lowest spin doublets

 $D_{u,d}(0^+): 2308 \text{ MeV}$ [Belle (03)] $D_{u,d}(1^+): 2427 \text{ MeV}$ [Belle (03)] $D_s(0^+): 2317 \text{ MeV}$ [Babar (03)] $D_s(1^+): 2460 \text{ MeV}$ [CLEO (03)]

- mass difference of parity doublets: $\delta m = 300 400 \,\mathrm{MeV} \sim \Lambda_{\mathrm{QCD}}$
- chiral doubling [Nowak-Rho-Zahed (92); Bardeen-Hill (93)]

effective theory for heavy-light system based on the two relevant symmetries

Embedding D, D_s in a linear sigma model

- chiral fields $\Sigma = \sigma + i\pi$, heavy-light meson fields $H(0^-, 1^-), G(0^+, 1^+)$ $\Sigma \to g_L \Sigma g_R^{\dagger}, \quad \mathcal{H}_{L,R} \to S \mathcal{H}_{L,R} g_{L,R}^{\dagger}.$
- Lagrangian

$$\mathcal{L} = \mathcal{L}_{\mathrm{L}}(\Sigma) + \mathcal{L}_{\mathrm{HL}}(\mathcal{H}, \Sigma), \quad V_{\mathrm{HL}} = V_{\mathrm{HL}}(\mathcal{H}^2, \mathcal{H}^4; \Sigma) + V_{\mathrm{HL}}^{(\mathrm{exp})}.$$

• 6 parameters fixed with T = 0 physics

$$V_{\mathrm{HL}}^{(2)}: m_0, \underbrace{g_{\pi}^q, g_{\pi}^s}_{\Sigma \leftrightarrow \mathcal{H}^2}, \quad V_{\mathrm{HL}}^{(4)}: k_0, \underbrace{k_q, k_s}_{\Sigma \leftrightarrow \mathcal{H}^4}$$

• isospin sym & mean field approximation: $\langle \sigma_q \rangle$, $\langle \sigma_s \rangle$, $\langle D_q \rangle$, $\langle D_s \rangle$

conventional approach ... then?

Chiral condensates: role of charmed-meson MF

[HotQCD Collaboration ('12)]

- lattice: qualitative diff. between $\langle \bar{q}q \rangle$ and $\langle \bar{s}s \rangle \cdots$ SU(2+1): $T_c^{(u,d)} < T_c^{(s)}$
- chiral model: $\sigma_{q,s}$ approx. SU(3)!?
- induced chiral sym. breaking:

$$h_q^* = h_q - D_q^2 \left(\frac{1}{2}g_\pi^q + 2k_q D_q^2\right),$$

$$h_s^* = h_s - \frac{1}{\sqrt{2}}D_s^2 \left(\frac{1}{2}g_\pi^s + 2k_s D_s^2\right).$$

conventional approach:

- 1. set up at T = 0, all the parameters are *constant*.
- 2. 4 gap equations at given ${\cal T}$
- 3. approximate SU(3) $h_q^*/h_s^* \sim 1$...!?

resolution:

1. $\langle \sigma_q \rangle$ and $\langle \sigma_s \rangle$ as input e.g. lattice chiral consansates 2. $\langle D_q \rangle$, $\langle D_s \rangle$ and 2 HL-couplings as output $\Rightarrow g_{\pi}, k$ varying with T3. $h_q^*/h_s^* \ll 1$ restored

Intrinsic thermal effects

• concept of EFT: generating functional, Green's functions

- \bullet low-energy constants: high-frequency modes integrated out \Rightarrow in a hot/dense medium: effective couplings dep. on T/n
- $\sigma_{q,s}$ profiles from lattice QCD $\Rightarrow g_{\pi}(T)$ and k(T)

In-medium charmed-meson masses

• chiral splitting at $T_{\rm pc}$: $\delta M_D \simeq \delta M_{D_s}$

- \cdots insensitive to light flavors!
- \Rightarrow heavy quark symmetry
- light mesons at T_{pc} : $\delta M_{\pi\text{-}\sigma} \ll \delta M_{K\text{-}\kappa}$ \cdots SU(2+1) \neq SU(3)
- cf. chiral SU(4): [Roder-Ruppert-Rischke ('03)] $\delta M_D \ll \delta M_{D_s}$

Generalized susceptibilities

• generating functional vs. effective action

$$\Gamma[\phi_{\rm cl}] = -W[J] - \int d^4x J(x)\phi_{\rm cl}(x)$$

 \bullet fluctuation of ϕ

$$\begin{split} \langle \phi(x)\phi(y)\rangle - \langle \phi(x)\rangle\langle \phi(y)\rangle &= \frac{\delta^2 W[J]}{\delta J(x)\delta J(y)} = \left(\frac{\delta^2 \Gamma[\phi]}{\delta \phi_{\rm cl}(x)\delta \phi_{\rm cl}(y)}\right)^{-1}\\ \because 1 &= \frac{\delta^2 W}{\delta J\delta J} \frac{\delta^2 \Gamma}{\delta \phi_{\rm cl}\delta \phi_{\rm cl}} \end{split}$$

• multiple fields $\vec{\phi} = (\phi_1, \phi_2, \cdots, \phi_n)$ $\delta^2 W = \delta^2 \Gamma$

$$\delta_{ij} = \frac{\delta W}{\delta J_i \delta J_k} \frac{\delta 1}{\delta \phi_k \delta \phi_j}, \quad \{i, j, k\} = 1, 2, \cdots, n$$

 -2×2 sus. matrix $\Rightarrow \chi_{qq,qs,ss} \sim \chi_{ch}$: light flavor correlations -4×4 sus. matrix $\Rightarrow \chi_{\sigma D}, \chi_{DD}$: heavy-light flavor correlations

Correlations between light and heavy-light mesons [CS-Redlich ('14)]

qualitative changes set in at $T \sim T_{\rm pc}$: (NOTE: $\chi_{\rm ch} \sim \partial \sigma_{q,s} / \partial m_{q,s}$)

$$\hat{\chi}_{\sigma D} = -\hat{\chi}_{ch}\hat{\mathcal{C}}_{HL}\hat{\chi}_D, \quad \hat{\chi}_{D\sigma} = -\hat{\chi}_D\hat{\mathcal{C}}_{HL}\hat{\chi}_{ch}, \\ \hat{\chi}_{DD} = \hat{\mathcal{C}}_D - \hat{\mathcal{C}}_{HL}\hat{\chi}_{ch}\hat{\mathcal{C}}_{HL} \equiv \hat{\chi}_D.$$

in-medium D_s as a probe of O(4)!

Lattice observables - consistent with the model

• screening D_s masses [Bazavov et al. ('14)] - the same tend

- 4th-order c-s corr.: survival D_s up to $T = 1.2T_{\rm ch}$ [Mukherjee et al. ('15)] D_s changes its property medium modification sets in at $\sim T_{\rm ch}$.
- fluctuations and correlations of conserved charges X $\chi_X^{(\text{non-reg})} = \mathcal{F}_X(\sigma_{q,s}, D_{q,s}; \chi_{\text{ch}})$

Chiral vs. confinement at finite density

- hybrid model suggests a splitting of the 2 phase tr. [Benic-Mishustin-CS ('15)]
- Dirac-eigenmode expansion on lattice (talk by T. Doi)

Summary

• Synthesis of light and heavy quark dynamics

 $\frac{m_q}{m_c}, \frac{m_s}{m_c}, \frac{T}{m_c} \ll 1$ heavy quark symmetry as a reliable guide – at $T_{\rm pc}$: chiral mass splittings of HL mesons insensitive to light flavors.

$$\delta M_{D,B} \simeq \delta M_{D_s,B_s}$$
 vs. $\delta M_{\pi\text{-}\sigma} \ll \delta M_{K\text{-}\kappa}$

- remnant of O(4) in HL mixed fluctuations.

– anomalous suppression of $D_{\mathcal{S}}$ decay widths as a sign of CSR

in-medium D_s as a probe of O(4)!

• Application to a dense system

- strange and charm number conservation
- intrinsic density dependence role of higher-lying hadrons
- chiral restoration vs. deconfinement