Welcome to $\mathbf{MIN16}$ - Meson in Nucleus 2016 -

31st July to 2nd August 2016

Ryugo S. Hayano The University of Tokyo

The Nobel Prize in Physics 1949 Hideki Yukawa

Share this: f 📴 🗾 🕂 🖂 🤇 3

The Nobel Prize in Physics 1949

Hideki Yukawa Prize share: 1/1

The Nobel Prize in Physics 1949 was awarded to Hideki Yukawa "for his prediction of the existence of mesons on the basis of theoretical work on nuclear forces".

Ishii N., Aoki, S. & Hatsuda, T. Nuclear force from lattice QCD. PRL 99, 022001 (2007)

MIN2016 Topics

Fundamental theories of QCD

Mesonic atoms

Mesonic nuclei

Hadron formation in nuclear medium

Hadron-hadron interaction

New facilities

All related to a fundamental question:

Hatsuda, HIN2013

we have been asking

a similar set of questions

over and over

for quite some time

T Hatsuda; T Kunihiro, PRL 55 (1985) 158

W Weise, Nucl.Phys.A553 (1993) 59c

Where are we now?

Experimentally-accessible regions are rather limited Lattice is powerful, but is limited to $\mu_{\rm B} \sim 0$

MIN2016

A good starting point for would be to recal what were discussed at HIN2013 (held @ YITP)

T Hatsuda, In-medium Hadrons - A Theoretical Overview -

Quark Mass Dependence of Chiral Condensate Reduction

 $16^3 \times 48$ lattice with low-lying 120 eigenmodes

- $m_{
 m ud} = 0.015$: $m_{\pi} \sim 0.30 \; {
 m GeV}$
- $m_{
 m ud} = 0.050$: $m_{\pi} \sim 0.53 \; {
 m GeV}$

T Iritani, Partial restoration of chiral symmetry in the flux tube from lattice QCD

Introduction: NS observations

1/16

Heinke et al. (2010)

QCD phase diagram

Fukushima, Hatsuda (2010)

EOS

Relation to stiffness of EOS and the existence of the exotic components ?

Superfluid / Superconducting phase

Relation to nucleon and quark superfluidity inside NSs ?

K Masuda, Hadron-Quark Crossover and Neutron Star Observations

K Ohtani, Nucleon spectral function in nuclear medium from QCD sum rules

$\gamma N \rightarrow \pi^0 \pi^{\pm} N$ cross section

- Acceptance correction using Geant4 based Monte-Calro simulation with obtained detector efficiency.
- Those plots with higher energy above 800 MeV are newly obtained.

• Our data covers 2nd and 3rd resonance region.

S Goda, Partial Restoration of Chiral Symmetry and In-medium Pion Properties

N Ikeno, Formation spectra of deeply bound pionic atoms in the (d,³He) reactions

P Moskal: Search for the eta-mesic helium in the deuteron-deuteron fusion reaction

Y Sada, Analysis status of the J-PARC E15 experiment

A Khoukaz, Investigation of the 3He-η system in deuteron-proton collisions at COSY-ANKE

A Doté, Study of K⁻pp with an effective K^{bar}N potential on coupled-channel complex scaling model

S Okada, High-resolution hadronic-atom x-ray spectroscopy with transition-edgesensor micro-calorimeters

H Ekawa, K⁻pp search experiment in the d(p,K⁺) reaction at J-PARC

upper limit of cross section

AO Tokiyasu, Search for the K⁻pp bound state via photon-induced reaction

This week photos

M Miyabe, Recent status and plans at SPring-8 LEPS2 facility

SH Lee, Another look at n' in medium

M Nanova, n'-nucleus optical potential and the search for n' mesic states in photo nuclear reactions

H Nagahiro, n'(958)-nucleus bound states and their formations by missing mass spectroscopies

YK Tanaka, Plan of n' mesic nucleus spectroscopy with (p,d) reaction at GSI and FAIR

Heavy Chiral quark symmetry symmetry m→∞ m→0

S Yasui, Charm hadrons in nuclear medium

theory

L Tolós, Strange and Charmed Mesons in Nuclear Matter and Nuclei

A Yokota, Possible existence of charmonium-nucleus bound states

1.5<p_T<8 GeV/c

Low mass excess in Au-Au concentrated at low p_{τ}

YITP workshop on "Hadron in Nucleus" at YITP, Kyoto University, Oct. 31 - Nov. 2, 2013

0.2 0.4 0.6 0.8 1

=0.7<p_T<1.5 GeV/c

2013/11/02

0.4 0.6

H Hamagaki, Study of Hadron Properties in QCD Medium using the High-Energy Heavy-Ion Collisions

Theory Decay Constants

> The decay constants are evaluated using the relation[15],

$$f_{P/V}^2 = \frac{12 \left| \psi_{P/V}(0) \right|^2}{M_{P/V}} \bar{C}^2(\alpha_S)$$
(8)

Where $\bar{C}(\alpha_{S})$ is the QCD correction factor given by[16]

$$\bar{C}^2(\alpha_S) = 1 - \frac{\alpha_S}{\pi} \left[2 - \frac{m_Q - m_{\bar{Q}}}{m_Q + m_{\bar{Q}}} \ln \frac{m_Q}{m_{\bar{Q}}} \right]$$
(9)

▲□▶▲□▶▲≡▶▲≡▶ ≡ のへで

AK Rai, Quarkonia and their decay properties

T Sawada, Backward ϕ photo-production from C and Cu targets at Ey = 1.5 - 2.4 GeV V Metag, In-medium properties of hadrons studied with CBELSA/TAPS and HADES

Y Aramaki, Experimental approach to the mass modification in nucleus by the J-PARC E16 experiment

P. Gubler, The phi meson at finite density from a QCD sum rules + MEM approach

π, Κ, η, η' vector mesons Ν, Λ K-pp C, b, ... HEHI neutron star

Theory - Experiment interaction essential in this field

However ...

Theorist's dreams are...

<u>1</u> Spectral difference between chiral partners π-σ, ρ- a_1 , ω- f_1 , etc

Tau-decay in nuclei ?

2 Individual properties of NG and "Higgs" bosons π , K, η (NG), σ (Higgs), η ' (anomaly)

 $\sigma \rightarrow 2\gamma, \eta \rightarrow 2\gamma, \eta' \rightarrow 2\gamma$

<u>3</u> Individual properties of vector bosons ρ, ω, K* and φ

Precision/systematic studies (dispersion relation, different targets, ...)

Wish list by an innocent theorist

Determination of D=6 chiral condensates in the vacuum?

Mesic nuclei Dipion

Dileptons Hadronic decay

hatsuda

Experimentalist's nightmare

e.g., how to do this 1 in medium??

<VV> - <AA> from τ -decays at LEP-1

ALEPH Collaboration, Phys. Rep. 421 (2005) 191

hatsuda

MIN2016 -

New (young) people New results New ideas Lively discussion