The $\pi\pi$ and πd system in $\gamma d \rightarrow \pi^+\pi^- d$ measured with the NKS2

Hiroki Kanda Tohoku University

Content

Introduction

- The ABC effect
- Two-baryon states
- Dibaryon: $\mathcal{D}_{03}(2380)$
- Dibaryon: \mathcal{D}_{12} ? reported by CLAS
- Analysis of the NKS2 data
- Summary

INTRODUCTION

ABC Effect

- Isoscalar mesonic structure in the reaction pd->³He(ππ) observed in p(d, ³He)X reaction by Abashian, Booth and Crowe. (PRL 7 (1961) 35).
- The origin was firstly considered as a new meson with spin 0 and isospin 0. But turned out to be interacting ΔΔ
- Exclusive measurements were performed at the CELSIUS-WASA and the COSY-at-WASA

Classification of two-baryon states

\mathcal{D}_{IS}	\mathcal{D}_{01}	\mathcal{D}_{10}	\mathcal{D}_{12}	\mathcal{D}_{21}	\mathcal{D}_{03}	\mathcal{D}_{30}
BB	NN	NN	NΔ	NΔ	ΔΔ	ΔΔ
Mass formula	A	А	A+6B	A+6B	A+10B	A+10B
Approx. mass	1878	1878	2160	2160	2348	2348

	*			
Deuteron	Non attractive			
³ S ₁ attractive	${}^{1}S_{0}$ states: pp, nn,			
potential	pn			

M = A + B (I(I + 1) + S(S + 1) - 2) A = 1878 MeVB = 47 MeV

Dyson-Xuong Mass formula PRL 13 (1964) 815

Two-baryon states without strangeness (SU(6) group → isospin-spin SU(4) group: 50-multiplet) Deuteron and dibaryon can be classified within the same framework

1 Aug. 2016

Results from WASA at COSY

$\Delta\Delta$ attractive force in lattice QCD

Results from CLAS

• No hint of $\Delta\Delta$

- Structures found in $d\pi^$ and $d\pi^+$ invariant masses in $\gamma d \rightarrow \pi^+\pi^- d$
- The peaks correspond to the mass peaks of NΔ
- They can be considered as N∆ dibaryon states (not claimed in the last year)

R. Schumacher, APS meeting (2015)

NΔ (I=1, J = 2) state in single pionic fusion of pp

• N Δ (I=1, J = 2) was reported in single pionic fusion of pp $(pp \rightarrow \pi^+ d)$

 The mass corresponds to 2160 MeV/c² (presumably an input parameter of Dyson-Xuong mass formula)

B. S. Neganov and L. B. Parfenov Sov. Phys. JETP 34 (1958)767

Obtained by detailed balance of $\sigma(\pi^+d \rightarrow pp)$

ANALYSIS OF THE NKS2 DATA

Tagged Photon Beam Line at ELPH

Setup of the NKS2

Photon Beam VDC CDC EV ΙH 0-0-0-0-0 Liq. D2 Target OH Dipole magnet : $B \sim 0.42 \text{ T}$, R = 0.8 mHodoscopes (IH and OH): TOF measurement

- MWDC's (CDC and VDC) : Tracking for momentum and vertex finding
- EV: Reduction of QED background
- Geometrical acceptance: ~ 1 π sr

1 Aug. 2016

Data set

• Aim:

- Investigation of $\gamma d \rightarrow \Delta \Delta$ or $\Delta N \rightarrow \pi^+ \pi^- d$ states Identification of "d" for the check of the ABC effect
- Taken in Dec. 2006, Jan. 2007, and Jun. 2007 (Before upgrade of inner detectors)
- Photon Energy range: 0.78 1.08 GeV
- Total number of photons: 3.2 x 10¹²
- Tagged photon intensity: 1.7 MHz (average)
- Target: liq. Deuterium
 - Temperature: 18.8 K
 - Density: 0.172 g/cm³
 - Deuteron number density: $0.166 \pm 0.005 \,\mu b^{-1}$
- Trigger: Two charged particles detected with the NKS2 \otimes Electron detected at the Tagger
- Three charged particle detected events were collected and analyzed

Particle identification

- TOF measurement
 + Track length →
 velocities
- Tracking in the magnetic field → momenta and charge signs
- Momentum and TOF resolution
 - $-\sigma_p/p \sim 2$ %, $\sigma_{TOF} \sim 0.3$ ns
 - Coverage in forward region

 \rightarrow The deuteron is identified

Search for state like the ABC effect

- Search for the deuteron in the final state together with π^+ and π^- : $\gamma d \rightarrow d\pi^+\pi^-$ in 0.78 < E γ < 1.08 GeV \rightarrow 2.54 < W < 2.75 GeV (> ABC effect region W = 2.46 GeV)
- Simulated invariant mass of $\pi^+\pi^-$
 - Rho meson production + Three body phase space
 - No signature in $\pi^+\pi^-$ invariant mass distribution
 - Lower energy region (W ~ 2.46 GeV) should be explored
 - Realistic generator for the rho meson production is required

Invariant mass of $d\pi^+\pi^-$

- A significant locus
 - corresponding to $\gamma d \rightarrow d\pi^+\pi^$ reactions (Energy conservation fulfilled)
- Small contribution of π^0 missing events
- No significant structure at $M(d\pi^+\pi^-) = 2.38 \text{ GeV/c}^2$
- Signature of $\gamma d \rightarrow \mathcal{D}_{03}(2380)\pi^0 \rightarrow d\pi^+\pi^-\pi^0$ was not found
- Lower photon energy needed to reach $\gamma d \rightarrow \mathcal{D}_{03}(2380) \rightarrow \pi^+ \pi^- d$

Invariant mass of $d\pi$

H. Kanda @ MIN2016

Photon energy dependence of invariant mass

- Two bands:
 - Energy independent band: resonance? between d and π
 - Energy dependent band: "change" of the energy independent locus

Angular distribution of π

- Emission angle of π in lab. System
- $\gamma d \rightarrow \pi_1(\pi_2 d)$ in 2 < $M(\pi d)$ < 2.25 GeV/c²
 - π_1 : forward peaking
 - π_2 : Broad angular distribution
- Suggesting:
 - π_1 : t-channel production
 - π_2 : s-channel emission
- For precise angular distributions:

← acceptance correction is needed

Summary

- Dibaryon have been one of the interesting theme for quark-hadron physics
- Concrete results were reported by the WASA-at-COSY in the investigation of the ABC effect and they stimulated both experimental and theoretical investigations of dibaryon
- Hint of $N\Delta$ state was reported by CLAS at Jlab
- The NKS2 data is being examined for the investigation of
 - $M(\pi^+\pi^-)$: No significant structure related to the ABC effect. Lower energy region should be explored.
 - M($d\pi^+\pi^-$) : No significant structure for $\mathcal{D}_{03}(2380)$
 - M($d\pi^+$) and M($d\pi^-$): Peak at M ~ 2.15 GeV/c² more detailed analysis is needed.
- In any case a refined analysis with simulation is needed for the conclusion.
- Beam time in lower energy region is planned.