Charm hadron (baryon) spectroscopy

Atsushi Hosaka
RCNP, Osaka University
YITP workshop

Strangeness and charm in hadrons and dense matter
2017-05-15 - 2017-05-26

1. Heavy and Light flavors
2. Charmed baryons
3. Productions
4. Decays
5. Summary

1. Light and heavy flavors

$$
m_{u}, m_{d,} \quad m_{s} \quad \ll \Lambda_{Q C D} \quad \ll \quad m_{c}, \quad m_{b}, \ldots
$$

Light flavor
Chiral symmetry: SSB Constituent quarks

Heavy flavor HQ spin multiplet
(Light) Brown muck

We expect to:
Study of dynamics of light (colored) d.o.f. by changing flavor

Exotic hadrons near thresholds

- Presence of light and heavy quarks, which rearrange into molecular, tetraquark, pentaquark, ...
- Example: X(3872) is mostly a $\underline{D D^{*}}$ molecular like state

Many unusual exotics appear near and above the thresholds

Difficulties in exotics are due to ignorance of heavy - (mostly) light complex systems

Charmed (bottom) baryon is one of simplest systems
Presently:
Not much is known (next slides)
These motivated us to study charmed baryons

Observed states

Ground states

- $\Xi_{c}^{+} 2468$	***
- $\Xi^{0} 2471$	***
- $\Xi^{\prime}+2576$	***
- $\Xi^{\prime} 02578$	***
	**
- $\Xi_{c}(2645)$	***
$\Xi_{c}(2790)$	***
$\Xi_{c}(2815)$	**
$\Xi_{c}(2930)$	
$\Xi_{c}(2970)$ was $\Xi_{c}(2980)$	***
$\Xi_{c}(3055)$	***
$\Xi_{c}(3080)$	***
$E_{c}(3123)$	
- $\Omega_{\text {c }}^{0}$	***
- $\Omega_{c}(2770)^{0}$	***

N
2) $3 / 2$
$N(1535)$ 1/2
(1650) 1/2
$N(1675) 5 / 2^{-}$
$N(1680) 5 / 2^{+}$
$N(1700) 3 /$
$N(1710) 1 / 2^{+}$
$N(1720) 3 / 2^{+}$
$N(1860) 5 / 2$
$N(1875) 3 / 2^{-}$
$N(1880) 1 / 2^{+}$
$N(1895) 1 / 2$
$N(1900) 3$
$N(1990) 7 / 2^{+}$
$N(2000) 5 / 2^{+}$
$N(2040) 3 / 2^{+}$
$N(2060)$ 5/2
$N(2100) 1 / 2^{+}$
$N(2120) 3 / 2^{-}$
$N(2190) 7 / 2^{-}$
$N(2220) 9 / 2^{+}$
$N(2250)$ 9/2
$N(2300) 1 / 2^{+}$
$N(2570)$ 5/2
$N(2600)$ 11/2
700)

$\Delta(1232) 3 / 2^{+}$	Λ
$\Delta(1600) 3 / 2^{+}$	(1405) 1/2-
$\Delta(1620) 1 / 2^{-}$	$\Lambda(1520) 3 / 2^{-}$
$\Delta(1700) 3 / 2^{-}$	$\Lambda(1600) 1 / 2^{+}$
$\Delta(1750) 1 / 2^{+}$	$\Lambda(1670) 1 / 2^{-}$
Δ (1900) 1/2-	$\Lambda(1690) 3 / 2^{-}$
Δ (1905) 5/2+	$\Lambda(1710) 1 / 2^{+}$
Δ (1910) $1 / 2^{+}$	$\Lambda(1800) 1 / 2^{-}$
$\Delta(1920) 3 / 2^{+}$	$\Lambda(1810) 1 / 2^{+}$
Δ (1930) 5/2-	$\Lambda(1820) 5 / 2^{+}$
Δ (1940) 3/2-	
(1830) $5 / 2^{-}$	
$\Delta(1950) 7 / 2^{+}$	$\begin{gathered} \Lambda(1890) \\ (2000) \end{gathered} 2^{+}$
$\Delta(2000) 5 / 2^{+}$	
(2020) 7/2 ${ }^{+}$	
$\Delta(2150) 1 / 2^{-}$	$\Lambda(2050) 3 / 2^{-}$
$\Delta(2200) 7 / 2^{-}$	$\Lambda(2100) 7 / 2^{-}$
$\Delta(2300) ~ 9 / 2^{+}$	
(2110) 5/2+	
$\Delta(2350) 5 / 2^{-}$	$\Lambda(2325) 3 / 2^{-}$
$\Delta(2390) 7 / 2^{+}$	$\Lambda(2350) 9 / 2^{+}$
$\Delta(2400) 9 / 2^{-}$	$\Lambda(2585)$ Bumps
Δ (2420) 11/2 ${ }^{+}$	
Δ (2750) 13/2	
$\Delta(2950) 15 / 2+$	

Excited states

Ξ^{0}
Ξ^{-}
$\Xi(1530) 3 / 2^{+}$
$\Xi(1620)$
$\Xi(1690)$
$\Xi(1820) 3 / 2$
$\Xi(1950)$
$\Xi(2030)$
$\Xi(2120)$
$\Xi(2250)$
$\Xi(2370)$
$\Xi(2500)$
Ω^{-}
$\Omega(2250)^{-}$
$\Omega(2380)^{-}$
$\Omega(2470)^{-}$

2. Charmed baryons

A heavy quark distinguishes the λ and ρ modes
Isotope-shift: Copley-Isgur-Karl, PRD20, 768 (1979)

$$
m_{Q}=m_{u, d}
$$

$$
m_{Q} \rightarrow \text { large }
$$

ρ mode diquark excitation

λ mode

 diquark motionThese structures should be sensitive to reactions

Quark model 3-body calculation

Yoshida, Hiyama, Hosaka, Oka, Phys.Rev. D92 (2015) no.11, 114029

- Model Hamiltonian

$$
\begin{aligned}
H= & \frac{p_{1}^{2}}{2 m_{q}}+\frac{p_{2}^{2}}{2 m_{q}}+\frac{p_{3}^{2}}{2 M_{Q}}-\frac{P^{2}}{2 M_{\text {tot }}} \\
& \quad+V_{\text {conf }}(\text { Linear or } H O)+V_{\text {spin-spin }}(\text { Color }- \text { magnetic })+\ldots \\
= & H(\lambda)+H(\rho)+\text { coupling }
\end{aligned}
$$

- Solved by the Gaussian expansion method

Structure of the basis wave functions

$$
\begin{aligned}
& J=1 / 2,3 / 2: \text { HQ doublet } \\
& \Lambda_{c}^{*}\left(1 / 2^{-} ; \lambda \text {-mode }\right)=\frac{\left[\left[\psi_{0 p}(\vec{\lambda}) \psi_{0 s}(\vec{\rho}), d^{0}\right]^{1}\right.}{\text { Brown muck }}, \frac{\left.\chi_{c}\right]^{J} D^{0}{ }_{c}}{\text { heavy quark }}
\end{aligned}
$$

Quark model states

Example for Λ : $q q$ is made isosinglet

$n=0 \quad$ Ground states charmed baryons

$\left(n_{\lambda}, \ell_{\lambda}\right)$	$\left(n_{\rho}, \ell_{\rho}\right)$	d^{s}	j^{P}	J^{P}	possible assignment
$(0,0)$	$(0,0)$	d^{0}	0^{+}	$1 / 2^{+}$	$\Lambda_{c}(2286)$
$(0,0)$	$(0,0)$	d^{1}	1^{+}	$(1 / 2,3 / 2)^{+}$	$\Sigma_{c}(2455), \Sigma_{c}^{*}(2520)$
				$\mathbf{3}$	$\mathbf{3}$

$n=1 \quad$ Negative parity excited charmed baryons
λ mode

($\left.n_{\lambda}, \ell_{\lambda}\right)$	$\left(n_{\rho}, \ell_{\rho}\right)$	$d^{s} j^{P}$	J^{P}	possible assignment
$(0,1)$	$(0,0)$	$d^{0} 1^{-}$	(1/2,3/2) ${ }^{-}$	$\Lambda_{c}^{*}(2595), \Lambda_{c}^{*}(2625)$
$(0,0)$	$(0,1)$	$d^{1} 0^{-}$	$1 / 2^{-}$	
			(1/2,3/2) ${ }^{-}$	
			(3/2,5/2) ${ }^{-}$	$\Lambda_{c}^{*}(2880)(?)$
		$7=2$	$\times \lambda+5 \times \rho$	3

This counting reversed for Σ and $\Omega \mathrm{c}$

Masses

GeV Yoshida, Hiyama, Hosaka, Oka, Phys.Rev. D92 (2015) no.11, 114029

$\Omega \mathrm{c}$ from LHCb

Phys.Rev.Lett. 118 (2017) no.18, 182001, arXiv:1703.04639

Five narrow peaks may correspond to five λ modes?

Masses

GeV Yoshida, Hiyama, Hosaka, Oka, Phys.Rev. D92 (2015) no.11, 114029

How to study?

(A) Production
(B) Formation of resonances
(C) Decay of resonances

Reaction rates reflect the structure of excited states

3. Productions

$$
\pi+N \rightarrow D^{*}+\Lambda_{c}
$$

\because Regge model Absolute values
A. B. Kaidalov and P. E. Volkovitsky, :

How much B. Z. Phys. C 63, 517 (1994)

Kim, Kim, Hosaka, Noumi, ... PTEP 2014 (2014) 10, 103D01, PRD92 (2015) 9, 094021

Ratio

How are they related to internal structure?

Absolute values: Regge model

Kim, AH, Kim, Phys.Rev. D92 (2015) no.9, 094021

Ratio: One-body process

Quark model WF

$$
\begin{gathered}
\left.\left\langle B_{c}(\mathrm{~S} \text {-wave })\right| \vec{e}_{\perp} \cdot \vec{\sigma} e^{i \bar{q}_{e f f} \cdot \vec{x}} \mid N(\mathrm{~S} \text {-wave })\right\rangle_{\text {radial }} \sim 1 \times \exp \left(-\frac{q_{e f f}^{2}}{4 A^{2}}\right) \\
\left.\left\langle B_{c}(P \text {-wave })\right| \vec{e}_{\perp} \cdot \vec{\sigma} e^{i \vec{q}_{e f f} \cdot \vec{x}} \mid N(\mathrm{~S} \text {-wave })\right\rangle_{\text {radial }} \sim\left(\frac{q_{e f f}}{A}\right)^{1} \times \exp \left(-\frac{q_{e f f}^{2}}{4 A^{2}}\right) \\
\left.\left\langle B_{c}(D \text {-wave })\right| \vec{e}_{\perp} \cdot \vec{\sigma} e^{i \vec{q}_{e f f} \cdot \vec{x}} \mid N(\mathrm{~S} \text {-wave })\right\rangle_{\text {radial }} \sim\left(\frac{q_{e f f}}{A}\right)^{2} \times \exp \left(-\frac{q_{e f f}^{2}}{4 A^{2}}\right)
\end{gathered}
$$

Transitions to excited states are not suppressed

Spectrum simulation

Seminar@YITP Workshop. May 24, 2017

Similarity with hyper nuclei

Establishing single particle orbits: ${ }^{89} \mathrm{Y}$ ${ }^{89} \mathrm{Y}\left(\pi^{+}, \mathrm{K}^{+}\right){ }^{89}{ }_{\Lambda} \mathrm{Y}$

$$
\begin{aligned}
& \pi+p \\
& \xrightarrow{\rightarrow} D^{*}+B_{c}^{*}\left(J^{P}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \pi+p \\
& \xrightarrow{\rightarrow} D^{*}+B_{c}^{*}\left(J^{P}\right)
\end{aligned}
$$

$\pi^{+}+{ }^{89} Y$

$$
\rightarrow \mathrm{K}^{+}+{ }^{89} \Lambda \mathrm{Y}\left(J^{P}\right) \quad \mathrm{S}
$$

p

Two body process to be done

S.I. Shim and AH

4. Decays -Pion emission-

Nagahiro et al, Phys.Rev. D95 (2017) no.1, 014023 arXiv:1609.01085 Arifi, Nagahiro, AH, arXiv:1704.00464

4. Decays -Pion emission-

Nagahiro et al, Phys.Rev. D95 (2017) no.1, 014023 arXiv:1609.01085 Arifi, Nagahiro, AH, arXiv:1704.00464

Low lying decays with small $p_{\pi}(\mathrm{MeV})$

To compare with $\Delta \rightarrow \pi \mathrm{N}$ at $p_{\pi} \sim 230 \mathrm{MeV}$
Low energy pion dynamics can be better tested

Low energy $\pi q q$ interaction

Non-relativistic $\quad \vec{\sigma} \cdot \vec{p}_{i}, \vec{\sigma} \cdot \vec{p}_{f}$
Relativistic

$$
\bar{q} \gamma_{5} q \phi_{\pi}, \bar{q} \gamma^{\mu} \gamma_{5} q \partial_{\mu} \phi_{\pi}
$$

PV: preferable

$$
\begin{array}{r}
\mathcal{L}_{\pi q q}(x)= \\
\frac{g_{A}^{q}}{2 f_{\pi}} \bar{q}(x) \gamma_{\mu} \gamma_{5} \vec{\tau} q(x) \cdot \partial^{\mu} \vec{\pi}(x) \\
g_{A}^{q} \sim 1: \text { Quark axial coupling }
\end{array}
$$

$\Lambda_{\mathrm{c}}(2595) 1 / 2$

Nagahiro et al, Phys.Rev. D95 (2017) no.1, 014023 arXiv:1609.01085

| | decay channel | full | $\left[\Sigma_{c} \pi\right]^{+}$ | $\Sigma_{c}^{++} \pi^{-}$ | $\Sigma_{c}^{0} \pi^{+}$ | $\Sigma_{c}^{+} \pi^{0}$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Experiments | $(\mathrm{MeV})[5]$ | 2.6 ± 0.6 | - | $0.624(24 \%)$ | $0.624(24 \%)$ | - |
| Momentum | $q(\mathrm{MeV} / \mathrm{c})$ | - | - | \dagger | \dagger | 29 |
| $\left(n_{\lambda}, \ell_{\lambda}\right),\left(n_{\rho}, \ell_{\rho}\right)$ | $J_{\Lambda}(j)^{P}$ | | | | | |
| $(0,1),(0,0)$ | $1 / 2(1)^{-}$ | $1.5-2.9$ | $0.13-0.25$ | $0.15-0.28$ | $1.2-2.4$ | |
| $(0,0),(0,1)$ | $1 / 2(0)^{-}$ | 0 | 0 | isospin violated | | |
| | $1 / 2(1)^{-}$ | | $6.5-11.9$ | $0.57-1.04$ | $0.63-1.15$ | $5.3-9.7$ |

- 80% of the decay of is explained with strong isospin breaking
- λ-mode results consistent, ρ-mode results overestimate

Isospin breaking between $\pi^{0} \Sigma_{\mathrm{c}}{ }^{+}$and $\pi^{+} \Sigma_{\mathrm{c}}{ }^{0}, \pi^{-} \Sigma_{\mathrm{c}}{ }^{++}$ Mass distribution of $\Lambda^{*}(2595)$ and different phase space

Seminar@YITP Workshop. May 24, 2017
$\Lambda_{c}(2625) 3 / 2^{-} \quad$ Possible decay to $\Sigma c(2455) \pi$ is via D-wave

decay channelfull				$\Sigma_{c}^{++} \pi^{-}$	D-wave decay
				<0.05(<5\%)	
momentum of final particle $q(\mathrm{MeV} / \mathrm{c})$			-	101	
this work $\left(n_{\lambda}, \ell_{\lambda}\right),\left(n_{\rho}, \ell_{\rho}\right)$		$J_{\Lambda}(j)^{P}$			
$\begin{gathered} \Gamma \\ (\mathrm{MeV}) \end{gathered}$	$(0,1),(0,0)$	$1 / 2(1)^{-}$		5.4-10.7	
		$3 / 2(1)^{-}$		0.024-0.039	
	$(0,0),(0,1)$	$1 / 2(0)^{-}$		0	

- Only a small part of the decay width is from the two-body
- The remaining is considered by three-body decay

$B_{i} J^{P}$ (MeV)	$\Gamma_{\text {exp }}^{\text {ful }}\left(\Gamma_{i}\right)$ (MeV)	q (MeV)	$\Gamma_{\mathrm{th}}\left(\Sigma_{c}\left(J^{+}\right)^{++} \rightarrow \Lambda_{c}^{\text {gs }}\left(1 / 2^{+} ; 2286\right)^{+} \pi^{+}\right)$
(MeV)			

Factor 2 difference, which is due to ...

$$
g_{\mathrm{A}}^{q}=1 \rightarrow g_{\mathrm{A}}^{N}=5 / 3>1.25_{\exp }
$$

$\Lambda_{c}(2625) 3 / 2^{-} \quad$ Three-body decay

Role of the closed channel in $\Lambda_{\mathrm{c}}(2625) 3 / 2^{-} \rightarrow \pi \pi \Lambda_{\mathrm{c}}(2286) 1 / 2^{+}$
Sequential decays

$$
\begin{aligned}
& \Lambda_{c}(2625) \rightarrow \Sigma_{c_{c}}{ }^{\left({ }^{*}\right)}+\pi \rightarrow \Lambda+\pi+\pi \\
& \begin{array}{lllll|l}
\Sigma_{\mathrm{c}}(2455) 1 / 2^{+} & \Sigma_{c} \Sigma_{c} & 0.037 & 0.018 & 0.033 & <0.05(<5 \%) \\
\Sigma_{c}^{0} \pi^{+} & 0.031 & 0.016 & 0.030 & <0.05(<5 \%) \\
\Sigma_{c}^{+} \pi^{0} & 0.053 & 0.027 & 0.049 & -
\end{array} \\
& \begin{array}{llccc|cc}
\Sigma_{\mathrm{c}}^{*}(2520) 3 / 2^{+} & \Sigma_{c}^{*++} \pi^{-} & 0.044 & 0.190 & 0 & \text { 3-body } & \text { (large) } \\
\text { closed } & \sum_{c}^{* 0} \pi^{+} & 0.064 & 0.285 & 0 & - \\
& \Sigma_{c}^{*+} \pi^{0} & 0.071 & 0.306 & 0 & - \\
& \Gamma_{\text {total }} & 0.300 & 0.842 & 0.112 & - \\
\hline & \mathrm{R} & 0.61 & 0.93 & 0 & <0.97 \\
& & & & 0.54 \pm 0.14 \\
\hline
\end{array} \\
& R=\frac{\Gamma\left(\Lambda_{c}^{*} \rightarrow \Lambda_{c} \pi^{+} \pi^{-}(\text {non-resonant })\right)}{\Gamma\left(\Lambda_{c}^{*} \rightarrow \Lambda_{c} \pi^{+} \pi^{-}(\text {total })\right)}
\end{aligned}
$$

- The two body decay of $\Lambda_{c}(2625)$ is minor
- The contribution of closed (virtual) $\Sigma_{\mathrm{c}}(2520)$ is large due to S -wave nature
- The ratio prefers the λ mode
$\Rightarrow \lambda$ mode is consistent with data, but more study is needed

Dalitz plot

$$
R=\frac{\Gamma\left(\Lambda_{c}^{*} \rightarrow \Lambda_{c} \pi^{+} \pi^{-}(\text {non-resonant })\right)}{\Gamma\left(\Lambda_{c}^{*} \rightarrow \Lambda_{c} \pi^{+} \pi^{-}(\text {total })\right)}
$$

Summary

- We have discussed charmed (one-heavy quark) baryons.
- Distinction of $\lambda-\rho$ mode should be tested.
- Reaction rates/ratios are useful

Questions and problems

- So far $1 h \omega$ (likely to be λ mode), what about ρ modes
- Higher excited states, $2 h \omega$
- D (heavy) meson emission and decay width
- Nature of monopole (Roper) excitation of $1 / 2+$
- Similar or even lower than $1 / 2-$
- $\Delta \mathrm{E}(1 / 2+) \sim 500 \mathrm{MeV}$, independent of flavors
- Production mechanism (quantitatively)

Positive parity baryons

Candidate for

 charmed baryon$\Lambda_{c}^{+} 2286$
$\Lambda_{c}(2595)^{+}$
$\Lambda_{c}(2625)^{+}$
$\Lambda_{c}(2625)^{+}$
$\Lambda_{c}(2765)^{+}$or $\Sigma_{c}(2765)$
$\Lambda_{c}(2880)$
$\Lambda_{c}(2940)^{+}$
$\Sigma_{c}(2455)$
$\Sigma_{c}(2520)$
$\Sigma_{c}(2800)$

Heavy Baryons and their Exotics from Instantons in Holographic QCD arXiv:1704.03412
Department of Physics and Astronomy, Stony Brook University, Stony Brook, New York 11794-3800, USA
(Dated: April 28, 2017)

$$
\begin{align*}
& M_{N Q}=+M_{0}+N_{Q} m_{H} \\
& +\left(\frac{(l+1)^{2}}{6}+\frac{2}{15} N_{c}^{2}\left(1-\frac{15 N_{Q}}{4 N_{c}}+\frac{5 N_{Q}^{2}}{3 N_{c}^{2}}\right)\right)^{\frac{1}{2}} M_{K K} \\
& +\frac{2\left(n_{\rho}+n_{z}\right)+2}{\sqrt{6}} M_{K K} \tag{42}
\end{align*}
$$

Radial excitation of diquark soliton positive parity

Excitations into 5th dim diquark internal? negative parity

Progress of Theoretical Physics, Vol. 117, No. 6, June 2007
Baryons from Instantons in Holographic QCD
Hiroyuki Hata, ${ }^{1, *)}$ Tadakatsu SAKAI, ${ }^{2, * *)}$ Shigeki Sugimoto ${ }^{3, * * *)}$ and Shinichiro Yamato ${ }^{1, \dagger)}$
Λ_{c} (2880) $5 / 2^{+}$

decay channel full	$\left[\Sigma_{c}^{(*)} \pi\right]_{\text {total }}$	$\left[\Sigma_{c} \pi\right]^{+}$	$\left[\Sigma_{c}^{*} \pi\right]^{+}$	R

Experimental value $\Gamma_{\exp }(\mathrm{MeV}) 5.8 \pm 1.1[24]$
itum of final particle $q(\mathrm{MeV} / \mathrm{c})$
$\left(n_{\lambda}, \ell_{\lambda}\right),\left(n_{\rho}, \ell_{\rho}\right) \quad J_{\Lambda}(j)^{P}$

$(0,2),(0,0)$	$5 / 2(2)^{+}$	$11.2-26.1$	$1.2-2.8$	$9.9-23.3$	$8.1-8.4$
$(0,0),(0,2)$	$5 / 2(2)^{+}$	$27.8-52.2$	$1.4-2.6$	$26.4-49.5$	$18.7-18.9$
$(0,1),(0,1)$	$5 / 2(2)_{2}^{+}$	$51.7-109.6$	$1.8-3.5$	$49.9-106.1$	$27.5-30.1$
	$5 / 2(2)_{1}^{+}$	$0.63-1.68$	0	$0.63-1.68$	(∞)
	$5 / 2(3)_{2}^{+}$	$2.9-5.8$	$2.1-4.0$	$0.85-1.73$	$0.41-0.43$

- Both absolute values and R ratio are sensitive to configurations
- Brown muck of $j=3$ seems preferred.
- This implies that $\Lambda_{c}(2940)$ could be $7 / 2^{+}$

$$
R=\frac{\Gamma\left(\Sigma_{c}^{*}\left(3 / 2^{+}\right) \pi\right)}{\Gamma\left(\Sigma_{c}\left(1 / 2^{+}\right) \pi\right)}
$$

