Charm hadron (baryon) spectroscopy

Atsushi Hosaka RCNP, Osaka University YITP workshop Strangeness and charm in hadrons and dense matter 2017-05-15 — 2017-05-26

- 1. Heavy and Light flavors
- 2. Charmed baryons
- 3. Productions
- 4. Decays
- 5. Summary

1. Light and heavy flavors

We expect to: Study of dynamics of light (colored) d.o.f. by changing flavor

Exotic hadrons near thresholds

- Presence of light and heavy quarks, which rearrange into molecular, tetraquark, pentaquark, ...
- Example: X(3872) is mostly a *DD* molecular like state*

Difficulties in exotics are due to ignorance of heavy - (mostly) light complex systems

Charmed (bottom) baryon is one of simplest systems

Presently: Not much is known (next slides)

These motivated us to study charmed baryons

p			Σ^+		
<u>n</u>	$\Delta(1232) \ 3/2^+$	Λ	\sum^{1}	=0	
N(1440) 1/2 ⁺	$\Delta(1600) 3/2^+$	$\Lambda(1405) \ 1/2^{-1}$	$\sum_{i=1}^{n}$		
N(1520) 3/2 ⁻	$\Delta(1620) 1/2^{-1}$	$\Lambda(1520) 3/2^{-1}$	$\sum_{\Sigma(1385)} \frac{2}{3/2^+}$	Ξ $\Xi(1520) 2/2+$	
N(1535) 1/2 ⁻	$\Delta(1700) 3/2^{-1}$	$\Lambda(1600) 1/2^+$	$\Sigma(1480)$ Bumps	$\Xi(1550) 5/2^{+}$	
N(1650) 1/2 ⁻	$\Delta(1750) 1/2^+$	$\Lambda(1670) \ 1/2^{-1}$	$\Sigma(1560)$ Bumps	$\Xi(1020)$ $\Xi(1600)$	0
N(1675) 5/2 ⁻	$\Lambda(1900) 1/2^{-1}$	$\Lambda(1690) \ 3/2^{-1}$	<i>Σ</i> (1580) 3/2 ⁻	$\Xi(1090)$ $\Xi(1920) 2/2=$	
N(1680) 5/2 ⁺	$\Delta(1905) 5/2^+$	$\Lambda(1710) 1/2^+$	$\Sigma(1620) 1/2^{-1}$	$\Xi(1820) 5/2$ $\Xi(1050)$	
$N(1700) 3/2^{-1}$	$\Delta(1903) 372$ $\Lambda(1910) 1/2^+$	$\Lambda(1800) 1/2^{-1}$	$\Sigma(1620)$ Product	E(1950)	
$N(1710) 1/2^+$	$\Delta(1910) 1/2$ $\Lambda(1920) 3/2^+$	$\Lambda(1810) \ 1/2^+$	$\Sigma(1000) 1/2^{-1}$ $\Sigma(1670) 3/2^{-1}$	E(2030)	
$N(1720) 3/2^+$	$\Delta(1)20) 5/2^{-1}$	$\Lambda(1820) 5/2^+$	$\Sigma(1670) 372$ $\Sigma(1670)$ Bumps	$\Xi(2120)$	
$N(1860) 5/2^+$	$\Delta(1930) 3/2$ $\Lambda(10\Lambda0) 3/2^{-1}$	$\Lambda(1830) 5/2^{-1}$	$\Sigma(1690)$ Bumps	E(2230)	S 3
$N(1875) 3/2^{-1}$	$\Delta(1940) 3/2$ $\Lambda(1050) 7/2^+$	$\Lambda(1890) \ 3/2^+$	$\Sigma(1730) 3/2^+$	$\Xi(2570)$	5 -5
$N(1880) 1/2^+$	$\Delta(1930) 7/2$ $\Lambda(2000) 5/2^+$	$\Lambda(2000)$	$\Sigma(1750) 1/2^{-1}$	$\Xi(2300)$	
$N(1800) 1/2^{-}$ $N(1895) 1/2^{-}$	$\Delta(2000) \ 3/2$ $\Lambda(2150) \ 1/2^{-1}$	$\Lambda(2020) 7/2^+$	$\Sigma(1775) 5/2^{-1}$		
$N(1000) 3/2^+$	$\Delta(2130) 1/2$ $\Lambda(2200) 7/2^{-1}$	$\Lambda(2050) \ 3/2^{-1}$	$\Sigma(1773) 372$ $\Sigma(1840) 372^+$	$arOmega^-$	
$N(1900) \frac{3}{2}$ $N(1990) \frac{7}{2}$	$\Delta(2200) 772$ $\Lambda(2200) 0/2^+$	$\Lambda(2100) 7/2^{-1}$	$\Sigma(1880) 1/2^+$	$\Omega(2250)^{-}$	
$N(2000) 5/2^+$	$\Delta(2300) 9/2$ $\Lambda(2350) 5/2^{-1}$	$A(2110) 5/2^{+}$	$\Sigma(1900) 1/2^{-1}$	$\Omega(2380)^{-}$	
N(2000) 3/2 $N(2040) 3/2^+$	$\Delta(2330) 312$ $\Lambda(2200) 7/2^+$	$A(2325) 3/2^{-1}$	$\Sigma(1915) 5/2^+$	$\Omega(2470)^{-}$	
$N(2040) 5/2^{-}$	$\Delta(2390) 112^{+}$ $\Delta(2400) 0/2^{-}$	$A(2350) 9/2^{+}$	$\Sigma(1940) 3/2^+$		
N(2000) J/2 $N(2100) 1/2^+$	$\Delta(2400) 9/2$	$\Lambda(2585)$ Bumps	$\Sigma(1940) 3/2^{-1}$		
N(2100) 1/2 $N(2120) 2/2^{-1}$	$\Delta(2420) 11/2'$		$\Sigma(2000) 1/2^{-1}$		
N(2120) 3/2 $N(2100) 7/2^{-1}$	$\Delta(2/50) 13/2$		$\Sigma(2030) 7/2^+$ $\Sigma(2070) 5/2^+$		
N(2190) 1/2	$\Delta(2950) 15/2^{+}$		$\Sigma(2070) 3/2^+$		
N(2220) 9/2 '			$\Sigma(2100) \ 7/2^{-1}$		
N(2250) 9/2 ⁻		• •	$\Sigma(2250)$		
N(2300) 1/2 ⁺	Ex	cited states	$\Sigma(2455)$ Bumps		
N(2570) 5/2 ⁻			$\Sigma(2620)$ Bumps		
N(2600) 11/2	-		$\Sigma(3000)$ Bumps		
N(2700) 13/2	- Corr	ningr@VITP Workshop	$\Delta(3170)$ bumps May 24, 2017		ſ
	501		wiay 24, 2017		0

2. Charmed baryons

A heavy quark distinguishes the λ and ρ modes **Isotope-shift:** Copley-Isgur-Karl, PRD20, 768 (1979)

These structures should be sensitive to reactions

Quark model 3-body calculation

Yoshida, Hiyama, Hosaka, Oka, Phys.Rev. D92 (2015) no.11, 114029

Model Hamiltonian

$$\begin{split} H &= \frac{p_1^2}{2m_q} + \frac{p_2^2}{2m_q} + \frac{p_3^2}{2M_Q} - \frac{P^2}{2M_{tot}} \\ &+ V_{conf}(Linear \ or \ HO) + V_{spin-spin}(Color - magnetic) + \dots \\ &= H(\lambda) + H(\rho) + coupling \end{split}$$

• Solved by the Gaussian expansion method

Structure of the basis wave functions

J = 1/2, 3/2: HQ doublet

$$\Lambda_c^*(1/2^-; \lambda \text{-mode}) = \begin{bmatrix} [\psi_{0p}(\vec{\lambda})\psi_{0s}(\vec{\rho}), d^0]^1, \chi_c \end{bmatrix}^{iJ} D^0 c$$

Brown muck heavy quark

Quark model states Example for Λ : qq is made isosinglet

$$n = 0 \qquad \begin{array}{c|c} \text{Ground states charmed baryons} \\ \hline \hline (n_{\lambda}, \ell_{\lambda}) & (n_{\rho}, \ell_{\rho}) & d^{s} & j^{P} & J^{P} & \text{possible assignment} \\ \hline (0, 0) & (0, 0) & d^{0} & 0^{+} & 1/2^{+} & \Lambda_{c}(2286) \\ \hline (0, 0) & (0, 0) & d^{1} & 1^{+} & (1/2, 3/2)^{+} & \Sigma_{c}(2455), \Sigma_{c}^{*}(2520) \\ \hline & & & & & & & & \\ \hline & & & & & & & \\ \end{array}$$

n = 1 $\lambda \text{ mode} \qquad \frac{\text{Negative parity excited charmed baryons}}{(n_{\lambda}, \ell_{\lambda}) (n_{\rho}, \ell_{\rho}) d^{s} j^{P}} J^{P} \text{ possible assignment}}{(0, 1) (0, 0) d^{0} 1^{-} (1/2, 3/2)^{-}} | \Lambda_{c}^{*}(2595), \Lambda_{c}^{*}(2625)} \\ (0, 0) (0, 1) d^{1} 0^{-} 1/2^{-}} \\ 1^{-} (1/2, 3/2)^{-} \\ 2^{-} (3/2, 5/2)^{-}} | \Lambda_{c}^{*}(2880)(?) \\ 7 = 2 \times \lambda + 5 \times \rho \qquad 3$

This counting reversed for Σ and Ωc

Masses

Ωc from LHCb

Phys.Rev.Lett. 118 (2017) no.18, 182001, arXiv:1703.04639

Five narrow peaks may correspond to *five* λ modes?

Masses

How to study?

(A) Production(B) Formation of resonances(C) Decay of resonances

Reaction rates reflect the structure of excited states

Ratio: One-body process
Quark model WF

$$p \left\{ \underbrace{\lambda}_{no} e^{i\vec{q}_{eff}\cdot\vec{x}} | N(S-wave) \rangle_{radial} \sim 1 \times \exp\left(-\frac{q_{eff}^2}{4A^2}\right) \right\}$$

 $\langle B_c(P-wave) | \vec{e}_{\perp} \cdot \vec{\sigma} e^{i\vec{q}_{eff}\cdot\vec{x}} | N(S-wave) \rangle_{radial} \sim 1 \times \exp\left(-\frac{q_{eff}^2}{4A^2}\right)$
 $\langle B_c(P-wave) | \vec{e}_{\perp} \cdot \vec{\sigma} e^{i\vec{q}_{eff}\cdot\vec{x}} | N(S-wave) \rangle_{radial} \sim \left(\frac{q_{eff}}{A}\right)^1 \times \exp\left(-\frac{q_{eff}^2}{4A^2}\right)$
 $\langle B_c(D-wave) | \vec{e}_{\perp} \cdot \vec{\sigma} e^{i\vec{q}_{eff}\cdot\vec{x}} | N(S-wave) \rangle_{radial} \sim \left(\frac{q_{eff}}{A}\right)^2 \times \exp\left(-\frac{q_{eff}^2}{4A^2}\right)$

Transitions to excited states are not suppressed

Spectrum simulation

Similarity with hyper nuclei

Establishing single particle orbits: ⁸⁹Y ⁸⁹Y (π^+, K^+) ⁸⁹_AY

Two body process to be done

S.I. Shim and AH

4. Decays — Pion emission—

Nagahiro et al, Phys.Rev. D95 (2017) no.1, 014023 arXiv:1609.01085 Arifi, Nagahiro, AH, arXiv:1704.00464

4. Decays — Pion emission—

Nagahiro et al, Phys.Rev. D95 (2017) no.1, 014023 arXiv:1609.01085 Arifi, Nagahiro, AH, arXiv:1704.00464

Low lying decays with small p_{π} (MeV)

To compare with $\Delta \rightarrow \pi N$ at $p_{\pi} \sim 230$ MeV Low energy pion dynamics can be better tested

Low energy $\pi q q$ interaction

Non-relativistic $\vec{\sigma} \cdot \vec{p}_i, \ \vec{\sigma} \cdot \vec{p}_f$ Relativistic $\bar{q}\gamma_5 q \phi_{\pi}, \ \bar{q}\gamma^{\mu}\gamma_5 q \partial_{\mu}\phi_{\pi}$ PSPV: preferable

$$\mathcal{L}_{\pi q q}(x) = \frac{g_A^q}{2f_\pi} \bar{q}(x) \gamma_\mu \gamma_5 \vec{\tau} q(x) \cdot \partial^\mu \vec{\pi}(x)$$

 $g^{q}_{A} \sim 1$: Quark axial coupling

 $\Lambda_{c}(2595) \ 1/2^{-}$

Nagahiro et al, Phys.Rev. D95 (2017) no.1, 014023 arXiv:1609.01085

		× · · ·				
(lecay channel	full	$[\Sigma_c \pi]^+$	$\Sigma_c^{++}\pi^-$	$\Sigma_c^0 \pi^+$	$\Sigma_c^+ \pi^0$
Experiments	$({\rm MeV})$ [5] 2	2.6 ± 0.6	-	0.624 (24%)	0.624 (24%)	_
Momentum	$q \; ({\rm MeV/c})$	-	-	t	+	29
$(n_{\lambda},\ell_{\lambda}), (n_{\rho},\ell_{\rho})$	$J_{\Lambda}(j)^P$	_				
(0,1), (0,0)	$1/2(1)^{-}$		1.5 - 2.9	0.13 - 0.25	0.15 – 0.28	1.2 - 2.4
(0,0), (0,1)	$1/2(0)^{-}$	_	0	0	isospin vi	olated
	$1/2(1)^{-}$		6.5 - 11.9	0.57 - 1.04	0.63 - 1.15	5.3 - 9.7

- 80 % of the decay of is explained with strong isospin breaking
- λ -mode results consistent, ρ -mode results overestimate

Isospin breaking between $\pi^0 \Sigma_c^+$ and $\pi^+ \Sigma_c^0$, $\pi^- \Sigma_c^{++}$ Mass distribution of $\Lambda^*(2595)$ and different phase space

Possible decay to $\Sigma c(2455)\pi$ is via D-wave

- Only a small part of the decay width is from the two-body
- The remaining is considered by three-body decay

 $\Sigma c(2455), \Sigma c(2520)$

$B_i J^P$	$\Gamma_{\exp}^{\mathrm{full}}(\Gamma_i)$	q	$\Gamma_{\rm th}(\Sigma_c(J^+)^{++} \to \Lambda_c^{gs}(1/2^+; 2286)^+\pi^+)$
(MeV)	(MeV)	(MeV)	(MeV)
$\Sigma_c(2455) \ 1/2^+$	2.26(2.26)	89	4.27-4.33
(2453.98)	(2.26)		
$(\omega_{\pi} = 0 \text{ limit})$			
$\nabla (2 \mathbf{r} 2 \mathbf{r}) = 2 (2 \pm 1)$		1 50	
$\Sigma_c(2520) \ 3/2^+$	14.9 (14.9)	176	30.0-31.2
(2517.9)			
$(\omega_{\pi}=0 \text{ limit})$			

Factor 2 difference, which is due to ...

$$g_{\mathrm{A}}^{q} = 1 \rightarrow g_{\mathrm{A}}^{N} = 5/3 > 1.25_{\mathrm{exp}}$$

Three-body decay

Role of the closed channel in $\Lambda_c(2625) \ 3/2^- \rightarrow \pi \pi \Lambda_c(2286) \ 1/2^+$

 $\Lambda_{c}(2625) \ 3/2^{-}$

$m_{23}^2 ({ m GeV}^2)$									
$\Lambda_{c}(2623) \rightarrow \Sigma_{c}(7 + \pi \rightarrow \Lambda + \pi + \pi)$									
	Intermediate state	$ \begin{array}{c} \lambda \text{-mode} \\ j = 1 \end{array} $	ρl j = 1	$p_{j=2}^{\rho 2}$		Exp.[12]			
	$\Sigma_c^{++}\pi^-$	0.037	0.018	0.033		<0.05 (<5%)			
Σ (2455) 1/2+	$\Sigma_c^0 \pi^+$	0.031	0.016	0.030		$< 0.05 \ (< 5\%)$			
$L_{c}(2133)112$	$\Sigma_c^+ \pi^0$	0.053	0.027	0.049		-			
					3-body	(large)			
$\Sigma^{*}(2520) 3/2^{+}$	$\Sigma_c^{*++}\pi^-$	0.044	0.190	0		-			
	$\Sigma_c^{*0}\pi^+$	0.064	0.285	0		-			
closed	$\Sigma_c^{*+}\pi^0$	0.071	0.306	0		-			
	$\Gamma_{\rm total}$	0.300	0.842	0.112		< 0.97			
	R	0.61	0.93	0		0.54 ± 0.14			

$$R = \frac{\Gamma(\Lambda_c^* \to \Lambda_c \pi^+ \pi^- (\text{non-resonant}))}{\Gamma(\Lambda_c^* \to \Lambda_c \pi^+ \pi^- (\text{total}))}$$

- The two body decay of $\Lambda_c(2625)$ is minor
- The contribution of closed (virtual) $\Sigma_c(2520)$ is large due to S-wave nature
- The ratio prefers the λ mode
 - \rightarrow λ mode is consistent with data, but more study is needed

Summary

- We have discussed charmed (one-heavy quark) baryons.
- Distinction of λ - ρ mode should be tested.
- Reaction rates/ratios are useful

Questions and problems

- So far $1h\omega$ (likely to be λ mode), what about ρ modes
- Higher excited states, $2h\omega$
- D (heavy) meson emission and decay width
- Nature of monopole (Roper) excitation of 1/2+
- Similar or even lower than 1/2–
- $\Delta E(1/2+) \sim 500$ MeV, independent of flavors
- Production mechanism (quantitatively)

Seminar@YITP Workshop. May 24, 2017

 $\Xi_{c}(2790)$

 $\Xi_{c}(2815)$

Heavy Baryons and their Exotics from Instantons in Holographic QCD arXiv:1704.03412

Yizhuang Liu^{*} and Ismail Zahed[†]

Department of Physics and Astronomy, Stony Brook University, Stony Brook, New York 11794-3800, USA (Dated: April 28, 2017)

$$M_{NQ} = +M_0 + N_Q m_H + \left(\frac{(l+1)^2}{6} + \frac{2}{15}N_c^2 \left(1 - \frac{15N_Q}{4N_c} + \frac{5N_Q^2}{3N_c^2}\right)\right)^{\frac{1}{2}} M_{KK} + \frac{2(n_\rho + n_z) + 2}{\sqrt{6}} M_{KK}$$
(42)

Radial excitation of diquark soliton positive parity

Excitations into 5th dim diquark internal? negative parity

Progress of Theoretical Physics, Vol. 117, No. 6, June 2007

Baryons from Instantons in Holographic QCD

Hiroyuki HATA,^{1,*)} Tadakatsu SAKAI,^{2,**)} Shigeki SUGIMOTO^{3,***)} and Shinichiro YAMATO^{$1,\dagger$})

$$\Lambda_{\rm c}(2880) \; 5/2^+$$

dec	ay channel	full	$[\Sigma_c^{(*)}\pi]_{ m total}$	$[\Sigma_c \pi]^+$	$[\Sigma_c^*\pi]^+$	R
Experimental value Γ_{exp} (MeV) 5.8 ± 1.1 [24]		. ,			0.225 [40]	
tum of final particle	q (MeV/c)			375	315	
$(n_{\lambda},\ell_{\lambda}),(n_{ ho},\ell_{ ho})$	$J_{\Lambda}(j)^P$					
(0,2), (0,0)	$5/2(2)^+$		11.2 - 26.1	1.2 - 2.8	9.9-23.3	8.1 - 8.4
(0,0), (0,2)	$5/2(2)^+$		27.8 - 52.2	1.4 - 2.6	26.4 - 49.5	18.7 - 18.9
(0,1), (0,1)	$5/2(2)_2^+$		51.7 - 109.6	1.8 - 3.5	49.9 - 106.1	27.5 - 30.1
	$5/2(2)_1^+$		0.63 - 1.68	0	0.63 - 1.68	(∞)
	$5/2(3)_2^+$		2.9 - 5.8	2.1 - 4.0	0.85 - 1.73	0.41 - 0.43

- Both absolute values and *R* ratio are sensitive to configurations $R = \frac{\Gamma(\Sigma_c^*(3/2^+)\pi)}{\Gamma(\Sigma_c(1/2^+)\pi)}$
- Brown muck of j = 3 seems preferred.
- This implies that $\Lambda_c(2940)$ could be $7/2^+$