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 Use of NN interactions parametrized by ChEFT is now standard for ab initio 
calculations of nuclear structures. 

 Low-energy effective theory of spontaneously  broken chiral symmetry of QCD.  

 3NFs are introduced systematically and consistently with 2NFs. 

 Progress also in strangeness sector; at present NLO. 

 Experimental data of elementary processes is insufficient. 

 It is important to carry out hyper nuclear physics on the basis of YN and 
YNN interactions of ChEFT. 

 Role of YNN interactions.  (3NFs are decisively important in nuclear physics.) 

 Reason of the existence  or non-existence of hyperons in neutron star matter. 

 Negative information from recent observation of 2𝑚⊙ neutron stars. 

 Investigate properties of present NLO YN and YNN interactions developed 
by Bonn-Jülich-München group, by calculating hyperon properties in 
nuclear matter. 



Nuclear physics on the basis of ChEFT 

 3NF is introduced systematically and consistently with 2NF 
 Previous 3NF is largely phenomenological. 
 3NFs in ChEFT consist of the components determined by the parameters in 

2NFs and the new contact terms. 

 Basic properties of nuclei are reproduced by adjusting two 
parameters (cD and cE) without relying on much phenomenology. 
 Few-body systems and saturation properties (saturation curve)  
 Strength of one-body spin-orbit field essential for nuclear shell 

structure 
 Enhancement of tensor force (explain the neutron drip-limit of O 

isotopes) 

 ChEFT NN and 3NF are standard for use in ab initio studies of nuclear 
structures:（ CCM, no-core shell model, Monte-Carlo, …） 
 In place of modern NN potentials such as AV18, CD-Bonn, Nijmegen 

 Studies in strangeness sector are in progress (Bonn-Jülich-München 
group) 



Baryon-baryon interactions in chiral effective field theory 

 Starting from general Lagrangian written in terms nucleons and pions which 
satisfies chiral symmetry (of QCD), and expanding it with respect to 
momentum (power counting) （low energy effective theory） 

 Construction of NN potential （elimination of pions by unitary-transformation 
or calculation of Feynman diagrams） 
 Coupling constants are determined by 𝜋𝜋, 𝜋𝑁, 𝑎𝑛𝑑 𝑁𝑁 scattering data and few 

nucleon systems. 
 E. Epelbaum, H.-W. Hammer and U.-G. Meißner, Rev. Mod. Phys.81 1773 (2009) 
 R. Machleid and D.R. Entem, Phys. Rep. 503,1 (2011) 

 

 Actual scattering and bound states cannot be treated in perturbation: 
        Lippmann-Schwinger or Schroedinger eq. 
 Renormalization in Feynman diagrams and reguralization in L-S equation 

 LS eq. の regulator function 𝑓 Λ = exp −(𝑝′
4
+ 𝑝4)/Λ4  

cutoff scale Λ = 400 − 600 MeV 
 NLO diagrams （𝜋, 𝐾, and 𝜂 exchanges in SU(3) ） 



LOBT calculations with NN+”3NF” of ChEFT 

 Calculated saturation curves with 3 choices of cutoff Λ. 

 Results of 𝑐𝐷 = 0 and 𝑐𝐸 = 0. 
 Pauli effects are sizable. 

 Tune 𝑐𝐷 and 𝑐𝐸. 
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It is not easy to explain nuclear matter properties with parameters fitted in few-body systems. 
There are attempts to readjust parameters to fit simultaneously finite nuclei and nuclear 
matter at the NNLO level [NNLOsat, Ekström et al., Phys.Rev. C91 (2015) 051301.].  
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NNLO 3NFs in Ch-EFT 



Reduction of 3NF 𝑣123 to density dependent NN 𝑣12(3) 

Normal-ordered 2NF from 3NF with respect to nuclear matter: 

𝑎𝑏 𝑣12(3) 𝑐𝑑 𝐴
≡  𝑎𝑏ℎ 𝑣123 𝑐𝑑ℎ 𝐴

ℎ
 

Diagrammatical representation by Holt et al. 
[J.W. Holt, N. Kaiser, and W. Weise, Phys. Rev. C81, 024002 (2010)] 

 

 

 

 

 
 

 Expand them into partial waves, add them to NN and carry out G matrix 
calculation. 

 (*) A factor of  
1

3
 is necessary for the calculation of energy at the HF level. 

 

 

 This diagram partly corresponds to 
the Pauli blocking of the isobar Δ 
excitation in a conventional picture. 

 Contributions from the 
two left diagrams tend 
to cancel. 

𝑐𝐷                 𝑐𝐷             𝑐𝐸    



 

 Integrating over the third nucleon in nuclear matter（|𝒌3| ≤ 𝑘𝐹 , 𝜎3, 𝜏3）.    
Example:  𝑐1 term of the Ch-EFT NNLO 3NF.  
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 Spin and isospin summations 
                                          two-body central, spin-orbit, and tensor components 

 𝒌3-integration for general case of 𝑘′ ≠ 𝑘 
 expand the result into partial waves 

 Then, form factor in the form of exp −
𝑘′

Λ

6

−
𝑘

Λ

6
 is multiplied 

 

Effective two-body interaction and partial wave expansion 



 Neutron matter 

 EoS of neutron matter: basic to theoretical studies of neutron star. 
 EoS of APR, including phenomenological 3NFs, has been standard. 

 Necessity of the repulsive contributions from 3NF. 

 Dependence on different two-
body NN interactions is small, 
because of the absence of 
tensor effects in the 3E state. 

 The contribution of ChEFT 3NFs 
(no 𝑐𝐷 and 𝑐𝐸 terms) is similar 
to the standard 
phenomenological one by APR.  
 ChEFT is not applicable to 

the high-density region of 
𝜌 > 2𝜌0. 

  
APR: Akmal, Pandharipande, and Ravenhall, PRC58, 1804 (1998) 
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 To construct instantaneous interaction between two nucleons, 
meson degrees of freedom is eliminated by some unitary 
transformation.      [Okubo, PTP64 (1958)] 

 The unitary tf. 𝑒𝑠12  should satisfy a decoupling condition 

 𝑄 𝐻 𝑃 = 𝑃 𝐻 𝑄 = 0 in two-body space. 

 (Induced) Many-body forces appear  

     in many-nucleon space. Typical example: Fujita-Miyazawa type. 

Instantaneous NN potential   
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 The unitary tf. 𝑒𝑠12  should satisfy a decoupling condition 

 𝑄 𝐻 𝑃 = 𝑃 𝐻 𝑄 = 0 in two-body space (block diagonal). 

 Singular high-momentum components are eliminated. 

 Eigenvalues, namely on-shell properties, in the restricted (P) 
space do not change. 

 Off-shell properties naturally change. 

 Induced many-body forces appear in many-body space. 

Equivalent interaction in restricted (low-mom.) space 
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 Apply some unitary 
transformation 𝑒𝑠12  to 𝐻 to 
obtain an equivalent 
Hamiltonian 𝐻  in a restricted 
(P) space  

      [Suzuki and Lee, PTP64 (1980)] 



Example of induced 3NF in SRG method 

 Red curve: calculation with low-momentum interaction by SRG method 
 When induced 3NF is included, the exact energy is recovered (black curve). 

 𝜆 represents the scale of low-momentum space. 
 To reproduce experimental values, genuine 3NF is needed (attractive).  



Summary of effects of 3NF in chiral effective field theory 

 Phenomenological adjustment is minimal. 
 

 3NFs have to be expected as induced effective interaction when other 
degrees of freedom than nucleons are eliminated in many-nucleon 
space.  
 

 The repulsive contribution is essential, at least semi-quantitatively,   
to explain basic saturation properties. 

 In addition: 
 Enhancement of spin-orbit strength of the nuclear mean field. 
 Enhancement of tensor component: due to the suppression of the 

reduction of the tensor force from NNLO 2-π exchange. 
 E.g., the neutron drip limit is reproduced in oxygen isotopes. 

 
 Subjects to be studied: 3BF contributions in the strangeness sector; 

hyper nuclei and neutron star matter. 



 Parametrization by Bonn-Jülich-München 

 Lowest order: 

 Polinder, Haidenbauer, and Meißner, 

     Nucl. Phys. A779, 244 (2006) 

 Parameters: 𝑓𝑁𝑁𝜋 =
2𝑓𝜋

𝑔𝐴
 and 𝛼 =

𝐹

𝐹+𝐷
 , also 

      five low-energy constants:  

                                    𝐶1𝑆0
ΛΛ , 𝐶3𝑆1

ΛΛ , 𝐶1𝑆0
ΣΣ , 𝐶3𝑆1

ΣΣ , 𝐶3𝑆1
ΛΣ  

 Next-to-Leading order 

 Haidenbauer, Petschauer, Kaiser, Meißner, 

     Nogga, and Weise, Nucl. Phys. A915, 24 (2013) 

 Leading three-baryon forces 

 Petschauer, Kaiser, Haidenbauer, Meißner, and 

      Weise, Phys. Rev. C93, 014001 (2016) 

 Estimation of 1𝜋 and contact LEC: decouplet dominance 

Strangeness sector: YN and YNN interaction in ChEFT 

𝜋 
𝜂 
𝐾 

𝜋 
𝜂 
𝐾 

𝜋 
𝜂 
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 First, hyperon (Λ, Σ and Ξ) single-particle potentials are calculated in 

nuclear matter using Ch-NLO YN interactions only. 

 cutoff scale of 400~600 MeV is still hard to treat the interaction by HF method.  

       Standard lowest-order Brueckner method to take care of high momentum part 

       with the continuous choice for intermediate spectra. 

𝐺 = 𝑣 + 𝑣
𝑄

𝜔 − (𝑡1 + 𝑈1 + 𝑡2 + 𝑈2)
𝐺 

     

 

 

 Salient features, in comparison with other previous YN interactions. 

 Strong ΛN-ΣN coupling, which generates ΛN attraction 

 Charge symmetry breaking in few-body systems may be accounted for. 

 Λ s.p. potential does not become deeper at high densities. 

Hyperon s.p. potentials in nuclear matter 



Λ and  Σ s.p. potentials from G-matrices in symmetric nuclear matter 
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 The ΛN attraction (experimentally, s.p. 
potential depth is around 30 MeV) comes 
from ΛN -ΣN coupling through tensor force. 

 The coupling effect is large in ChNLO 
potential. 

Cf: Results of Nijmegen and 
quak model (fss2) potentials 
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Calculations at other densities of 𝑘𝐹 = 1.07, 1.50 and 1,60 fm−1 
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 NLO ChEFT      The Λ potential stays shallow at higher densities. 
 
 
 
 
 
 
 
 
 
 

 Nijmegen 



Density-dependence of the potential of the Λ hyperon at rest  

 Shallowness of the potential of the Λ hyperon at rest is due to behavior 
of the 3S1 contribution. 

 Qualitatively same results with those of Haidenbauer, Meißner, Keiser, 
and Weise [arXiv:1612.03758, EPJA in print]. 



Comparison with the results from Nijmegen 97f potential 

 Qualitative resemblance between ChEFT and NSC97F. 
 Note that NSC97f predicts attractive Σ potential; inconsistent with 

experimental data. 
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 The tensor component from one-pion exchange process in the ΛN-ΣN 
coupling at the NLO may be overestimated. 

 In the NN case, it is known that 2𝜋 exchange NNLO diagram (a) reduces 
the strong one-pion exchange tensor force, which corresponds to the 
role of the 𝜌 meson in the OBEP picture. 

                  

                                    

                                            (a)                                                         OBEP picture 

 This is related to the later observation that the effect of ΛNN- ΣNN 

3BF coupling enhances the tensor component. 
 

                                                                         occupied state (Pauli blocking) 
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 Next, introducing normal-ordering for YNN force in the 2BF level, LOBT 

calculations are carried out. 

 Petschauer et al., “Leading three-baryon force from SU(3) chiral effective filed theory”,  

Phys. Rev. C93, 014001 (2016) 

 

 

 

 

 

 

 

 YNN 3BF(a) is reduced to density-dependent 2BF(c) in nuclear matter 

（normal-ordering）. Solve G-matrix equations, with 2BF + DD 2BF, to obtain 

Λ s.p. potential. 

Inclusion of YNN interactions 
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 Pauli blocking type contribution (c) suppresses the attraction in free 

space, namely the repulsive contribution. The suppression becomes 

become larger at higher density, like in the NNN case. 

 

 

 

 

 

 

 Contributions of 1𝜋exchange 3BF can be attractive contribution, 

depending the sign of the coupling constant. 

 Effects from ΛNN-ΣNN coupling can be attractive by the enhancement of 

the tensor component. 

 

 

Effects of YNN interactions in ChEFT 
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Contributions of 2-pion exchange ΛNN interaction 

 2𝜋 exchange ΛNN 3-body interaction 𝑉Λ𝑁𝑁
𝑇𝑃𝐸  

𝑔𝐴
2

3𝑓0
2 (𝝉𝟐∙ 𝝉3)

𝝈3 ∙ 𝒒63 𝝈2 ∙ 𝒒52

𝒒63
2 +𝑚𝜋

2 𝒒52
2 +𝑚𝜋

2
{−𝐴𝑚𝜋

2 + 𝐵𝒒63 ∙ 𝒒52}                        

 

   Estimation by Petschauer：  𝐴 = 0, 𝐵 = −3.0 GeV−1 
 

 Normal-ordered 2-body int. in symmetric nuclear matter 
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 Density-dependent central, LS, ALS 成分 
 No tensor component 

 Additional statistical factor 
1

2
 

 

 Repulsive character of Pauli blocking type 
 Partial waves expansion         G-matrix calculation 
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HF contribution of 2𝜋 exchange ΛNN force to Λ potential 
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 ChEFT may not be relevant to ρ > 2𝜌0. 
 Contributions from contact terms have 

also to be considered. 
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HF contribution of 2𝜋 and 1𝜋 exchange ΛNN forces to Λ potential 
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Contributions of 2𝜋 exchange ΛNN force in G-matrix calculations 

 Absolute values of the are reduced by the correlation from the G-matrix equation. 
 Contributions below the normal density are not large, though depending  on the 

sign of the 1-pion exchange contact term. 
 Effects of the ΛNN-ΣNN coupling are to be included. 
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 Again, normal-ordered 2NF is introduced. 

 As in the case of 3NFs 

 Contributions of (d) and (e) diagrams cancel each other. 

 The diagram (c) enhances the tensor component. 

Normal-ordered 2body force from ΛNN- ΣNN coupling interaction 
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Λ s.p. potential in symmetric nuclear matter including 3BFs 

 𝑘𝐹 = 1.07, 1.35 and 1,60 fm−1 ( 𝜌 =
1

2
𝜌0, 𝜌0, and 1.66𝜌0, respectively) 

 2π-exchange ΛNN interaction 
 2π-exchange ΛNN- ΣNN interaction 
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Λ s.p. potential in symmetric nuclear matter including 3BFs 

 𝑘𝐹 = 1.07, 1.35 and 1,60 fm−1 ( 𝜌 =
1

2
𝜌0, 𝜌0, and 1.66𝜌0, respectively) 

 2π-exchange ΛNN interaction 
 2π-exchange ΛNN- ΣNN interaction 
 Contact + attractive 1π-exchange ΛNN interaction 
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 A naive condition for the Λ hyperon to appear in pure neutron matter. 

𝑈Λ 0 <
ℏ2

2𝑚𝑛
𝑘𝐹𝑛

2 +𝑚𝑛 −𝑚Λ + 𝑈𝑛 𝑘𝐹𝑛  

 

Possibility to resolve hyperon puzzle 

 Λ s.p. potential predicted by NLO YN 
potential does not become deep at 
high densities. 
 𝑈Λ 0 > −30 MeV 
 The attractive effect from ΛNN-

ΣNN coupling does not change 
this feature qualitatively. 

 𝑈Λ 0  is always above  
ℏ2

2𝑚𝑛
× 𝑘𝐹𝑛

2 +

𝑚𝑛 −𝑚Λ + 𝑈𝑛 𝑘𝐹𝑛 ;  namely, 

Λ hyperon does not appear in the high 
density medium. 

（Note： Actual calculations in neutron matter are in progress.） 



 Coupling constants in 𝑆 = −2 sector are 
largely uncertain. 
 Constraint from the non-existence of H 

and bound ΞN state. 
 

 Various baryon-channel coupling 
     （ΞN-ΛΛ-ΣΣ (T=0), ΞN-ΛΣ-ΣΣ (T=1)）   
                   state and density dependences 
 

 Ξ-nucleus potential from ChEFT NLO 
interaction may be attractive but shallow at 
the surface region. 
 

 Recent experimental data suggest some 
weakly bound Ξ-nucleus states. 
 Kiso event: Ξ--14N (Nakazawa et al.) 


12C(K-,K+)X spectra at 1.8 GeV/c (Nagae et 
al.), which showed some strength below 
the threshold, though not conclusive until 
the future experiment. 

 

 Effects from 3BFs should be included.  

Ξ s.p. potential in symmetric nuclear matter 
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 General remarks for 3-body interaction 

 LOBT G-matrix calculations to obtain hyperon single-particle potentials in 
(symmetric) nuclear matter, using Ch-EFT NLO interactions in the 
strangeness sector developed by the Bonn-Jülich-München group. 

 Strong ΛN-ΣN coupling 

 Λ s.p. potential does not become deeper at higher densities. 

 Λ is energetically unfavorable in high density matter. Does hyperon puzzle dissolve? 

 Contributions of 3BF do not change the situation. 

 ΛNN 3BF gives repulsive contribution, while the effect from ΛNN- ΣNN is 
attractive. 

 Subjects to be studied in the future 

 NNLO 

 New experiments to reduce uncertainties of coupling constants and low energy 
constants. 

 Consideration of diagrams including K and 𝜂 exchanges. 

 Explicit (ab initio) calculations of finite hypernuclei. 

Summary 


