Scalar Mesons in Lattice QCD

Kobayashi Maskawa Institute Department of Physics, Nagoya University *Chiho NONAKA for the SCALAR Collaboration*

T.Kunihiro(Kyoto U.), S.Muroya(Matsumoto U.), A.Nakamura(Far Eastern Federal U.), M.Sekiguchi(Kokushikan U.), H.Wada(Kokushikan U.), M.Wakayama (Far Eastern Federal U.)

May 19, 2017@Strangeness and charm in hadrons and dense matter

Kobayashi-Maskawa Institute for the Origin of Particles and the Universe

What is the σ ?

• Re identification of σ in 1996

Review of Particle Physics: R.M. Barnett et al. (Particle Data Group), Phys. Rev. D54, 1 (1996)

$$I^{G}(J^{PC}) = 0^{+}(0^{+})$$

See "Note on scalar mesons" under $f_0(1370)$.

$f_0(400-1200)$ T-MATRIX POLE \sqrt{s}

Note that $\Gamma \approx 2 \operatorname{Im}(\sqrt{s_{\text{pole}}})$.

 VALUE (MeV)
 DOCUMENT ID
 TECN
 COMMENT

 (400–1200)-i(300–500) OUR ESTIMATE
 COMMENT
 COMMENT
 COMMENT

The pole of the σ in S-wave is extracted from re-analyses of $\pi\pi$ scattering.

Igi and Hikasa, PRD59(1999)034005

I. Caprini, G. Colangelo and H. Leutwyler, Phys. Rev. Lett. 96 (2006) 132001

I=J=0 $\pi\pi$ Phase Shift

Chiral low-energy expansion N/D method: unitarity, analyticity, approximate crossing symmetry

What is the σ ?

• Re identification of σ in 1996

Review of Particle Physics: R.M. Barnett et al. (Particle Data Group), Phys. Rev. D54, 1 (1996)

$$I^{G}(J^{PC}) = 0^{+}(0^{+})$$

See "Note on scalar mesons" under $f_0(1370)$.

$f_0(400-1200)$ T-MATRIX POLE \sqrt{s}

Note that $\Gamma \approx 2 \operatorname{Im}(\sqrt{s_{\text{pole}}})$.

 VALUE (MeV)
 DOCUMENT ID
 TECN
 COMMENT

 (400–1200)-i(300–500) OUR
 ESTIMATE
 COMMENT
 COMMENT

The pole of the σ in S-wave extracted from re-analyses of $\pi\pi$ scattering.

Igi and Hikasa, PRD59(1999)034005

I. Caprini, G. Colangelo and H. Leutwyler, Phys. Rev. Lett. 96 (2006) 132001

Light sigma meson

 $m_{\sigma} \sim m_{\rho}$

. NONAKA (SCALAR Collaboration)

non-relativistic

consistent quark model

GeV

P-wave $m_{\sigma} \sim 1.2 - 1.6$

What is the \sigma? Re identification of σ in 1996

Review of Particle Physics: R.M. Barnett et al. (Particle Data Group), Phys. Rev. D54, 1 (1996)

$$I^{G}(J^{PC}) = 0^{+}(0^{++})$$

See "Note on scalar mesons" under $f_0(1370)$.

$f_0(400-1200)$ T-MATRIX POLE \sqrt{s}

Note that $\Gamma \approx 2 \operatorname{Im}(\sqrt{s_{\text{pole}}})$.

 VALUE (MeV)
 DOCUMENT ID
 TECN
 COMMENT

 (400–1200)-i(300–500) OUR
 ESTIMATE
 COMMENT
 COMMENT

The pole of the σ in S-wave extracted from re-analyses of $\pi\pi$ scattering.

Igi and Hikasa, PRD59(1999)034005

I. Caprini, G. Colangelo and H. Leutwyler, Phys. Rev. Lett. 96 (2006) 132001

Light sigma meson

 $m_{\sigma} \sim m_{\rho}$

. NONAKA (SCALAR Collaboration)

non-relativistic

consistent quark model

P-wave

$$m_\sigma \sim 1.2 - 1.6$$
 GeV

Lattice QCD

Review of Particle Physics: R.M. Barnett et al. (Particle Data Group), Phys. Rev. D54, 1 (1996)

_

C. NONAKA (SCALAR Collaboration)

What is the σ ?

Scalar Mesons in Lattice QCD				
$\langle \sigma \rangle$	quench	as $q \overline{q}$ meson		
1987	screening mass	DeTar and Kogut, PRD36(1987)2828		
2000	$q^2 ar q^2$	Alford and Jaffe, NPB578(2000)367		
	mixing with glueball	Lee and Weingarten, PRD61(2000)014015		
	dynamical			
2001	+glueball	McNeile and Michael, PRD63(2001)114503		
2002	$m_{\sigma} < m_{\pi}$! ! disconnected diagram	SCALAR NPProc Suppl 106(2002)272		
		SCALAN, NITTOC.Suppl.100(2002)272		
2003	domain wall fermions, pr <i>P</i>	ropagators in quench Prelovsek and Orginos, NPProc.Suppl.119(2003)822		
2004	disconnected diagram	SCALAR,PRD70 (2004)034504		
KMI C. NO	NAKA (SCALAR Collaboration)			

What is the σ ?

Sigma Meson as Two Quark State

Operator (two flavor)

SCALAR, Phys. Rev. D70 (2004)034504

$$\hat{\sigma}(x) \equiv \sum_{\substack{c=1 \\ \text{color}}}^{3} \sum_{\substack{\alpha=1 \\ \text{Dirac}}}^{4} \frac{\bar{u}_{\alpha}^{c}(x)u_{\alpha}^{c}(x) + \bar{d}_{\alpha}^{c}(x)d_{\alpha}^{c}(x)}{\sqrt{2}}$$

Quark model

• Propagator

C. NONAKA (SCALAR Collaboration)

Simulation Setup

- SCALAR, Phys. Rev. D70 (2004)034504
- Full QCD, Hybrid Monte Carlo
 Plaquette gauge action, Wilson Fermion
- $\beta = 4.8 \quad \kappa = 0.1846, 0.1874, 0.1891$

CP-PACS, Phys. Rev. D60 (1999)114508

- Lattice size $8^3 \times 16$, lattice spacing 0.207(9) fm
- Disconnected diagrams

Z₂ noise method (number of noise: 1000)

	κ	0.1846	0.1874	0.1891	
S	tatistics $^{1)}$	1110	860	730	
	$n_\pi/m_ ho^{-2)}$	0.8291(12)	0.7715(17)	0.7026(32)	CP-PACS
, 1	$n_\pi/m_ ho^{-3)}$	0.825(2)	0.757(2)	0.693(3)	our results
C. NONAKA (SCALAR Collaboration)					

Disconnected Diagrams

Propagators

SCALAR, Phys. Rev. D70 (2004)034504

Due to the existence of disconnected diagram, m_{σ} becomes smaller.

Light Scalar Meson

SCALAR, Phys. Rev. D70 (2004)034504

• Propagators

C. NONAKA (SCALAR Collaboration)

I M K M

Light Scalar Meson

SCALAR, Phys. Rev. D70 (2004)034504

$$m_{\sigma} > 2m_{\rho}$$

- **Disconnected diagrams** $m_{\sigma} \sim m_{\rho}$
- At chiral limit

 $m_{\sigma} < m_{\rho}$

	~			
κ	0.1846	0.1874	0.1891	
$m_\sigma/m_ ho^{-3)}$	1.6(1)	1.34(8)	1.11(6)	
$\frac{1}{m_{ m connect}/m_{ ho}} \frac{3}{3}$	2.40(2)	2.44(3)	2.48(4)	

Sigma meson as two quark state

For light sigma meson, the disconnected diagram is important.

SCALAR, Phys. Rev. D70 (2004)034504

Low Lying Scalar Mesons

Light scalar Mesons

 σ meson, I=0, J^{PC} = 0⁺⁺: light σ , $m_\sigma \sim m_
ho$

- Nuclear force, important for low energy hadron physics
- re-identification of the σ : "f₀(400-1200)" in PDG1996 existence of σ pole: reanalysis of π - π scattering phase shift Igi and Hikasa, PRD59(1999)034005 I. Caprini, G. Colangelo and H. Leutwyler, Phys. Rev. Lett. 96 (2006) 132001

Quark model

κ meson, / =1/2, J^{PC} = 0^{++} : m_{κ} \sim 800 MeV

Kappa Meson

- flavor non-singlet, strangeness
- experiments
 - E791 collaboration Phys. Rev. Lett.89(2002)121801

 $D^+ \rightarrow K^- \pi^+ \pi^+$ m:797 ± 19 ± 43 MeV/c² $\Gamma:410 \pm 43 \pm 87 \text{ MeV/c^2}$

- BES Collaboration BES, Phys. Lett. B633(2006)681

 $J/\psi \to \bar{K}^*(892)^0 K^+ \pi^- \text{ m: } 878 \pm 23^{+64}_{-55} \text{ MeV}/c^2 \qquad \Gamma: 499 \pm 52^{+55}_{-87} \text{ MeV}/c^2,$

BES, Phys. Lett. B633(2006)681

Low Lying Scalar Mesons

Quark model

• Light scalar Mesons

 σ meson, I=0, J^{PC} = 0⁺⁺: light σ , $m_\sigma \sim m_
ho$

- Nuclear force, important for low energy hadron physics
- re-identification of the σ : "f₀(400-1200)" in PDG1996 existence of σ pole: reanalysis of π - π scattering phase shift Igi and Hikasa, PRD59(1999)034005 I. Caprini, G. Colangelo and H. Leutwyler, Phys. Rev. Lett. 96 (2006) 132001

Simulation Setup

PLB652 (2007)250

- Quenched QCD calculation
 Plaquette gauge action, Wilson fermions
- eta=5.9 $\kappa_{u/d}=0.1589, 0.1583, 0.1574 \longrightarrow m_\pi^2$ Chiral limit $\kappa_s=0.1566, 0.1557$ CP-PACS, Phys. Rev. D67 (2003)034503

Heavy quark mass: $m_{\pi}/m_{\rho}=0.467 \sim 0.686$

- Lattice spacing a=0.1020(8) fm from m_{o} in the chiral limit
- Lattice size $20^3 \times 24$
- 80 configurations
- Interpolator: $\hat{\kappa}(x) \equiv \sum_{c=1}^{3} \sum_{\alpha=1}^{4} \bar{s}_{\alpha}^{c}(x) u_{\alpha}^{c}(x)$

C. NONAKA (SCALAR Collaboration)

Effective masses of κ and K^*

• $\kappa_{crit} = 0.1598$: from m_{π}^2

 κ : error bar is large.

Mass of Kappa Meson

PLB652 (2007)250

mass ratio

Scalar Mesons as Two Quarks

Sigma mesons

- Disconnected diagram is important for light sigma meson
- κ mesons
 - Disconnected diagram does not exist.
 - Heavier mass in quenched QCD
 - Dynamical quark may be important.

Other than two quark states may be important.

Four quark state? Glueball? Their mixing?

Phenomenology

Jaffe, NPB578(2000)367 Alford and Jaffe, NPB578(2000)367

light σ and κ masses ?

Scalar Mesons in Lattice QCD

What is the σ ?

Operator (two flavor) The lightest pseudoscalar mesons

$$\mathcal{O}^{\text{molec}}(t) = \frac{1}{\sqrt{3}} \left[\mathcal{O}^{\pi^{+}}(t) \mathcal{O}^{\pi^{-}}(t) - \mathcal{O}^{\pi^{0}}(t) \mathcal{O}^{\pi^{0}}(t) + \mathcal{O}^{\pi^{-}}(t) \mathcal{O}^{\pi^{+}}(t) \right]$$

$$\mathcal{O}^{\pi^{+}}(t) = -\sum_{\mathbf{x}a} \bar{d}^{a}(t, \mathbf{x}) \gamma_{5} u^{a}(t, \mathbf{x}) \quad \mathcal{O}^{\pi^{-}}(t) = \sum_{\mathbf{x}a} \bar{u}^{a}(t, \mathbf{x}) \gamma_{5} d^{a}(t, \mathbf{x})$$
$$\mathcal{O}^{\pi^{0}}(t) = \frac{1}{\sqrt{2}} \sum_{\mathbf{x}a} \left[\bar{u}^{a}(t, \mathbf{x}) \gamma_{5} u^{a}(t, \mathbf{x}) - \bar{d}^{a}(t, \mathbf{x}) \gamma_{5} d^{a}(t, \mathbf{x}) \right]$$

Propagators

connected diagrams C. NONAKA (SCALAR Collaboration) Singly disconnected diagram doubly disconnected diagram

Operator (two flavor) The lightest pseudoscalar mesons

$$\mathcal{O}^{\text{molec}}(t) = \frac{1}{\sqrt{3}} \left[\mathcal{O}^{\pi^{+}}(t) \mathcal{O}^{\pi^{-}}(t) - \mathcal{O}^{\pi^{0}}(t) \mathcal{O}^{\pi^{0}}(t) + \mathcal{O}^{\pi^{-}}(t) \mathcal{O}^{\pi^{+}}(t) \right]$$

$$\mathcal{O}^{\pi^{+}}(t) = -\sum_{\mathbf{x}a} \bar{d}^{a}(t, \mathbf{x}) \gamma_{5} u^{a}(t, \mathbf{x}) \quad \mathcal{O}^{\pi^{-}}(t) = \sum_{\mathbf{x}a} \bar{u}^{a}(t, \mathbf{x}) \gamma_{5} d^{a}(t, \mathbf{x})$$
$$\mathcal{O}^{\pi^{0}}(t) = \frac{1}{\sqrt{2}} \sum_{\mathbf{x}a} \left[\bar{u}^{a}(t, \mathbf{x}) \gamma_{5} u^{a}(t, \mathbf{x}) - \bar{d}^{a}(t, \mathbf{x}) \gamma_{5} d^{a}(t, \mathbf{x}) \right]$$
$$G^{\text{molec}}(t) = 2 \left[D(t) + \frac{1}{2} C(t) - 3A(t) + \frac{3}{2} V(t) \right]$$
Propagators

Propagators

doubly disconnected diagram

connected diagrams C. NONAKA (SCALAR Collaboration) Singly disconnected diagram

Operator (two flavor) The lightest diquarks Jaffe, Phys.Rept.409(2005) 1 $\mathcal{O}^{\text{tetra}}(t) = \sum [ud]^a(t) [\bar{u}\bar{d}]^a(t)$ $[ud]^{a}(t) = \frac{1}{2} \sum \epsilon^{abc} \left[u^{Tb}(t, \mathbf{x}) \ C\gamma_5 \ d^{c}(t, \mathbf{x}) - d^{Tb}(t, \mathbf{x}) \ C\gamma_5 \ u^{c}(t, \mathbf{x}) \right]$ $[\bar{u}\bar{d}]^a(t) = \frac{1}{2} \sum \epsilon^{abc} \left[\bar{u}^b(t,\mathbf{x}) \ C\gamma_5 \ \bar{d}^{Tc}(t,\mathbf{x}) - \bar{d}^b(t,\mathbf{x}) \ C\gamma_5 \ \bar{u}^{Tc}(t,\mathbf{x}) \right]$ • **Propagators** $G^{\text{tetra}}(t) = 2 \Big[2 \left(D'_1(t) + D'_2(t) \right) - 2 \left(A'_1(t) + A'_2(t) + A'_3(t) + A'_4(t) \right) \Big]$ $+(V_1'(t)+V_2'(t)+V_3'(t)+V_4'(t))$

connected diagrams

C. NONAKA (SCALAR Collaboration)

disconnected diagram

doubly disconnected diagram

Singly

disconnected diagram

doubly

disconnected diagram

connected diagrams

C. NONAKA (SCALAR Collaboration)

Simulation Setup

 2 flavor full QCD: CP-PACS Phys. Rev. D 63, 034502 (2001)
 Hybrid Monte Carlo (HMC) with Iwasaki gauge action and the clover Wilson action

 $C_{SW} = 1.68$ $\beta = 1.7$ Lattice size: $8^3 \times 16$

- Heavy quark masses, large statistics
- Disconnected diagrams: Z₂ noise method with truncated
 eigenmode approach
 noise: 120 X 16
 eigenvector : 12

TABLE I: Masses of π and ρ and number of configurations.

κ	$m_\pi a$	$m_\pi~{ m MeV}$	$m_ ho a$	$m_ ho~{ m MeV}$	configurations a	
0.146	1.018(2)	747(27)	1.431(4)	1050(39)	16496	
0.147	0.930(2)	682(25)	1.358(6)	996(38)	14344	
0.148	0.827(4)	607(23)	1.304(10)	956(39)	11720	
L. NUINAKA (SLALAK COHADORATION) $\kappa_c=0.152(6), a=0.269(9)$ fm						

- "Molecule" contains mixing with tetra and two quark state
- "Tetra" contains mixing with molecule and two quark state
- Application of the variational method for the possible interpolators is needed.

Propagators of Molecule

Propagators of Tetra

SCALAR, PRD91 (2015) 094508

total Connected diagram $O^{D'(t)}$ Singly disconnected diagram $\Delta^{A'(t)}$

 Singly disconnected diagram is dominant.

smaller.

 Due to the singly disconnected diagram, the mass of tetra becomes

Effective Masses

SCALAR, PRD91(2015)094508 $\kappa = 0.146$ 6 molec Only connected diagrams a(t) $\mathbf{m}_{\mathrm{eff \, con}}$ tetra 5 m_{eff con} a(t) Molecule ۲ -Clear plateau 4 ~ 2m_π m_{eff con} a tetra π - π scattering state? Α 3 $2m_{\pi}a$ Tetra 2 Α -No clear plateau -Α molecule 1 0 3 1 2 5 0 6 7 4 t/a

IMX KMI C. NONAKA (SCALAR Collaboration)

Importance of Disconnected Diagrams

- -same as that of connected diagrams
- same as $2m_{\pi}$ π - π scattering state?
- Tetra
 - plateau ?

к Dependence of Effective Masses SCALAR, PRD91(2015)094508

with disconnected diagram

connected diagram

- Molecule
 - Small effect of disconnected diagram
- π - π scattering state?

C. NONAKA (SCALAR Collaboration)

- Tetra (plateau ?)
 - Disconnected diagram is important.
 - small overlap to ground state of molecule

What is the σ ?

Finite temperature

Hadrons at Finite T

Karsch, Lect.Notes Phys. 583 (2002) 209

Brandt et al, JHEP12(2016)158

C. NONAKA (SCALAR Collaboration)

Simulation Setup

Hybrid Monte Carlo

 Iwasaki gauge action,
 clover Wilson quark action
 lattice size:16³X4
 1000 configurations

$$M(x) = \sum_{c=1}^{3} \sum_{\alpha,\beta=1}^{4} \bar{q}_{\alpha}^{c}(x) \Gamma_{\alpha\beta} q_{\beta}^{c}(x),$$

Ejiri et al,PRD82(2010)014508

$m_{ m ps}/m_{ m v}=0.65$			$m_{ m ps}/m_{ m v}=0.80$		
eta	κ	$T/T_{ m pc}$	β	κ	$T/T_{ m pc}$
1.90	0.141849	1.32(5)	1.60	0.143749	0.80(4)
2.00	0.139411	1.67(6)	1.70	0.142871	0.84(4)
$m_{ m ps}/m_{ m v}=0.75$			1.80	0.141139	0.93(5)
1.55	0.146479	0.80	1.85	0.140070	0.99(5)
1.96	0.138732	1.35	1.90	0.138817	1.08(5)
2.06	0.137254	1.70	1.95	0.137716	1.20(6)
			2.00	0.136931	1.35(7)
			2.10	0.135860	1.69(8)
			2.20	0.135010	2.07(10)
			2.30	0.134194	2.51(13)
			2.40	0.133395	3.01(15)

Hadrons at Finite T

• Scalar channel: only connected diagram Low Tc:

(2+1) flavor with physical quark mass, HISQ action

- $m_{SC} \sim m_{AV}$ because of lack of the disconnected diagrams
- Masses of PS and V channels decrease with T. heavy quark mass?
- T ~ Tc: PS and V channels take the minimum and start increase with T.

SC and AV keep decreasing with T.

T~1.2Tc: SC and PS approach each other. At T ~2.5Tc they degenerate.

Quark Mass Dependence

K M *i* I M M K M I The screening masses decrease at lighter quark mass. C. NONAKA (SCALAR Collaboration)

Quark Mass Dependence

C. NONAKA (SCALAR Collaboration)

• Scalar mesons as two quark

PRD70 (2004)034504 PLB652 (2007)250

- For the light sigma meson, the disconnected diagram is important.
- Mixing with glueballs and four quark state
- Scalar mesons as four quark *PRD91(2015)094508*
 - The disconnected diagrams are important.
 - "Molecule": π - π scattering state?
 - "Tetra": small overlap to the ground state
- Mesons at finite temperature in preparation
 - Degeneracy between SC(connected) and PS, V and AV

• Scalar mesons as two quark

PRD70 (2004)034504 PLB652 (2007)250

- Scalar mesons as four quark PRD91(2015)094508
- Mesons at Finite temperature in preparation

(improved) Wilson fermions

Chiral symmetry is explicitly broken.

Kaplan,PLB288(1992)342

Chiral symmetry is almost realized.

Ginsparg-Wilson relation

 $\gamma_5 D + D\gamma_5 = a D\gamma_5 D.$

Simulation Setup

 Gauge configurations: 2 flavor quenched QCD calculation Plaquette gauge action Lattice size 8³X 32, β=5.7, lattice spacing a=0.171(2) fm
 Quark propagator

Domain wall fermions

T. Blum et al., Phys. Rev. D69 (2004) 074502

lattice in the fifth dimension: Ns=10

domain wall hight:M₅=1.65

quark mass: m_f = 0.06, 0.04, 0.02, 0.01

N_{conf} = 600, 1240, 1240, 1240

a₁ meson

Exp. m_{a1} =1230(40) MeV $a_1(1260)$ C. NONAKA (SCALAR Collaboration)

I M K M Towards analyses of σ !

What is the σ ?

What is the σ ?

