

Transport coefficients of QGP in strong magnetic fields

Daisuke Satow (Frankfurt U. =)

Collaborators: Koichi Hattori, Xu-Guang Huang (Fudan U, Shanghai 💴)

Shiyong Li, Ho-Ung Yee (Uni. Illinois at Chicago)

Dirk Rischke (Frankfurt U. =)

K. Hattori and **D. S.**, Phys. Rev. D **94**, 114032 (2016).

K. Hattori, S. Li, **D. S.**, H. U. Yee, Phys. Rev. D **95**, 076008 (2017).

Outline

- (Long) Introduction
- —quarks and gluons in strong B
- Electrical Conductivity
- Bulk Viscosity
- Summary

Introduction

Strong magnetic field (B) may be generated in heavy ion collision due to Ampere's law.

Introduction

At thermalization time (\sim 0.5 fm), there still may be strong B.

Heavy ion collision may give a chance to investigate QCD matter at finite temperature in strong magnetic field.

Introduction

How the particles behaves when \sqrt{eB} is much larger than the other energy scales of the system?

$$(\sqrt{eB} >> T, m, \Lambda_{QCD}...)$$

Quark in Strong B

One-particle state of quark in magnetic field

Classical: Cyclotron motion due to Lorentz force

Quark in Strong B

Quantum: Landau Quantization

Longitudinal: Plane wave

Transverse: Gaussian

$$E_n = \sqrt{(p_z)^2 + m^2 + 2eB\left(n + \frac{1}{2}\right)}$$

The gap $(\sim \sqrt{eB})$ is generated by zero-point oscillation.

Quark in Strong B

For spin-1/2 particle, we have Zeeman effect:

$$E_n = \sqrt{(p_z)^2 + m^2 + 2eB\left(n + \frac{1}{2} + \frac{1}{2}\right)}$$

When n=0 (LLL), gap is small ($m\sim1$ MeV). When n>0, gap is large ($\sim\sqrt{eB}\sim100$ MeV)

Lowest Landau Level (LLL) Approximation

When the typical energy of particle (T) is much smaller than gap (\sqrt{eB}) , the higher LL does not contribute $(\sim \exp(-\sqrt{eB}/T))$, so we can focus on the LLL.

One-dimension dispersion, no spin degrees of freedom.

$$E_n = \sqrt{(p_z)^2 + m^2}$$

In heavy-ion collision, this condition can be marginally realized ($T \sim \sqrt{eB} \sim 100 \text{MeV}$). But in Weyl semi-metal, it is already realized ($T \sim 1 \text{meV}$, $\sqrt{eB} \sim 10 \text{eV}$).

Gluon in Strong B

Gluon does not have charge, so it does not feel B in the zeroth approximation.

Massless boson in 3D

Coupling with (1+1)D quarks generates gluon mass. (Schwinger mass generation)

(surface density) ~(average distance)-2~eB

Color factor

Electrical Conductivity

Motivation to Discuss Electrical Conductivity

Electrical conductivity is phenomenologically important because

 Input parameter of magnetohydrodynamics (transport coefficient)

May increase lifetime of B (Lenz's law)

$$\nabla \times \mathbf{E} = -\partial_t \mathbf{B}$$

$$\partial_{\mathbf{z}}\mathbf{E} = \nabla \times \mathbf{B} - \mathbf{j}$$

When σ is large

Hierarchy of Energy Scale at LLL

For ordering of m and M, we consider the both cases. (m << M and m >> M) $(M \sim g \sqrt{eB})$

Electrical Conductivity

Conductivity at weak B ($\sqrt{eB} << T$)

Electrical Conductivity

Strong B (LLL)

Quarks are confined in the direction of B, so there is no current in other directions.

 σ^{33} is finite, other components are zero. (Very different from weak B case)

Calculation of conductivity

Thermal equilibrium in strong B

 $n^f(k^3, T, Z) = n_F(\epsilon_k^L) + \delta n^f(k^3, T, Z)$

Slightly non-equilibrium,

$$n^{f}(k^{3}, T, Z) = n_{F}(\epsilon_{k}^{L})$$
$$\epsilon_{k}^{L} \equiv \sqrt{(k^{3})^{2} + m^{2}}$$

$$j^3(T,Z) = 2e\sum_f q_f N_c \frac{|eq_f B|}{2\pi} \int \frac{dk^3}{2\pi} v^3 \delta n^f(k^3,T,Z) = {\color{red}\sigma^{33}} {\color{red}E^3}$$
 Landau degeneracy $v^3 \equiv \partial \epsilon_k^L/(\partial k^3) = k^3/\epsilon_k^L$

Evaluation of δn_F is necessary.

Calculation of conductivity

Evaluate n_F with (1+1)D Boltzmann equation

Constant and homogeneous E

Possible Scattering Process for Conductivity

The scattering process is very different from that in B=0...

1 to 2 scattering is kinematically forbidden; one massless particle can not decay to two massless particles.

2 to 2 is leading process.

strong B

Gluon is effectively massive in (1+1)D $E = \sqrt{p_z^2 + p_\perp^2 + M^2}$

$$E = \sqrt{p_z^2 + p_\perp^2 + M^2}$$

Decay of a gluon into quark and antiquark becomes kinematically possible. (1 to 2)

Chirality in (1+1)D

Spin is always up.

When m=0, the direction of p_z determines chirality.

Chirality in (1+1)D

Chirality is conserved at m=0:

1 to 2 scattering is forbidden at m=0.

Possible Scattering Process for Conductivity

Collision term for 1 to 2:

$$C[n] = \frac{1}{2\epsilon_k^L} \int_I |M|^2 [n_B^{k+l} (1 - n_F^k)(1 - n_F^l) - (1 + n_B^{k+l})n_F^k n_F^l]$$

$$|M|^2 = 4g^2 C_f m^2$$

Vanishes at m=0!

(chirality conservation)

Calculation of conductivity

$$eq_f E^3(T,Z)\partial_{k^3} n^f(k^3,T,Z) = C[n]$$

linearize $n^f(k^3, T, Z) = n_F(\epsilon_k^L) + \delta n^f(k^3, T, Z)$

$$eq_f E^3 \beta v^3 n_F(\epsilon_k^L) [1 - n_F(\epsilon_k^L)] = C[\delta n^f(k^3, T, Z)]$$

$$(\beta = 1/T)$$

$$C[n] = \frac{1}{2\epsilon_k^L} \int_l |M|^2 [n_B^{k+l} (1 - n_F^k)(1 - n_F^l) - (1 + n_B^{k+l})n_F^k n_F^l]$$

linearize

$$C[\delta n] = -\frac{1}{2\epsilon_k^L} \int_l |M|^2 \left[\frac{\delta n_F^k \left(n_B^{k+l} + n_F^l \right) - \delta n_F^l \left(n_B^{k+l} + n_F^k \right) \right]$$

damping rate of quark (=-2 $\xi_k \delta n^k F$)

Calculation of conductivity

Solution for δn^F with damping rate ξ_k

$$\delta n_F^k = -\frac{1}{2\xi_k} eq_f E^3 \beta v^3 n_F(\epsilon_k^L) [1 - n_F(\epsilon_k^L)]$$

$$j^{3}(T,Z) = 2e \sum_{f} q_{f} N_{c} \frac{|B_{f}|}{2\pi} \int \frac{dk^{3}}{2\pi} v^{3} \delta n^{f}(k^{3}, T, Z)$$

$$j^{3} = e^{2} \sum_{f} q_{f}^{2} N_{c} \frac{|eq_{f}B|}{2\pi} 4\beta \int \frac{dk^{3}}{2\pi} (v^{3})^{2} \frac{1}{2\xi_{k}} n_{F}(\epsilon_{k}^{L}) [1 - n_{F}(\epsilon_{k}^{L})] E^{3}$$

$$\left| \begin{array}{c} l \\ k \end{array} \right|^2$$

lea 10<<

matrix element

soft fermion and hard boson $n_F(1+n_B)+(1-n_F)n_B=n_F+n_B$

log divergence in phase space integral **UV** cutoff: T

IR cutoff: m 25

Results

(average distance among quarks) $\sim 1/T$ \rightarrow (quark density in 1D) $\sim T$

Quark density in 1D

$$\sigma^{33}=e^2\sum_{f}^{rac{1}{\sqrt{eB}}}q_f^2N_crac{|eq_fB|}{2\pi}rac{4T}{g^2C_Fm^2{
m ln}(T/m)}$$
 Landau Quark damping

degeneracy

Landau Quark damping rate

Due to chirality conservation, collision is forbidden when m=0. Thus, $\sigma \sim 1/m^2$.

When M >> m, $\ln(T/m) \rightarrow \ln(T/M)$.

Other Term Does Not Contribute

$$C[\delta n] = -\frac{2g^2 C_F m^2}{\epsilon_k^L} \int_{l} [\delta n_F^k (n_B^{k+l} + n_F^l) - \delta n_F^l (n_B^{k+l} + n_F^k)]$$

Other Term

$$\delta n_F^l = -rac{eq_f}{2\xi_l} E^3 \partial_{l^3} n_F(\epsilon_l^L)$$
 :odd in l^3

function of
$$(\varepsilon^{L_k} + \varepsilon^{L_l})$$

(Other term) ~ $\int_{l} (\underline{n_B^{k+l} + n_F^k}) \delta n_F^l$

even in l^3

Our result (only retaining quark damping rate term) is correct.

Equivalent Diagrams

Our calculation is based on (unestablished) (1+1)D kinetic theory,

but actually we can reproduce the same result by field theory calculation.

J. -S. Gagnon and S. Jeon, Phys. Rev. D 75, 025014 (2007); 76, 105019 (2007).

Kubo formula:
$$\sigma^{ij} \equiv \lim_{\omega \to 0} \frac{\Pi^{Rij}(\omega)}{i\omega}$$

$$j^{\mu} \equiv e \sum_f q_f \overline{\psi}_f \gamma^{\mu} \psi_f$$

 f : flavor index, q_f : electric charge $\Pi^{R\mu\nu}(x) \equiv i\theta(x^0) \langle [j^{\mu}(x), j^{\nu}(0)] \rangle$

1. Order Estimate

$$\sigma^{33} = e^2 \sum_{f} q_f^2 N_c \frac{|eq_f B|}{2\pi} \frac{4T}{g^2 C_F m^2 \ln(T/M)}$$

Because of m^{-2} dependence, s contribution is very small.

BAMPS: M. Greif, I. Bouras, C. Greiner and Z. Xu, Phys. Rev. D **90**, 094014 (2014). Lattice: B. B. Brandt, A. Francis, B. Jaeger and H. B. Meyer, Phys. Rev. D **93**, 054510 (2016).

Beyond LLL approximation, there are also spin down particles, so the scattering is not suppressed by m^2 .

 σ^{33} is expected to be smaller at large T, so that it smoothly connects with B=0 result.

2. Soft Dilepton Production

G. D. Moore and J.-M. Robert, hep-ph/0607172.

$$\frac{d\Gamma}{d^4p} = \frac{\alpha}{12\pi^4\omega^2} T\sigma^{33}$$

::(virtual photon emission rate) $\sim n_B(\omega) \text{Im} \Pi^{\mu}_{\mu} \sim T\sigma^{33}$

 $e\sqrt{eB} \ll \omega \ll \frac{g^2m^2}{T} \ln\left(\frac{T}{M}\right)$

$$\sigma^{33}$$
 is large

Soft dilepton production is enhanced by B?

3. Back Reaction to EM Fields

Bad news:

In LLL approximation, we have **no current in transverse plane**, so **Lenz's law does NOT work!** The lifetime of *B* does not increase...

Bulk Viscosity

$$\Delta P = -\zeta \nabla \cdot u$$

Linearized Boltzmann equation

Boltzmann eq. without $E(\partial_t + v^3 \partial_z) f(\mathbf{k}, \mathbf{x}, t) = C[f]$

Expansion in direction of B:

$$f_{\text{eq}}(\mathbf{k}, \mathbf{x}, t) + \delta f(\mathbf{k}, \mathbf{x}, t)$$
 $f_{\text{eq}}(\mathbf{k}, \mathbf{x}, t) \equiv [\exp{\{\beta(t)\gamma_u(\epsilon_k^L - k^3u^3(\mathbf{x}))\}} + 1]^{-1}$

nonequilibrium deviation (responsible for viscosity)

linearize

$$-\beta n_F(\mathbf{k})[1 - n_F(\mathbf{k})]X(\mathbf{x}) \left[\Theta_{\beta} \epsilon_k^L - v^3 k^3\right] \simeq -\tau_k^{-1} \delta f(\mathbf{k}, \mathbf{x}, t)$$

expansion decreases T

$$X(\mathbf{x}) \equiv \partial_z u^3(\mathbf{x})$$
: expansion (source term)

$$\Theta_{\beta} \equiv \left(\frac{\partial P_{\parallel}}{\partial \varepsilon}\right)_{n,B}$$
: (speed of sound)²

Linearized Boltzmann equation

solution:
$$\delta f(\mathbf{k}, \mathbf{x}, t) \simeq \beta \tau_k n_F(\mathbf{k}) [1 - n_F(\mathbf{k})] X(\mathbf{x}) \left[\Theta_\beta \epsilon_k^L - v^3 k^3\right]$$

Conformal case (m =0): 1 (not 1/3, since the quarks k^3 1

live in one-dimension)

In conformal case, the system is at equilibrium even after the expansion.

No nonequilibrium deviation, no bulk viscosity.

Linearized Boltzmann equation

Solution:
$$\delta f(\mathbf{k}, \mathbf{x}, t) \simeq \beta \tau_k n_F(\mathbf{k}) [1 - n_F(\mathbf{k})] X(\mathbf{x}) \left[\underline{\Theta_{\beta} \epsilon_k^L - v^3 k^3} \right]$$

$$-[(k^3)^2 - \Theta_{\beta}(\varepsilon^L_k)^2]/\varepsilon^L_k$$

$$\Delta(P - \Theta_{\beta \mathcal{E}}) = -3\zeta X(x)$$

X-G. Huang, A. Sedrakian, D. Rischke, Annals Phys. **326** 3075 (2011).

expansion decreases T.

So even in no-dissipative case, the pressure changes, and thus this contribution needs to be subtracted.

$$\delta[P_{\parallel} - \Theta_{\beta} \epsilon] = N_c \frac{|eq_f B|}{2\pi} \frac{1}{\pi} \int_{-\infty}^{\infty} dk^3 \frac{(k^3)^2 - \Theta_{\beta}(\epsilon_k^L)^2}{\epsilon_k^L} \delta f(\mathbf{k}, \mathbf{x}, t)$$

$$[(k^3)^2 - \Theta_{\beta}(\epsilon_k^L)^2]$$

Two conformal breaking factor $[(k^3)^2 - \Theta_{\beta}(\varepsilon^L_k)^2]^2 \sim (m^2)^2$

Results

$$\zeta_{\parallel} = N_c \frac{|eq_f B|}{2\pi} \frac{9.6m^2}{g^2 \pi^2 C_f T \ln{(T/m)}}$$

Conformal breaking

$$\frac{(m^2)^2}{m^2} = m^2$$

 $\frac{(m^2)^2}{m^2}=m^2$ Same as the conductivity, except for the extra m^4 dependence, due to the conformal breaking factor.

s quark contribution would dominates over u/d contribution, in contrast to the electrical conductivity.

(Same as
$$B=0$$
 case)

$$\zeta \sim \frac{m^4}{g^4 T \ln(g^{-1})}$$

1. Order Estimate

Contribution from s quark

$$\zeta_{\parallel} = N_c \frac{|eq_f B|}{2\pi} \frac{9.6m_s^2}{g^2 \pi^2 C_f T \ln(T/m)}$$

$$\alpha_s = \frac{g^2}{4\pi} = 0.3,$$
 $m = 3 \text{MeV}(u, d), 100 \text{MeV}(s),$
 $eB = 10 m_{\pi}^2 = (440 \text{MeV})^2.$

(B=0)
$$\zeta_{||}=\zeta_{\perp}\simeq 0.13\frac{m_s^4}{T} \quad \text{P. Arnold, C. Dogan, G. Moore, Phys. Rev. D 74 085021 (2006).}$$

$$\frac{\zeta_{\parallel}}{\zeta_{B=0}^s} \simeq 4.7 \frac{1}{\ln{(T/M)}}$$

B enhances ζ_{\parallel} .

2. possible effect on flow

 ζ suppresses u

Enhances v_2 ?

Summary (electrical conductivity)

$$\sigma^{33} = e^2 \sum_f q_f^2 N_c \frac{|eq_f B|}{2\pi} \frac{4T}{g^2 C_F m^2 {\rm ln}(T/m)} \\ {\rm Landau} \\ {\rm degeneracy}$$
 Quark damping rate

Quark density in 1D

When M >> m, $\ln(T/m) \rightarrow \ln(T/M)$.

The conductivity is enhanced by large B, and small m. The sensitivity to m was explained in terms of chirality conservation.

Summary (bulk viscosity)

$$\zeta_{\parallel} = N_c \frac{|eq_f B|}{2\pi} \frac{9.6m^2}{g^2 \pi^2 C_f T \ln(T/m)}$$

When M>>m, $\ln(T/m)\rightarrow \ln(T/M)$.

Conformal breaking

$$\frac{(m^2)^2}{m^2} = m^2$$

Chirality non-conservation

The bulk viscosity is proportional to m^2 , due to the conformal-breaking effect.

Future Perspective

- Go beyond LLL approximation... (more realistic B)
- Ask hydro guys to simulate MHD with our transport coefficients