Transport coefficients of QGP in strong magnetic fields

Daisuke Satow (Frankfurt U. .
Collaborators: Koichi Hattori, Xu-Guang Huang (Fudan U, Shanghai Shiyong Li, Ho-Ung Yee (Uni. Illinois at Chicago Dirk Rischke (Frankfurt U. 크)

```
K. Hattori and D. S.,
Phys. Rev. D 94, 114032 (2016).
K. Hattori, S. Li, D. S., H. U. Yee,
Phys. Rev. D 95, 076008 (2017).
```


Outline

- (Long) Introduction
- quarks and gluons in strong B
- Electrical Conductivity
- Bulk Viscosity
- Summary

Introduction

Strong magnetic field (B) may be generated in heavy ion collision due to Ampere's law.

Introduction

At thermalization time ($\sim 0.5 \mathrm{fm}$), there still may be strong B.
Heavy ion collision may give a chance to investigate QCD matter at finite temperature in strong magnetic field.

Introduction

How the particles behaves when $V_{e} B$ is much larger than the other energy scales of the system?

$$
\left(\sqrt{ } e B \gg T, m, \Lambda_{\mathrm{QCD}} \ldots\right)
$$

Quark in Strong B

One-particle state of quark in magnetic field

Classical: Cyclotron motion due to Lorentz force

Quark in Strong B
Quantum: Landau Quantization

Longitudinal: Plane wave
Transverse: Gaussian

$$
E_{n}=\sqrt{\left(p_{z}\right)^{2}+m^{2}+2 e B\left(n+\frac{1}{2}\right)}
$$

The gap $(\sim \sqrt{ } e B)$ is generated by
 zero-point oscillation.

Quark in Strong B

For spin-1/2 particle, we have Zeeman effect:

$$
E_{n}=\sqrt{\left(p_{z}\right)^{2}+m^{2}+2 e B\left(n+\frac{1}{2} \mp \frac{1}{2}\right)}
$$

When $n=0$ (LLL), gap is small ($m \sim 1 \mathrm{MeV}$). When $n>0$, gap is large ($\sim V_{e B} \sim 100 \mathrm{MeV}$)

Lowest Landau Level (LLL) Approximation

When the typical energy of particle (T) is much smaller than gap $(\sqrt{ } e B)$, the higher LL does not contribute ($\sim \exp \left(-V_{e B / T)}\right)$, so we can focus on the LLL.

One-dimension dispersion, no spin degrees of freedom.

$$
E_{n}=\sqrt{\left(p_{z}\right)^{2}+m^{2}}
$$

In heavy-ion collision, this condition can be marginally realized ($T \sim \sqrt{ } e B \sim 100 \mathrm{MeV}$). But in Weyl semi-metal, it is already realized ($T \sim 1 \mathrm{meV}, \sqrt{ } e B \sim 10 \mathrm{eV})$.

Gluon in Strong B

Gluon does not have charge, so it does not feel B in the zeroth approximation.

Massless boson in 3D

Gluon in Strong B

Coupling with (1+1)D quarks generates gluon mass. (Schwinger mass generation)

$$
M^{2} \equiv \frac{1}{2} \times \frac{g^{2}}{\pi} \sum_{f} \frac{|e B|}{\underline{2 \pi}} \sim g^{2} e B
$$

Schwinger Landau degeneracy

Electrical Conductivity

$$
J=\sigma E
$$

Motivation to Discuss Electrical Conductivity

Electrical conductivity is phenomenologically important because

- Input parameter of magnetohydrodynamics (transport coefficient)
- May increase lifetime of \boldsymbol{B} (Lenz's law)

$$
\begin{aligned}
& \nabla \times \mathbf{E}=-\partial_{t} \mathbf{B} \\
& \partial_{\boldsymbol{f}} \mathbf{E}=\nabla \times \mathbf{B}-\mathbf{j}
\end{aligned}
$$

Hierarchy of Energy Scale at LLL

For ordering of m and M, we consider the both cases.

$$
(m \ll M \text { and } m \gg M) \quad(M \sim g \vee e B)
$$

$\sqrt{e B}$		$\sqrt{e B}$
\vee	LLL approximation	\vee
T		T
V	Thermally excited	\vee
M		m
V		V
m		M

Electrical Conductivity

Conductivity at weak $B(\sqrt{ } e B \ll T)$
$\underline{B=0}$

$$
j^{i}=\sigma^{i j} E^{j}
$$

weak B

$$
\begin{aligned}
& \boldsymbol{\mathcal { A }}^{B} \xrightarrow{\mathrm{E}} \underset{\mathrm{j}}{\mathrm{E}} \\
& \sigma^{i j}=\left[\begin{array}{ccc}
\sigma_{0} & \sigma_{1} & 0 \\
-\sigma_{1} & \sigma_{0} & 0 \\
0 & 0 & \sigma_{0}
\end{array}\right]
\end{aligned}
$$

Electrical Conductivity

Strong B (LLL)

Quarks are confined in the direction of B, so there is no current in other directions.

$$
\boldsymbol{q}^{E} \boldsymbol{千}^{B} \hat{\Theta}_{\oplus}^{j} \leftrightarrow\langle
$$

σ^{33} is finite, other components are zero. (Very different from weak B case)

$$
j^{i}=\sigma^{i j} E^{j} \quad \sigma^{i j}=\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & \sigma_{33}
\end{array}\right]
$$

Calculation of conductivity

Thermal equilibrium in strong B

$$
\begin{aligned}
n^{f}\left(k^{3}, T, Z\right) & =n_{F}\left(\epsilon_{k}^{L}\right) \\
\epsilon_{k}^{L} & \equiv \sqrt{\left(k^{3}\right)^{2}+m^{2}}
\end{aligned}
$$

Linear response against E

Slightly non-equilibrium, finite j

$$
n^{f}\left(k^{3}, T, Z\right)=n_{F}\left(\epsilon_{k}^{L}\right)+\delta n^{f}\left(k^{3}, T, Z\right)
$$

$$
\begin{array}{r}
j^{3}(T, Z)=2 e \sum_{f} q_{f} N_{c} \frac{\left|e q_{f} B\right|}{2 \pi} \int \frac{d k^{3}}{2 \pi} v^{3} \delta n^{f}\left(k^{3}, T, Z\right)=\sigma^{33} E^{3} \\
\text { Landau degeneracy } v^{3} \equiv \partial \epsilon_{k}^{L} /\left(\partial k^{3}\right)=k^{3} / \epsilon_{k}^{L}
\end{array}
$$

Evaluation of δn_{F} is necessary.

Calculation of conductivity

Evaluate n_{F} with (1+1)D Boltzmann equation

Constant and homogeneous E

Possible Scattering Process for Conductivity

The scattering process is very different from that in $B=0 \ldots$
$\underline{B=0}$
$\mathbf{1}$ to $\mathbf{2}$ scattering is kinematically forbidden; one massless particle can not decay to two massless particles.
$\mathbf{2}$ to $\mathbf{2}$ is leading process.

strong B

Gluon is effectively massive in $(1+1) \mathrm{D} \quad E=\sqrt{p_{z}^{2}+p_{\perp}^{2}+M^{2}}$

Decay of a gluon into quark and antiquark becomes kinematically possible.

(1 to 2)

Chirality in (1+1)D
Spin is always up.

$$
\begin{aligned}
& \chi=+1
\end{aligned}
$$

$$
\begin{aligned}
& \chi=-1
\end{aligned}
$$

When $\boldsymbol{m}=\mathbf{0}$, the direction of p_{z} determines chirality.

Chirality in (1+1)D
Chirality is conserved at $m=0$:

1 to 2 scattering is forbidden at $\boldsymbol{m = 0}$.

Possible Scattering Process for Conductivity

Collision term for 1 to 2 :

$$
C[n]=\frac{1}{2 \epsilon_{k}^{L}} \int_{l}|M|^{2}\left[n_{B}^{k+l}\left(1-n_{F}^{k}\right)\left(1-n_{F}^{l}\right)-\left(1+n_{B}^{k+l}\right) n_{F}^{k} n_{F}^{l}\right]
$$

$$
|M|^{2}=4 g^{2} C_{f} m^{2}
$$

Vanishes at $\boldsymbol{m}=\mathbf{0}$!
(chirality conservation)
cf: 2 to 2

Calculation of conductivity

$$
e q_{f} E^{3}(T, Z) \partial_{k^{3}} n^{f}\left(k^{3}, T, Z\right)=C[n]
$$

linearize $n^{f}\left(k^{3}, T, Z\right)=n_{F}\left(\epsilon_{k}^{L}\right)+\delta n^{f}\left(k^{3}, T, Z\right)$

$$
\begin{aligned}
& e q_{f} E^{3} \beta v^{3} n_{F}\left(\epsilon_{k}^{L}\right)\left[1-n_{F}\left(\epsilon_{k}^{L}\right)\right]=C\left[\delta n^{f}\left(k^{3}, T, Z\right)\right] \\
& \quad(\beta=1 / T)
\end{aligned}
$$

$$
C[n]=\frac{1}{2 \epsilon_{k}^{L}} \int_{l}|M|^{2}\left[n_{B}^{k+l}\left(1-n_{F}^{k}\right)\left(1-n_{F}^{l}\right)-\left(1+n_{B}^{k+l}\right) n_{F}^{k} n_{F}^{l}\right]
$$

linearize

$$
C[\delta n]=-\frac{1}{2 \epsilon_{k}^{L}} \int_{l}|M|^{2}\left[\delta n_{F}^{k}\left(n_{B}^{k+l}+n_{F}^{l}\right)-\delta n_{F}^{l}\left(n_{B}^{k+l}+n_{F}^{k}\right)\right]
$$

damping rate of quark $\left(=-2 \xi_{k} \delta n^{k} F\right)$

Calculation of conductivity

Solution for δn^{F} with damping rate ξ_{k}

$$
\delta n_{F}^{k}=-\frac{1}{2 \xi_{k}} e q_{f} E^{3} \beta v^{3} n_{F}\left(\epsilon_{k}^{L}\right)\left[1-n_{F}\left(\epsilon_{k}^{L}\right)\right]
$$

$$
\begin{aligned}
& j^{3}(T, Z)=2 e \sum_{f} q_{f} N_{c} \frac{\left|B_{f}\right|}{2 \pi} \int \frac{d k^{3}}{2 \pi} v^{3} \delta n^{f}\left(k^{3}, T, Z\right) \\
& j^{3}=e^{2} \sum_{f} q_{f}^{2} N_{c} \frac{\left|e q_{f} B\right|}{2 \pi} 4 \beta \int \frac{d k^{3}}{2 \pi}\left(v^{3}\right)^{2} \frac{1}{2 \xi_{k}} n_{F}\left(\epsilon_{k}^{L}\right)\left[1-n_{F}\left(\epsilon_{k}^{L}\right)\right] E^{3} \\
& \sigma^{33}
\end{aligned}
$$

Quark Damping Rate

$$
\epsilon_{k}^{L} \xi_{k}=\frac{g^{2} C_{F} m^{2}}{4 \pi} \int_{m}^{\infty} d l^{0} \frac{n_{F}\left(l^{0}\right)+n_{B}\left(l^{0}+\epsilon_{k}^{L}\right)}{\sqrt{\left(l^{0}\right)^{2}-m^{2}}}
$$

leading-log approximation $(\ln [T / m] \gg 1)$

$l^{0} \ll T$ dominates

$$
\begin{aligned}
\epsilon_{k}^{L} \xi_{k} & \simeq \frac{g^{2} C_{F} m^{2}}{4 \pi}\left[\frac{1}{2}+n_{B}\left(\epsilon_{k}^{L}\right)\right] \int_{m}^{\infty} d l^{0} \\
& \simeq \frac{g^{2} C_{F} m^{2}}{4 \pi}\left[\frac{1}{2}+n_{B}\left(\epsilon_{k}^{L}\right)\right] \ln \left(\frac{T}{m}\right)
\end{aligned}
$$

matrix element
soft fermion and hard boson
$\boldsymbol{n}_{F}\left(\mathbf{1}+n_{B}\right)+\left(\mathbf{1}-\boldsymbol{n}_{F}\right) \boldsymbol{n}_{\mathrm{B}}=\boldsymbol{n}_{\mathrm{F}}+\boldsymbol{n}_{\mathrm{B}}$

Results

(average distance among quarks) $1 / T$
\rightarrow (quark density in 1D) T
Quark density in 1D

$$
\sigma^{33}=e^{2} \sum_{f} q_{f}^{2} N_{c} \frac{\left|e q_{f} B\right|}{2 \pi} \frac{4 T}{g^{2} C_{F} m^{2} \ln (T / m)}
$$

Landau Quark damping degeneracy rate

Due to chirality conservation, collision is forbidden when $\boldsymbol{m}=\mathbf{0}$. Thus, $\sigma \sim 1 / \boldsymbol{m}^{2}$.

When $M \gg m, \ln (T / m) \rightarrow \ln (T / M)$.

Other Term Does Not Contribute

$$
\begin{gathered}
C[\delta n]=-\frac{2 g^{2} C_{F} m^{2}}{\epsilon_{k}^{L}} \int_{l}\left[\delta n_{F}^{k}\left(n_{B}^{k+l}+n_{F}^{l}\right)-\delta n_{F}^{l}\left(n_{B}^{k+l}+n_{F}^{k}\right)\right] \\
\delta n_{F}^{l}=-\frac{e q_{f}}{2 \xi_{l}} E^{3} \partial_{l^{3}} n_{F}\left(\epsilon_{l}^{L}\right): \text { Odd in } l^{3} \\
\text { Other Term } \\
\left(\text { Othetion of }\left(\varepsilon^{\mathrm{L}}{ }_{k}+\varepsilon^{\mathrm{L}} l\right)\right. \\
\text { ever term }) \sim \int_{l} \frac{\left(n_{B}^{k+l}+n_{F}^{k}\right)}{\text { even in } l^{3}}
\end{gathered}
$$

Our result (only retaining quark damping rate term) is correct.

Equivalent Diagrams

Our calculation is based on (unestablished) $(1+1)$ D kinetic theory, but actually we can reproduce the same result by field theory calculation.
J. -S. Gagnon and S. Jeon, Phys. Rev. D 75, 025014 (2007); 76, 105019 (2007).

Kubo formula: $\quad \sigma^{i j} \equiv \lim _{\omega \rightarrow 0} \frac{\Pi^{R i j}(\omega)}{i \omega}$

$$
\begin{aligned}
& j^{\mu} \equiv e \sum_{f} q_{f} \bar{\psi}_{f} \gamma^{\mu} \psi_{f} \\
& f: \text { flavor index, } q_{\mathrm{f}} \text { : electric charge } \\
& \Pi^{R \mu \nu}(x) \equiv i \theta\left(x^{0}\right)\left\langle\left[j^{\mu}(x), j^{\nu}(0)\right]\right\rangle
\end{aligned}
$$

Possible Phenomenological Implications

1. Order Estimate

$$
\sigma^{33}=e^{2} \sum_{f} q_{f}^{2} N_{c} \frac{\left|e q_{f} B\right|}{2 \pi} \frac{4 T}{g^{2} C_{F} m^{2} \ln (T / M)}
$$

Because of m^{-2} dependence, s contribution is very small.

$$
\begin{aligned}
& \alpha_{s}=\frac{g^{2}}{4 \pi}=0.3, \\
& m=3 \mathrm{MeV}(u, d), 100 \mathrm{MeV}(s), \\
& e B=10 m_{\pi}^{2}=(440 \mathrm{MeV})^{2} . \\
& M=160 \mathrm{MeV} \gg m
\end{aligned}
$$

BAMPS: M. Greif, I. Bouras, C. Greiner and Z. Xu, Phys. Rev. D 90, 094014 (2014).

Possible Phenomenological Implications

Beyond LLL approximation, there are also spin down particles, so the scattering is not suppressed by m^{2}.
σ^{33} is expected to be smaller at large T,
so that it smoothly connects with $B=0$ result.

Possible Phenomenological Implications

2. Soft Dilepton Production

G. D. Moore and J. -M. Robert, hep-ph/0607172.

$$
\frac{d \Gamma}{d^{4} p}=\frac{\alpha}{12 \pi^{4} \omega^{2}} T \sigma^{33}
$$

$\because($ virtual photon emission rate $) \sim n_{B}(\omega) \operatorname{Im} \Pi^{\mu}{ }_{\mu} \sim T \sigma^{33}$

(photon interaction energy w leptons)	(quark mean free path)
$\qquad e \sqrt{e B} \ll \omega \ll \frac{g^{2} m^{2}}{T} \ln \left(\frac{T}{M}\right)$	

Soft dilepton production is enhanced by B ?

Possible Phenomenological Implications

3. Back Reaction to EM Fields

Bad news:

In LLL approximation, we have no current in transverse plane, so Lenz's law does NOT work! The lifetime of B does not increase...

Bulk Viscosity

$$
\Delta P=-\zeta \nabla \cdot u
$$

Linearized Boltzmann equation

Boltzmann eq. without $E \quad\left(\partial_{t}+v^{3} \partial_{z}\right) f(\mathbf{k}, \mathbf{x}, t)=C[f]$ Expansion in direction of B : "萄

$$
\begin{aligned}
& f_{\mathrm{eq}}(\mathbf{k}, \mathbf{x}, t)+\delta f(\mathbf{k}, \mathbf{x}, t) \quad f_{\mathrm{eq}}(\mathbf{k}, \mathbf{x}, t) \equiv\left[\exp \left\{\beta(t) \gamma_{u}\left(\epsilon_{k}^{L}-k^{3} u^{3}(\mathbf{x})\right)\right\}+1\right]^{-1} \\
& \text { nonequilibrium deviation (responsible for viscosity) }
\end{aligned}
$$

linearize

Linearized Boltzmann equation

Solution: $\delta f(\mathbf{k}, \mathbf{x}, t) \simeq \beta \tau_{k} n_{F}(\mathbf{k})\left[1-n_{F}(\mathbf{k})\right] X(\mathbf{x})\left[\Theta_{\beta} \epsilon_{k}^{L}-v^{3} k^{3}\right]$

Conformal case ($m=0$):
1 (not $1 / 3$, since the quarks $\quad k^{3} \quad 1$
live in one-dimension)

$$
\delta f=0
$$

In conformal case, the system is at equilibrium even after the expansion. No nonequilibrium deviation, no bulk viscosity.

Linearized Boltzmann equation

$$
\text { SOlution: } \delta f(\mathbf{k}, \mathbf{x}, t) \simeq \beta \tau_{k} n_{F}(\mathbf{k})\left[1-n_{F}(\mathbf{k})\right] X(\mathbf{x})\left[\Theta_{\beta} \epsilon_{k}^{L}-v^{3} k^{3}\right]
$$

$$
-\left[\left(k^{3}\right)^{2}-\Theta_{\beta}\left(\varepsilon^{L} k\right)^{2}\right] / \varepsilon_{k}^{L}
$$

$$
\Delta\left(P_{\|}-\Theta_{\beta} \varepsilon\right)=-3 \zeta_{\|} X(x)
$$

expansion decreases T.
So even in no-dissipative case, the pressure changes, and thus this contribution needs to be subtracted.

$$
\begin{array}{r}
\delta\left[P_{\|}-\Theta_{\beta} \epsilon\right]=N_{c} \frac{\left|e q_{f} B\right|}{2 \pi} \frac{1}{\pi} \int_{-\infty}^{\infty} d k^{3} \frac{\left(k^{3}\right)^{2}-\Theta_{\beta}\left(\epsilon_{k}^{L}\right)^{2}}{\epsilon_{k}^{L}} \delta f(\mathbf{k}, \mathbf{x}, t) \\
{\left[\left(k^{3}\right)^{2}-\Theta_{\beta}\left(\varepsilon^{L}\right)^{2}\right]}
\end{array}
$$

Two conformal breaking factor $\left[\left(k^{3}\right)^{2}-\Theta_{\beta}\left(\varepsilon^{L} k\right)^{2}\right]^{2} \sim\left(m^{2}\right)^{2}$

Results

$$
\zeta_{\|}=N_{c} \frac{\left|e q_{f} B\right|}{2 \pi} \frac{9.6 m^{2}}{g^{2} \pi^{2} C_{f} T \ln (T / m)}
$$

Conformal breaking

$$
\frac{\left(m^{2}\right)^{2}}{m^{2}}=m^{2}
$$

Chirality non-conservation

Same as the conductivity, except for the extra m^{4} dependence, due to the conformal breaking factor.
s quark contribution would dominates over u / d contribution, in contrast to the electrical conductivity.
(Same as $B=0$ case)

$$
\zeta \sim \frac{m^{4}}{g^{4} T \ln \left(g^{-1}\right)}
$$

Possible Phenomenological Implications

1. Order Estimate Contribution from \boldsymbol{s} quark

$$
\begin{aligned}
& \zeta_{\|}=N_{c} \frac{\left|e q_{f} B\right|}{2 \pi} \frac{9.6 m_{s}^{2}}{g^{2} \pi^{2} C_{f} T \ln (T / m)} \\
& \alpha_{s}=\frac{g^{2}}{4 \pi}=0.3, \\
& m=3 \mathrm{MeV}(u, d), 100 \mathrm{MeV}(s) \text {, } \\
& e B=10 m_{\pi}^{2}=(440 \mathrm{MeV})^{2} \text {. } \\
& M=160 \mathrm{MeV} \gg m \\
& \text { (} B=0 \text {) } \\
& \zeta_{\|}=\zeta_{\perp} \simeq 0.13 \frac{m_{s}^{4}}{T} \quad \text { P. Arnold, C. Dogan, G. Moore, Phys. Rev. D } 74085021 \text { (2006). } \\
& \square \frac{\zeta_{\|}}{\zeta_{B=0}^{s}} \simeq 4.7 \frac{1}{\ln (T / M)} \\
& \text { B enhances } \zeta_{l} \text { • }
\end{aligned}
$$

Possible Phenomenological Implications

2. possible effect on flow

$\zeta_{\|}$suppresses $u_{\|}$
Enhances \boldsymbol{v}_{2} ?

Summary (electrical conductivity)

Quark density in 1D

$$
\sigma^{33}=e^{2} \sum_{f} q_{f}^{2} N_{c} \frac{\left|e q_{f} B\right|}{2 \pi} \frac{4 T}{\begin{array}{c}
\text { Landau } \\
\text { degeneracy }
\end{array} \quad \text { Quark damping rate }} g^{2} C_{F} m^{2} \ln (T / m) ~
$$

When $M \gg m, \ln (T / m) \rightarrow \ln (T / M)$.

The conductivity is enhanced by large B, and small \boldsymbol{m}. The sensitivity to m was explained in terms of chirality conservation.

Summary (bulk viscosity)

$$
\zeta_{\|}=N_{c} \frac{\left|e q_{f} B\right|}{2 \pi} \frac{9.6 m^{2}}{g^{2} \pi^{2} C_{f} T \ln (T / m)} \begin{aligned}
& \text { When } M \gg m, \ln (T / m) \rightarrow \ln (T / M) .
\end{aligned}
$$

Conformal breaking

$$
\frac{\left(m^{2}\right)^{2}}{m^{2}}=m^{2}
$$

Chirality non-conservation
The bulk viscosity is proportional to \boldsymbol{m}^{2}, due to the conformal-breaking effect.

Future Perspective

- Go beyond LLL approximation... (more realistic B)
- Ask hydro guys to simulate MHD with our transport coefficients

