LAMBDA-NUCLEAR INTERACTION and
 HYPERON PUZZLE in NEUTRON STARS

Wolfram Weise
Technische Universität München

- Equation of State of dense baryonic matter : constraints from massive neutron stars
- Hyperon-nucleon interactions from $S U(3)$ chiral effective field theory
- Hyperon-NN three-body forces
- Emerging repulsions : suppression of hyperons in dense neutron matter

Stefan Petschauer, Johann Haidenbauer, et al. :
Eur. Phys. J. A (2017) (arXiv: 1612.03758 [nucl-th]); Nucl. Phys. A 957 (2017) 347;
Phys. Rev. C93 (2016) 014001; Eur. Phys. J. A52 (2016)15; Nucl. Phys. A915 (2013) 24

Part I: Prologue

Constraints on Equations of State from
massive \mathfrak{N} eutron Stars

NEUTRON STARS and the EQUATION OF STATE of DENSE BARYONIC MATTER
J. Lattimer, M. Prakash

Phys. Reports 442 (2007) I09 Phys. Reports 62I(2016) I27

Mass-Radius Relation

- Tolman-Oppenheimer-Volkov Equations

$$
\frac{\mathrm{dP}}{\mathrm{dr}}=-\frac{\mathbf{G}}{\mathbf{c}^{2}} \frac{\left(\mathbf{M}+4 \pi \operatorname{Pr}^{3}\right)(\mathcal{E}+\mathbf{P})}{\mathbf{r}\left(\mathbf{r}-\mathbf{G M} / \mathbf{c}^{2}\right)}
$$

$$
\frac{\mathrm{dM}}{\mathrm{dr}}=4 \pi \mathrm{r}^{2} \frac{\mathcal{E}}{\mathrm{c}^{2}}
$$

Constraints from massive NEUTRON STARS

P.B. Demorest et al. Nature 467 (2010) 108I

PSR JI614+2230
$\mathrm{M}=1.97 \pm 0.04 \mathrm{M}_{\odot}$
J.Antoniadis et al. Science 340 (2013) 6131

PSR J0348+0432

$$
\mathrm{M}=2.01 \pm 0.04 \mathrm{M}_{\odot}
$$

Population of MILLISECOND PULSARS

CONSTRAINTS from NEUTRON STARS (contd.)

- Comprehensive analysis of 12 selected neutron stars

F. Özel, D. Psaltis, T. Güver, G. Baym, C. Heinke, S. Guillot Astroph.J. 820 (2016) 28
- Atmosphere model fits of X-ray bursts

$\mathrm{R}=(11.5-13.0) \mathrm{km}$
($\mathrm{M}=1.3-1.8 \mathrm{M}_{\text {solar }}$)
J. Nättilä et al.: Astron. Astroph. 59I (2016) A25
V.F. Suleimanov et al.: arXiv:16| I. 09885

CONSTRAINTS from NEUTRON STARS

F. Özil, D. Psaltis: Phys. Rev. D80 (2009) I03003
F. Özil, G. Baym,T. Güver: Phys. Rev. D82 (2010) 101301

- "Exotic" equations of state ruled out ?

NEUTRON STAR MATTER from Chiral EFT and FRG

- Symmetry energy range: 30-35 MeV
- Crust: SLy EoS

Chiral many-body dynamics using "conventional" (pion \& nucleon) degrees of freedom is consistent with neutron star constraints

NEUTRON STAR MATTER Equation of State

A. Kurkela et al.

Astroph.J. 789 (2014) I27

NEUTRON STAR MATTER

Equation of State

- In-medium Chiral Effective Field Theory up to 3 loops (reproducing thermodynamics of normal nuclear matter)
- 3-flavor PNJL (chiral quark) model at high densities (incl. strange quarks)

- conventional (hadronic) equation of state seems to work
- quark-nuclear coexistence can occur at baryon densities

$$
\begin{gathered}
\rho>5 \rho_{0} \\
\left(\rho_{0}=0.16 \mathrm{fm}^{-3}\right)
\end{gathered}
$$

see also:
K. Masuda,T. Hatsuda,T.Takatsuka

PTEP (20I3) 7,073D0I

NEUTRON STAR MATTER including HYPERONS

- In-medium Chiral Effective Field Theory (3-loops) plus Λ hyperons (incl. potential consistent with hypernuclei)
- 3-flavor PNJL model at high densities (incl. strange quarks)

Particle
composition:
Fraction of
particle species
as function of
baryon density

T. Hell, W.W.

Phys. Rev. C90 (2014) 04580I
occurrence of
Λ hyperons

$$
\mu_{n}=\mu_{\Lambda}
$$

- Equation of state too soft : maximum neutron star mass too low

NEUTRON STAR MATTER including HYPERONS

- Adding hyperons: equation of state far too soft "Hyperon Puzzle"

NEUTRON STAR MATTER including HYPERONS

Quantum Monte Carlo calculations using phenomenological hyperon-nucleon and hyperon-NN three-body interactions constrained by hypernuclei

ChEFT
calculations "conventional" n-star matter
T. Hell, W.W. PRC90 (2014) 04580I

QMC computations (hyper-neutron matter):
D. Lonardoni,
A. Lovato,
S. Gandolfi,
F. Pederiva

Phys. Rev. Lett.
II4 (2015) 09230I

Inclusion of hyperons: EoS too soft to support 2-solar-mass n-stars unless: strong repulsion in YN and YNN ... interactions

Part II

Hyperon - Nucleon Interactions
from
Chiral SU(3) Effective Field Theory

Hierarchy of QUARK MASSES in QCD
 - Separation of Scales -

> Chiral Symmetry $\mathrm{SU}(3)_{\mathrm{L}} \times \mathrm{SU}(3)_{\mathrm{R}}$

Spontaneously broken (QCD dynamics)

Explicitly broken by non-zero quark masses

Spontaneously Broken

CHIRAL SU $(3)_{\mathbf{L}} \times \mathbf{S U}(3)_{\mathbf{R}}$ SYMMETRY

- NAMBU - GOLDSTONE BOSONS:

Pseudoscalar SU(3) meson octet

$$
\left\{\phi_{a}\right\}=\left\{\pi, \mathbf{K}, \overline{\mathbf{K}}, \eta_{8}\right\}
$$

DECAY CONSTANTS:
$\langle 0| \mathbf{A}_{a}^{\mu}(0)\left|\phi_{b}(p)\right\rangle=i \delta_{a b} p^{\mu} \mathbf{f}_{b}$

Chiral limit: $\mathrm{f}=86.2 \mathrm{MeV}$ Order parameter : $4 \pi f \sim 1 \mathrm{GeV}$

$$
\begin{gathered}
\mathrm{f}_{\pi}=92.21 \pm 0.16 \mathrm{MeV} \\
\mathrm{f}_{\mathrm{K}}=110.5 \pm 0.5 \mathrm{MeV}
\end{gathered}
$$

- Gell-Mann, Oakes, Renner relations

$$
\begin{aligned}
& \mathbf{m}_{\pi}^{2} \mathbf{f}_{\pi}^{2}=-\frac{\mathbf{m}_{\mathbf{u}}+\mathbf{m}_{\mathbf{d}}}{2}\langle\overline{\mathbf{u}} \mathbf{u}+\overline{\mathbf{d}} \mathbf{d}\rangle \\
& \mathbf{m}_{\mathbf{K}}^{2} \mathbf{f}_{\mathrm{K}}^{2}=-\frac{\mathbf{m}_{\mathbf{u}}+\mathbf{m}_{\mathbf{s}}}{2}\langle\overline{\mathbf{u}} \mathbf{u}+\overline{\mathbf{s} \mathbf{s}\rangle}
\end{aligned}+\begin{aligned}
& \text { higher order } \\
& \text { corrections }
\end{aligned}
$$

Chiral $\mathrm{SU}(3)_{\mathrm{L}} \times \mathrm{SU}(3)_{\mathrm{R}}$ Effective Field Theory

- Realization of Low-Energy QCD for energies / momenta

$$
\mathrm{Q}<4 \pi \mathrm{f} \sim 1 \mathrm{GeV}
$$

- based on SU(3) Non-Linear Sigma Model plus (heavy) baryons
- Pseudoscalar meson octet of $\mathrm{SU}(3)_{\mathrm{L}} \times \mathrm{SU}(\mathbf{3})_{\mathrm{R}}$

Nambu-Goldstone bosons coupled to baryon octet

$$
P=\left(\begin{array}{ccc}
\frac{\pi^{0}}{\sqrt{2}}+\frac{\eta}{\sqrt{6}} & \pi^{+} & K^{+} \\
\pi^{-} & -\frac{\pi^{0}}{\sqrt{2}}+\frac{\eta}{\sqrt{6}} & K^{0} \\
K^{-} & \bar{K}^{0} & -\frac{2 \eta}{\sqrt{6}}
\end{array}\right) \quad B=\left(\begin{array}{ccc}
\frac{\Sigma^{0}}{\sqrt{2}}+\frac{\Lambda}{\sqrt{6}} & \Sigma^{+} & p \\
\Sigma^{-} & -\frac{\Sigma^{0}}{\sqrt{2}}+\frac{\Lambda}{\sqrt{6}} & n \\
-\Xi^{-} & \Xi^{0} & -\frac{2 \Lambda}{\sqrt{6}}
\end{array}\right)
$$

Chiral $\mathrm{SU}(3)_{\mathrm{L}} \times \mathrm{SU}(3)_{\mathrm{R}}$ Effective Field Theory

- Starting point: Meson-Baryon Lagrangian (chiral limit)

$$
\begin{gathered}
\mathcal{L}_{\mathrm{MB}}=\operatorname{tr}\left(\bar{B}\left(\mathrm{i} \gamma^{\mu} D_{\mu}-M_{0}\right) B\right)-\frac{D}{2} \operatorname{tr}\left(\bar{B} \gamma^{\mu} \gamma_{5}\left\{u_{\mu}, B\right\}\right)-\frac{F}{2} \operatorname{tr}\left(\bar{B} \gamma^{\mu} \gamma_{5}\left[u_{\mu}, B\right]\right) \\
P=\left(\begin{array}{ccc}
\frac{\pi^{0}}{\sqrt{2}}+\frac{\eta}{\sqrt{6}} & \pi^{+} & K^{+} \\
\pi^{-} & -\frac{\pi^{0}}{\sqrt{2}}+\frac{\eta}{\sqrt{6}} & K^{0} \\
K^{-} & \bar{K}^{0} & -\frac{2 \eta}{\sqrt{6}}
\end{array}\right) \quad B=\left(\begin{array}{ccc}
\frac{\Sigma^{0}}{\sqrt{2}}+\frac{\Lambda}{\sqrt{6}} & \Sigma^{+} & p \\
\Sigma^{-} & -\frac{\Sigma^{0}}{\sqrt{2}}+\frac{\Lambda}{\sqrt{6}} & n \\
-\Xi^{-} & \Xi^{0} & -\frac{2 \Lambda}{\sqrt{6}}
\end{array}\right)
\end{gathered}
$$

- Chiral covariant derivative: $D_{\mu} B=\partial_{\mu} B+\left[\Gamma_{\mu}, B\right]$

$$
\Gamma_{\mu}=\frac{1}{2}\left(u^{\dagger} \partial_{\mu} u+u \partial_{\mu} u^{\dagger}\right) \quad u_{\mu}=\mathrm{i}\left(u^{\dagger} \partial_{\mu} u-u \partial_{\mu} u^{\dagger}\right)
$$

- Chiral (pseudoscalar Nambu-Goldstone boson) field :

$$
\boldsymbol{U}(x)=\boldsymbol{u}^{2}(x)=\exp \left(i \frac{\sqrt{2} P(x)}{f}\right) \begin{array}{r}
\text { transforms as } \boldsymbol{U} \rightarrow \boldsymbol{R} \boldsymbol{U} \boldsymbol{L}^{\dagger} \\
\boldsymbol{R} \in \boldsymbol{S U (3) _ { R } \quad \boldsymbol { L } \in \boldsymbol { S U } (\mathbf { 3 }) _ { L }}
\end{array}
$$

Chiral $\mathrm{SU}(3)_{\mathrm{L}} \times \mathrm{SU}(3)_{\mathrm{R}}$ Effective Field Theory

Interaction Lagrangian: expand in powers of meson fields $\mathrm{P}(\mathrm{x})$

$$
\begin{gathered}
\mathcal{L}_{\text {int }}=\mathcal{L}_{1}+\mathcal{L}_{2}+\ldots+\text { mass terms } \\
\mathcal{L}_{1}=-\frac{\sqrt{2}}{2 f} \operatorname{tr}\left(D \bar{B} \gamma^{\mu} \gamma_{5}\left\{\partial_{\mu} P, B\right\}+F \bar{B} \gamma^{\mu} \gamma_{5}\left[\partial_{\mu} P, B\right]\right) \\
\mathcal{L}_{2}=\frac{1}{4 f^{2}} \operatorname{tr}\left(\mathrm{i} \bar{B} \gamma^{\mu}\left[\left[P, \partial_{\mu} P\right], B\right]\right.
\end{gathered}
$$

- Input: $F=0.46 \quad D=0.81$

$$
\begin{aligned}
& F=0.46 \quad D=0.81 \\
& \left(g_{A}=F+D=1.27\right)
\end{aligned} \quad f=0.09 \mathrm{GeV}
$$

- Physical meson and baryon masses (SU(3) breaking)

Chiral $\mathbf{S U}(\mathbf{3})_{\mathbf{L}} \times \mathbf{S U}(\mathbf{3})_{\mathbf{R}}$ Effective Field Theory:meson-baryon vertices

$$
\begin{aligned}
& \mathcal{L}_{1}=-f_{N N \pi} \bar{N} \gamma^{\mu} \gamma_{5} \boldsymbol{\tau} N \cdot \partial_{\mu} \boldsymbol{\pi}+i f_{\Sigma \Sigma \pi} \bar{\Sigma} \gamma^{\mu} \gamma_{5} \times \boldsymbol{\Sigma} \cdot \partial_{\mu} \boldsymbol{\pi} \\
& -f_{\Lambda \Sigma \pi}\left[\bar{\Lambda} \gamma^{\mu} \gamma_{5} \boldsymbol{\Sigma}+\overline{\boldsymbol{\Sigma}} \gamma^{\mu} \gamma_{5} \Lambda\right] \cdot \partial_{\mu} \boldsymbol{\pi}-f_{\Xi \Xi \pi} \bar{\Xi} \gamma^{\mu} \gamma_{5} \tau \Xi \cdot \partial_{\mu} \boldsymbol{\pi} \\
& -f_{\Lambda N K}\left[\bar{N} \gamma^{\mu} \gamma_{5} \Lambda \partial_{\mu} K+\text { h.c. }\right]-f_{\Xi \Lambda K}\left[\bar{\Xi} \gamma^{\mu} \gamma_{5} \Lambda \partial_{\mu} \bar{K}+\text { h.c. }\right] \\
& -f_{\Sigma N K}\left[\bar{N} \gamma^{\mu} \gamma_{5} \tau \partial_{\mu} K \cdot \boldsymbol{\Sigma}+\text { h.c. }\right]-f_{\Sigma \Xi K}\left[\bar{\Xi} \gamma^{\mu} \gamma_{5} \tau \partial_{\mu} \bar{K} \cdot \boldsymbol{\Sigma}+\text { h.c. }\right] \\
& -f_{N N \eta_{8}} \bar{N} \gamma^{\mu} \gamma_{5} N \partial_{\mu} \eta-f_{\Lambda \Lambda \eta_{8}} \bar{\Lambda} \gamma^{\mu} \gamma_{5} \Lambda \partial_{\mu} \eta \\
& -f_{\Sigma \Sigma \eta_{8}} \bar{\Sigma} \cdot \gamma^{\mu} \gamma_{5} \Sigma \partial_{\mu} \eta-f_{\Xi \Xi \eta_{8}} \bar{\Xi} \gamma^{\mu} \gamma_{5} \Xi \partial_{\mu} \eta . \\
& f_{N N \pi}=G \quad f_{N N \eta_{8}}=\frac{1}{\sqrt{3}}(4 \alpha-1) G \quad f_{\Lambda N K}=-\frac{1}{\sqrt{3}}(1+2 \alpha) G \\
& f_{\Xi \Xi \pi}=-(1-2 \alpha) G \quad f_{\Xi \Xi \eta_{8}}=-\frac{1}{\sqrt{3}}(1+2 \alpha) G \quad f_{\Xi \Lambda K}=\frac{1}{\sqrt{3}}(4 \alpha-1) G \\
& f_{\Lambda \Sigma \pi}=\frac{2}{\sqrt{3}}(1-\alpha) G \quad f_{\Sigma \Sigma \eta_{8}}=\frac{2}{\sqrt{3}}(1-\alpha) G \quad f_{\Sigma N K}=(1-2 \alpha) G \\
& f_{\Sigma \Sigma \pi}=2 \alpha G \quad f_{\Lambda \Lambda \eta_{8}}=-\frac{2}{\sqrt{3}}(1-\alpha) G \quad f_{\Xi \Sigma K}=-G \\
& G=\frac{g_{A}}{2 f} \simeq 7 \mathrm{GeV}^{-1} \simeq 1.4 \mathrm{fm} \quad \alpha=\frac{F}{F+D}=0.36
\end{aligned}
$$

Chiral SU(3) Effective Field Theory and Hyperon-Nucleon Interactions

J. Haidenbauer, S. Petschauer, N. Kaiser, U.-G. Meißner, A. Nogga, W.W.: Nucl. Phys. A 915 (2013) 24

- Next-to-leading order (NLO)

Hyperon - Nucleon Interaction
 Contact Terms

$$
\begin{aligned}
V_{B B \rightarrow B B}^{(2)}= & C_{1} \mathbf{q}^{2}+C_{2} \mathbf{k}^{2}+\left(C_{3} \mathbf{q}^{2}+C_{4} \mathbf{k}^{2}\right) \sigma_{1} \cdot \sigma_{2}+\frac{\mathrm{i}}{2} C_{5}\left(\sigma_{1}+\sigma_{2}\right) \cdot(\mathbf{q} \times \mathbf{k}) \\
& +C_{6}\left(\mathbf{q} \cdot \sigma_{1}\right)\left(\mathbf{q} \cdot \sigma_{2}\right)+C_{7}\left(\mathbf{k} \cdot \sigma_{1}\right)\left(\mathbf{k} \cdot \sigma_{2}\right)+\frac{\mathrm{i}}{2} C_{8}\left(\sigma_{1}-\sigma_{2}\right) \cdot(\mathbf{q} \times \mathbf{k})
\end{aligned}
$$

- $\mathbf{S U}(3)$ symmetry reduces number of independent constants

$$
\mathbf{8} \otimes \mathbf{8}=27 \oplus \mathbf{8}_{\mathbf{s}} \oplus 1 \oplus \mathbf{1 0} \oplus \mathbf{1 0}^{*} \oplus \mathbf{8}_{\mathbf{a}}
$$

S	Channel	I	$V_{1} S_{0},{ }^{3} P_{0},{ }^{3} P_{1},{ }^{3} P_{2}$	$V^{3} S_{1},{ }^{3} S_{1}{ }^{3} D_{1},{ }^{1} P_{1}$
0	$N N \rightarrow N N$	0	-	$C^{10^{*}}$
	$N N \rightarrow N N$	1	C^{27}	-
-1	$\Lambda N \rightarrow \Lambda N$	$\frac{1}{2}$	$\frac{1}{10}\left(9 C^{27}+C^{8_{s}}\right)$	$\frac{1}{2}\left(C^{8 a}+C^{10^{*}}\right)$
	$\Lambda N \rightarrow \Sigma N$	$\frac{1}{2}$	$\frac{3}{10}\left(-C^{27}+C^{8_{s}}\right)$	$\frac{1}{2}\left(-C^{8_{a}}+C^{10^{*}}\right)$
	$\Sigma N \rightarrow \Sigma N$	$\frac{1}{2}$	$\frac{1}{10}\left(C^{27}+9 C^{8}\right)$	$\frac{1}{2}\left(C^{8 a}+C^{10^{*}}\right)$
	$\Sigma N \rightarrow \Sigma N$	$\frac{3}{2}$	C^{27}	C^{10}

S. Petschauer, N. Kaiser Nucl. Phys. A 916 (2013) I-29

Hyperon - Nucleon Interactions from Lattice QCD

$$
\boldsymbol{\Lambda} \mathbf{N}\left({ }^{\mathbf{1}} \mathbf{S}_{\mathbf{0}}\right)=\frac{9}{10}[\mathbf{2 7}]+\frac{1}{10}\left[\mathbf{8}_{\mathbf{s}}\right]
$$

 $\mathrm{m}_{\mathrm{ps}}=0.47 \mathrm{GeV}$
T. Inoue et al.
(HAL QCD)
PTP I24 (20IO) 59 I
Nucl. Phys.
A88I (2012) 28
towards physical quark masses

- note: strong short-distance repulsive interaction

BARYON－BARYON INTERACTIONS from CHIRAL EFFECTIVE FIELD THEORY

	BB interactions
LO	$x+-1$
NLO	
$\mathrm{N}^{2} \mathrm{LO}$	k－p $k=\downarrow$
$\mathrm{N}^{3} \mathrm{LO}$	

－Systematically organized hierarchy in powers of $\frac{Q}{\Lambda}$
（Q：momentum，energy，pion mass）

4 －body forces		
$\mathrm{N}^{3} \mathrm{LO}$	十个＊	「－种｜－\ldots

－NN interaction state－of－the－art： $\mathbf{N}^{4} \mathbf{L O}$ plus convergence tests at $\mathrm{N}^{5} \mathrm{LO}$
－YN interaction（limited data base）：NLO plus three－body forces

Coupled-Channels Lippmann-Schwinger Equation

- Partial waves (LS)J, baryon-baryon channels α, β

$$
\begin{aligned}
& \mathbf{T}_{\beta \alpha}^{J}\left(p_{f}, p_{i} ; \sqrt{s}\right)=\mathbf{V}_{\beta \alpha}^{J}\left(p_{f}, p_{i}\right)+ \\
& \sum_{\gamma} \int_{0}^{\infty} \frac{d p p^{2}}{(2 \pi)^{3}} \mathbf{V}_{\beta \gamma}^{J}\left(p_{f}, p\right) \frac{2 \mu_{\gamma}}{p_{\gamma}^{2}-p^{2}+i \varepsilon} \mathbf{T}_{\gamma \alpha}^{J}\left(p, p_{i} ; \sqrt{s}\right)
\end{aligned}
$$

- On-shell momentum of intermediate channel γ determined by:

$$
\sqrt{s}=\sqrt{M_{\gamma, 1}^{2}+p_{\gamma}^{2}}+\sqrt{M_{\gamma, 2}^{2}+p_{\gamma}^{2}}
$$

- Relativistic kinematics relating lab. and c.m. momenta

Hyperon - Nucleon Interaction from Chiral SU(3) EFT

- moderate attraction at low momenta
\rightarrow relevant for hypernuclei
- strong repulsion at higher momenta \rightarrow relevant for dense baryonic matter

Hyperon - Nucleon Interaction

 (contd.)- Triplet-S channel and $\boldsymbol{\Lambda} \mathbf{N} \leftrightarrow \boldsymbol{\Sigma} \mathbf{N}$ coupling (2nd order tensor force)

- In-medium (Pauli) suppression of $\boldsymbol{\Lambda} \mathbf{N} \leftrightarrow \boldsymbol{\Sigma} \mathbf{N}$ coupling : increasing repulsion with rising density

Hyperon - Nucleon Interaction (contd.)

- $\Sigma \mathrm{N}$ elastic and charge exchange scattering

- Quest for much improved hyperon-nucleon scattering data base!

Hyperon - Nucleon Interaction (contd.)

- $\mathbf{\Sigma N} \rightarrow \mathbf{N} \mathbf{N}$ reaction

- Quest for much improved hyperon-nucleon scattering data base!

> Part III
> FHyperon Interactions in Nuclear and Neutron Matter

- YNN three-body forces from Chiral SU(3) EFT
- Density dependence of
Λ-nuclear single particle potential
- Towards a solution of the "hyperon puzzle" in neutron stars ?

HYPERON - NUCLEON - NUCLEON THREE-BODY FORCES from CHIRAL SU(3) EFT

S. Petschauer et al. Phys. Rev. C93 (2016) 01400 I

- Chiral SU(3) Effective Field Theory: interacting pseudoscalar meson \& baryon octets + contact terms

- Chiral SU(3) Effective Field Theory with explicit decuplet baryons:
explicit baryon decuplet :
promotion to NLO

Decuplet Dominance in YNN three-body forces

- Estimates of YNN 3-body interactions assuming dominant decuplet $\left(\Sigma^{*}, \Delta\right)$ intermediate states

- ... much reduced set of parameters basic vertices :

Example :

Λ NN three-body interactions

transition	type	B^{*}
$N N N \rightarrow N N N$	$\pi \pi$	Δ
	$\pi \pi$	Σ^{*}
	πK	Σ^{*}
$\Lambda N N \rightarrow \Lambda N N$	$K K$	Σ^{*}
	π	Σ^{*}
	K	Σ^{*}
	ct	Σ^{*}
	$\pi \pi$	Δ, Σ^{*}
	πK	Δ, Σ^{*}
	$\pi \eta$	Σ^{*}
	$K K$	Σ^{*}
	$K \eta$	Σ^{*}
	π	Δ, Σ^{*}
	K	Σ^{*}
	η	Σ^{*}
	ct	Σ^{*}

Density-dependent EFFECTIVE HYPERON - NUCLEON INTERACTION from CHIRAL THREE-BARYON FORCES

S. Petschauer, J. Haidenbauer, N. Kaiser, U.-G. Meißner, W.W.

Nucl. Phys. A957 (2017) 347

$$
V_{12}=\sum_{B} \operatorname{tr}_{\sigma_{3}} \int_{|\vec{k}| \leq k_{f}^{B}} \frac{\mathrm{~d}^{3} k}{(2 \pi)^{3}} V_{123}
$$

- $\mathbf{\Lambda n}$ density-dependent effective interaction

$$
\begin{array}{lr}
V_{\Lambda n}^{\mathrm{eff}, \pi \pi}=\frac{C^{2} g_{A}^{2}}{2 f^{4} \Delta}\left[\rho_{n}+2 \rho_{p}\right]+\mathcal{F}\left(k_{F}^{p}, k_{F}^{n} ; p, q\right) & \text { repulsive } \\
V_{\Lambda n}^{\mathrm{eff}, \pi}=\frac{C H g_{A}}{9 f^{2} \Delta}\left[\rho_{n}+2 \rho_{p}\right]+\mathcal{G}\left(k_{F}^{p}, k_{F}^{n} ; p, q\right) & \boldsymbol{+} / \mathbf{-} \\
V_{\Lambda n}^{\mathrm{eff}, c t}=\frac{H^{2}}{18 \Delta}\left[\rho_{n}+2 \rho_{p}\right] & \text { repulsive }
\end{array}
$$

- Decuplet-octet mass difference $\quad \Delta=M_{[10]}-M_{[8]}=270 \mathrm{MeV}$
- Coupling parameters : $\quad C=\frac{3}{4} g_{A} \simeq 1 \quad-\frac{1}{f^{2}} \lesssim H \lesssim+\frac{1}{f^{2}} \quad$ (dim. arguments

Density-dependent EFFECTIVE HYPERON - NUCLEON INTERACTION from CHIRAL THREE-BARYON FORCES

S. Petschauer, J. Haidenbauer, N. Kaiser, U.-G. Meißner, W.W. NP A957 (2017) 347

- $\mathbf{\Lambda N N}$ three-body force transformed into density-dependent effective two-body interaction
- $\mathbf{n} \mathbf{n}$ effective interaction in neutron matter
- Momentum-space potentials $\quad\left(H=+\frac{1}{f^{2}}\right)$ increasing repulsion ~ proportional to density

Density dependence of $\boldsymbol{\Lambda}$ single particle potential

Λ in symmetric nuclear matter - YN two-body interactions only

Density dependence of Λ single particle potential

- Brueckner calculations using chiral SU(3) interactions

$$
\mathbf{G}(\omega)=\mathbf{V}+\mathbf{V} \frac{\mathbf{Q}}{\mathbf{e}(\omega)+\mathbf{i} \epsilon} \mathbf{G}(\omega)
$$

- ... towards a possible solution of the "hyperon puzzle"

Hyperons in the core of neutron stars?

- Quick estimate
$\mathcal{E}=\left(E_{n}+E_{\Lambda}\right) \rho$
$E_{\Lambda} \simeq \frac{3\left(k_{F}^{\Lambda}\right)^{2}}{10 M_{\Lambda}^{*}}+U_{\Lambda}(\rho)$

If \mathbf{E}_{Λ} grows as fast as

$$
\mu_{n}=\frac{\partial \mathcal{E}}{\partial \rho_{n}}
$$

with increasing density: no hyperons in n -star matter

SUMMARY

Constraints on dense baryon matter equation-of-state from neutron stars :

- very stiff EoS required!
- "non-exotic" EoS (nuclear chiral dynamics) seems to work
- hyperon puzzle:
naively adding hyperons implies far too soft EoS
Progress in constructing hyperon-nuclear interactions from Chiral SU(3) Effective Field Theory
- YN two-body interactions at NLO
- importance of $\boldsymbol{\Lambda} \mathbf{N} \leftrightarrow \boldsymbol{\Sigma} \mathbf{N}$ (2nd order pion exchange tensor force)

YNN three-body forces
Single particle potential of a Λ in nuclear and neutron matter

- moderately attractive at low density (hypernuclei)
strongly repulsive at high density
... towards solution of "hyperon problem" in neutron stars

