

Stefan Petschauer, Johann Haidenbauer, et al. :

M

Eur. Phys. J. A (2017) (arXiv: 1612.03758 [nucl-th]); Nucl. Phys. A 957 (2017) 347; Phys. Rev. C93 (2016) 014001; Eur. Phys. J. A52 (2016)15; Nucl. Phys. A915 (2013) 24

Part I: Prologue Constraínts on Equatíons of State from massíve Neutron Stars

Constraints from massive NEUTRON STARS

P.B. Demorest et al. Nature 467 (2010) 1081

PSR J1614+2230

 $M=1.97\pm0.04~M_{\odot}$

J.Antoniadis et al. Science 340 (2013) 6131

PSR J0348+0432

 $\mathbf{M} = \mathbf{2.01} \pm \mathbf{0.04} \ M_{\odot}$

Population of MILLISECOND PULSARS

CONSTRAINTS from **NEUTRON STARS**

NEUTRON STAR MATTER from **Chiral EFT** and **FRG**

Symmetry energy range: 30 - 35 MeV

Crust: SLy EoS

Chiral many-body dynamics using "conventional" (pion & nucleon) degrees of freedom is consistent with neutron star constraints

NEUTRON STAR MATTER Equation of State

... and extrapolation to PQCD limit

A. Kurkela et al. Astroph. J. 789 (2014) 127

NEUTRON STAR MATTER Equation of State

- In-medium Chiral Effective Field Theory up to 3 loops (reproducing thermodynamics of normal nuclear matter)
- **3**-flavor PNJL (chiral quark) model at high densities (incl. strange quarks)

NEUTRON STAR MATTER including **HYPERONS**

- In-medium Chiral Effective Field Theory (3-loops) plus Λ hyperons (incl. potential consistent with hypernuclei)
- 3-flavor **PNJL** model at high densities (incl. **strange** quarks)

Equation of state too soft : maximum neutron star mass too low

NEUTRON STAR MATTER including HYPERONS

Adding hyperons: equation of state far too soft "Hyperon Puzzle"

NEUTRON STAR MATTER including **HYPERONS**

Quantum Monte Carlo calculations using phenomenological hyperon-nucleon and hyperon-NN three-body interactions constrained by hypernuclei

Inclusion of hyperons: EoS too soft to support 2-solar-mass n-stars unless: strong repulsion in YN and YNN ... interactions

Part II

Hyperon - Nucleon Interactions from Chiral SU(3) Effective Field Theory

Spontaneously Broken $\label{eq:chiral} \mbox{CHIRAL} \ \mathbf{SU}(3)_{\mathbf{L}} \times \mathbf{SU}(3)_{\mathbf{R}} \ \mbox{SYMMETRY}$

NAMBU - GOLDSTONE BOSONS:

Pseudoscalar SU(3) meson octet

DECAY CONSTANTS:

$$\{\phi_a\} = \{\pi, \mathbf{K}, \bar{\mathbf{K}}, \eta_8\}$$

Chiral limit: ${f f}=86.2~{MeV}$ Order parameter : $4\pi\,{f f}\sim 1~{GeV}$

$${f f}_{\pi} = {f 92.21 \pm 0.16} \ {f MeV} \ {f f}_{K} = {f 110.5 \pm 0.5} \ {f MeV}$$

Gell-Mann, Oakes, Renner relations

$$\begin{split} m_\pi^2\,f_\pi^2 &= -\frac{m_u+m_d}{2}\langle\bar{u}u+\bar{d}d\rangle \\ m_K^2\,f_K^2 &= -\frac{m_u+m_s}{2}\langle\bar{u}u+\bar{s}s\rangle \\ \end{split}$$

Chiral ${\bf SU}(3)_{{\bf L}}\times {\bf SU}(3)_{{\bf R}}$ Effective Field Theory

- Realization of Low-Energy QCD for energies / momenta
 ${f Q} < 4\pi\,{f f} \sim 1\,{f GeV}$
- based on SU(3) Non-Linear Sigma Model plus (heavy) baryons

Chiral ${\bf SU}(3)_{{\bf L}}\times {\bf SU}(3)_{{\bf R}}$ Effective Field Theory

Starting point: Meson-Baryon Lagrangian (chiral limit)

$$\mathcal{L}_{\text{MB}} = \text{tr}\left(\bar{B}\left(i\gamma^{\mu}D_{\mu} - M_{0}\right)B\right) - \frac{D}{2}\text{tr}\left(\bar{B}\gamma^{\mu}\gamma_{5}\{u_{\mu}, B\}\right) - \frac{F}{2}\text{tr}\left(\bar{B}\gamma^{\mu}\gamma_{5}[u_{\mu}, B]\right)$$
$$P = \begin{pmatrix} \frac{\pi^{0}}{\sqrt{2}} + \frac{\eta}{\sqrt{6}} & \pi^{+} & K^{+} \\ \pi^{-} & -\frac{\pi^{0}}{\sqrt{2}} + \frac{\eta}{\sqrt{6}} & K^{0} \\ K^{-} & \bar{K}^{0} & -\frac{2\eta}{\sqrt{6}} \end{pmatrix} \qquad B = \begin{pmatrix} \frac{\Sigma^{0}}{\sqrt{2}} + \frac{\Lambda}{\sqrt{6}} & \Sigma^{+} & p \\ \Sigma^{-} & -\frac{\Sigma^{0}}{\sqrt{2}} + \frac{\Lambda}{\sqrt{6}} & n \\ -\Xi^{-} & \Xi^{0} & -\frac{2\Lambda}{\sqrt{6}} \end{pmatrix}$$

• Chiral covariant derivative: $D_{\mu}B = \partial_{\mu}B + [\Gamma_{\mu}, B]$

$$\Gamma_{\mu} = \frac{1}{2} (u^{\dagger} \partial_{\mu} u + u \partial_{\mu} u^{\dagger}) \qquad \qquad u_{\mu} = i (u^{\dagger} \partial_{\mu} u - u \partial_{\mu} u^{\dagger}),$$

Chiral (pseudoscalar Nambu-Goldstone boson) field :

$$egin{aligned} m{U}(x) = m{u}^2(x) = \exp\left(irac{\sqrt{2}P(x)}{f}
ight) & ext{transforms as} \quad m{U} o m{R} m{U} m{L}^\dagger \ m{R} \in m{SU(3)}_R & m{L} \in m{SU(3)}_L \end{aligned}$$

Chiral ${\bf SU}(3)_{{\bf L}}\times {\bf SU}(3)_{{\bf R}}$ Effective Field Theory

Interaction Lagrangian: expand in powers of meson fields P(x)

$$\mathcal{L}_{int} = \mathcal{L}_{1} + \mathcal{L}_{2} + \dots + \text{mass terms}$$

$$\mathcal{L}_{1} = -\frac{\sqrt{2}}{2f} \operatorname{tr} \left(D\bar{B}\gamma^{\mu}\gamma_{5}\{\partial_{\mu}P, B\} + F\bar{B}\gamma^{\mu}\gamma_{5}[\partial_{\mu}^{[8]}P, B] \right)^{[8]} \overset{[8]}{=} \overset{[8]$$

Input: F = 0.46 D = 0.81 $(g_A = F + D = 1.27)$ $f = 0.09 \, GeV$

Physical meson and baryon masses (SU(3) breaking)

Chiral ${\bf SU}(3)_{\bf L} \times {\bf SU}(3)_{\bf R}$ Effective Field Theory : meson-baryon vertices

$$\mathcal{L}_{1} = -f_{NN\pi}\bar{N}\gamma^{\mu}\gamma_{5}\tau N \cdot \partial_{\mu}\pi + if_{\Sigma\Sigma\pi}\bar{\Sigma}\gamma^{\mu}\gamma_{5}\times\Sigma \cdot \partial_{\mu}\pi$$

$$-f_{\Lambda\Sigma\pi}\left[\bar{\Lambda}\gamma^{\mu}\gamma_{5}\Sigma + \bar{\Sigma}\gamma^{\mu}\gamma_{5}\Lambda\right] \cdot \partial_{\mu}\pi - f_{\Xi\Xi\pi}\bar{\Xi}\gamma^{\mu}\gamma_{5}\tau\Xi \cdot \partial_{\mu}\pi$$

$$-f_{\Lambda NK}\left[\bar{N}\gamma^{\mu}\gamma_{5}\Lambda\partial_{\mu}K + \text{h.c.}\right] - f_{\Xi\Lambda K}\left[\bar{\Xi}\gamma^{\mu}\gamma_{5}\Lambda\partial_{\mu}\overline{K} + \text{h.c.}\right]$$

$$-f_{\Sigma NK}\left[\bar{N}\gamma^{\mu}\gamma_{5}\tau\partial_{\mu}K \cdot \Sigma + \text{h.c.}\right] - f_{\Sigma\Xi K}\left[\bar{\Xi}\gamma^{\mu}\gamma_{5}\tau\partial_{\mu}\overline{K} \cdot \Sigma + \text{h.c.}\right]$$

$$-[N_{N}N_{N}N_{N}\gamma^{\mu}\gamma_{5}N_{N}\partial_{\mu}\eta - f_{\Lambda\Lambda\eta_{8}}\bar{\Lambda}\gamma^{\mu}\gamma_{5}\Lambda\partial_{\mu}\eta - f_{\Sigma\Sigma\eta_{8}}\bar{\Sigma} \cdot \gamma^{\mu}\gamma_{5}\Sigma\partial_{\mu}\eta - f_{\Xi\Xi\eta_{8}}\bar{\Xi}\gamma^{\mu}\gamma_{5}\Xi\partial_{\mu}\eta$$

$$f_{NN\pi} = G \qquad f_{NN\eta_8} = \frac{1}{\sqrt{3}}(4\alpha - 1)G \qquad f_{\Lambda NK} = -\frac{1}{\sqrt{3}}(1 + 2\alpha)G f_{\Xi\Xi\pi} = -(1 - 2\alpha)G \qquad f_{\Xi\Xi\eta_8} = -\frac{1}{\sqrt{3}}(1 + 2\alpha)G \qquad f_{\Xi\Lambda K} = \frac{1}{\sqrt{3}}(4\alpha - 1)G f_{\Lambda\Sigma\pi} = \frac{2}{\sqrt{3}}(1 - \alpha)G \qquad f_{\Sigma\Sigma\eta_8} = \frac{2}{\sqrt{3}}(1 - \alpha)G \qquad f_{\Sigma NK} = (1 - 2\alpha)G f_{\Sigma\Sigma\pi} = 2\alphaG \qquad f_{\Lambda\Lambda\eta_8} = -\frac{2}{\sqrt{3}}(1 - \alpha)G \qquad f_{\Xi\Sigma K} = -G G = \frac{g_A}{2f} \simeq 7 \, GeV^{-1} \simeq 1.4 \, fm \qquad \alpha = \frac{F}{F + D} = 0.36$$

Chiral SU(3) Effective Field Theory and Hyperon-Nucleon Interactions

J. Haidenbauer, S. Petschauer, N. Kaiser, U.-G. Meißner, A. Nogga, W.W.: Nucl. Phys. A 915 (2013) 24

Ν

Λ

23

Hyperon - Nucleon Interactions from Lattice QCD

Technische Universität München

BARYON-BARYON INTERACTIONS from CHIRAL EFFECTIVE FIELD THEORY

- $^{\circ}$ NN interaction state-of-the-art: ${
 m N}^4{
 m LO}$ plus convergence tests at ${
 m N}^5{
 m LO}$
- YN interaction (limited data base): NLO plus three-body forces

Coupled-Channels Lippmann-Schwinger Equation

Partial waves (LS)J , baryon-baryon channels lpha, eta

$$\begin{aligned} \mathbf{T}_{\beta\alpha}^{J}(p_{f},p_{i};\sqrt{s}) &= \mathbf{V}_{\beta\alpha}^{J}(p_{f},p_{i}) + \\ &\sum_{\gamma} \int_{0}^{\infty} \frac{dp \, p^{2}}{(2\pi)^{3}} \mathbf{V}_{\beta\gamma}^{J}(p_{f},p) \frac{2\mu_{\gamma}}{p_{\gamma}^{2} - p^{2} + i\varepsilon} \mathbf{T}_{\gamma\alpha}^{J}(p,p_{i};\sqrt{s}) \end{aligned}$$

 \circ On-shell momentum of intermediate channel γ determined by :

$$\sqrt{s} = \sqrt{M_{\gamma,1}^2 + p_{\gamma}^2} + \sqrt{M_{\gamma,2}^2 + p_{\gamma}^2}$$

Relativistic kinematics relating lab. and c.m. momenta

Hyperon - Nucleon Interaction from Chiral SU(3) EFT

Technische Universität München

Hyperon - Nucleon Interaction (contd.)

Triplet-S channel and $\operatorname{\Lambda}\mathrm{N}\leftrightarrow \Sigma\operatorname{N}$ coupling (2nd order tensor force)

In-medium (Pauli) suppression of Λ N \leftrightarrow Σ N coupling : increasing repulsion with rising density

Hyperon - Nucleon Interaction (contd.)

J. Haidenbauer, S. Petschauer, N. Kaiser, U.-G. Meißner, A. Nogga, W.W. Nucl. Phys. A 915 (2013) 24

Σ Σ N elastic and charge exchange scattering

Quest for much improved hyperon-nucleon scattering data base !

Hyperon - Nucleon Interaction (contd.)

J. Haidenbauer, S. Petschauer, N. Kaiser, U.-G. Meißner, A. Nogga, W.W. Nucl. Phys. A 915 (2013) 24

• $\mathbf{\Sigma}\mathbf{N} ightarrow \mathbf{\Lambda}\mathbf{N}$ reaction

Quest for much improved hyperon-nucleon scattering data base !

Part III

Hyperon Interactions

ín Nuclear and Neutron Matter

YNN three-body forces from Chiral SU(3) EFT

Density dependence of A-nuclear single particle potential

Towards a solution of the "hyperon puzzle" in neutron stars ?

HYPERON - NUCLEON - NUCLEON THREE-BODY FORCES from CHIRAL SU(3) EFT

S. Petschauer et al. Phys. Rev. C93 (2016) 014001

Chiral SU(3) Effective Field Theory:

interacting pseudoscalar meson & baryon octets + contact terms

Chiral SU(3) Effective Field Theory with explicit decuplet baryons:

yon force including decuplet baryons Three baryon force including decuplet baryons Three-baryon force including decuplet baryons

3B Force with decuplet baryons

luding decuplet baryons

Source including $N \land N$ aryon force in force

Density-dependent EFFECTIVE HYPERON - NUCLEON INTERACTION from CHIRAL THREE-BARYON FORCES

4

3.5

2.5

1.5

 $0.5 \\ 0$

2.0

1.5

1.0

p [fm⁻¹]

3

2

1

3

3.5 E

S. Petschauer, J. Haidenbauer, N. Kaiser, U.-G. Meißner, W: 500 + 100 + 100 = 0.5NP A957 (2017) 347

 ANN three-body force transformed int density-dependent effective two-body interaction

Density dependence of Λ single particle potential

 Λ in symmetric nuclear matter - YN two-body interactions only

Density dependence of Λ single particle potential

... towards a possible solution of the "hyperon puzzle"

SUMMARY

Constraints on dense baryon matter equation-of-state from neutron stars :

- very stiff EoS required !
- "non-exotic" EoS (nuclear chiral dynamics) seems to work
- hyperon puzzle: naively adding hyperons implies far too soft EoS

Progress in constructing hyperon-nuclear interactions from Chiral SU(3) Effective Field Theory

- YN two-body interactions at NLO
- importance of $\mathbf{\Lambda}\,\mathbf{N}\leftrightarrow \mathbf{\Sigma}\,\mathbf{N}$ (2nd order pion exchange tensor force)
- YNN three-body forces

- Single particle potential of a Λ in nuclear and neutron matter
- moderately attractive at low density (hypernuclei)
- strongly repulsive at high density
 - ... towards solution of "hyperon problem" in neutron stars

