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direct measurement of

neutron star mass from

increase in travel time

near companion

J1614-2230

most edge-on binary

pulsar known (89.17°)

+ massive white dwarf

companion (0.5 Msun)

heaviest neutron star

with 1.97±0.04 Msun

Nature, Oct. 28, 2010

J. Antoniadis et al. 
Science 340 (2013) 6131

  Constraints  from  massive NEUTRON STARS

M = 2.01 ± 0.04

Many physically motivated extensions to general relativity (GR) predict sig-
nificant deviations in the properties of spacetime surrounding massive neu-
tron stars. We report the measurement of a 2.01±0.04 solar mass (M⇥) pul-
sar in a 2.46-hr orbit with a 0.172±0.003 M⇥ white dwarf. The high pulsar
mass and the compact orbit make this system a sensitive laboratory of a pre-
viously untested strong-field gravity regime. Thus far, the observed orbital
decay agrees with GR, supporting its validity even for the extreme conditions
present in the system. The resulting constraints on deviations support the use
of GR-based templates for ground-based gravitational wave detectors. Addi-
tionally, the system strengthens recent constraints on the properties of dense
matter and provides insight to binary stellar astrophysics and pulsar recycling.

Neutron stars (NSs) with masses above 1.8 M⇥ manifested as radio pulsars are valuable
probes of fundamental physics in extreme conditions unique in the observable Universe and
inaccessible to terrestrial experiments. Their high masses are directly linked to the equation-
of-state (EOS) of matter at supra-nuclear densities (1, 2) and constrain the lower mass limit
for production of astrophysical black holes (BHs). Furthermore, they possess extreme internal
gravitational fields which result in gravitational binding energies substantially higher than those
found in more common, 1.4 M⇥ NSs. Modifications to GR, often motivated by the desire for
a unified model of the four fundamental forces, can generally imprint measurable signatures in
gravitational waves (GWs) radiated by systems containing such objects, even if deviations from
GR vanish in the Solar System and in less massive NSs (3–5).

However, the most massive NSs known today reside in long-period binaries or other systems
unsuitable for GW radiation tests. Identifying a massive NS in a compact, relativistic binary
is thus of key importance for understanding gravity-matter coupling under extreme conditions.
Furthermore, the existence of a massive NS in a relativistic orbit can also be used to test current
knowledge of close binary evolution.

Results
PSR J0348+0432 & optical observations of its companion PSR J0348+0432, a pulsar spin-
ning at 39 ms in a 2.46-hr orbit with a low-mass companion, was detected by a recent sur-
vey (6, 7) conducted with the Robert C. Byrd Green Bank Telescope (GBT). Initial timing ob-
servations of the binary yielded an accurate astrometric position, which allowed us to identify
its optical counterpart in the Sloan Digital Sky Survey (SDSS) archive (8). The colors and flux
of the counterpart are consistent with a low-mass white dwarf (WD) with a helium core at a dis-
tance of d ⇤ 2.1 kpc. Its relatively high apparent brightness (g⌅ = 20.71 ± 0.03 mag) allowed us
to resolve its spectrum using the Apache Point Optical Telescope. These observations revealed
deep Hydrogen lines, typical of low-mass WDs, confirming our preliminary identification. The
radial velocities of the WD mirrored that of PSR J0348+0432, also verifying that the two stars
are gravitationally bound.
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PSR J0348+0432

P.B. Demorest et al. 
Nature 467 (2010) 1081

Shapiro delay measurement

PSR J1614+2230

Many physically motivated extensions to general relativity (GR) predict sig-
nificant deviations in the properties of spacetime surrounding massive neu-
tron stars. We report the measurement of a 2.01±0.04 solar mass (M⇥) pul-
sar in a 2.46-hr orbit with a 0.172±0.003 M⇥ white dwarf. The high pulsar
mass and the compact orbit make this system a sensitive laboratory of a pre-
viously untested strong-field gravity regime. Thus far, the observed orbital
decay agrees with GR, supporting its validity even for the extreme conditions
present in the system. The resulting constraints on deviations support the use
of GR-based templates for ground-based gravitational wave detectors. Addi-
tionally, the system strengthens recent constraints on the properties of dense
matter and provides insight to binary stellar astrophysics and pulsar recycling.

Neutron stars (NSs) with masses above 1.8 M⇥ manifested as radio pulsars are valuable
probes of fundamental physics in extreme conditions unique in the observable Universe and
inaccessible to terrestrial experiments. Their high masses are directly linked to the equation-
of-state (EOS) of matter at supra-nuclear densities (1, 2) and constrain the lower mass limit
for production of astrophysical black holes (BHs). Furthermore, they possess extreme internal
gravitational fields which result in gravitational binding energies substantially higher than those
found in more common, 1.4 M⇥ NSs. Modifications to GR, often motivated by the desire for
a unified model of the four fundamental forces, can generally imprint measurable signatures in
gravitational waves (GWs) radiated by systems containing such objects, even if deviations from
GR vanish in the Solar System and in less massive NSs (3–5).

However, the most massive NSs known today reside in long-period binaries or other systems
unsuitable for GW radiation tests. Identifying a massive NS in a compact, relativistic binary
is thus of key importance for understanding gravity-matter coupling under extreme conditions.
Furthermore, the existence of a massive NS in a relativistic orbit can also be used to test current
knowledge of close binary evolution.

Results
PSR J0348+0432 & optical observations of its companion PSR J0348+0432, a pulsar spin-
ning at 39 ms in a 2.46-hr orbit with a low-mass companion, was detected by a recent sur-
vey (6, 7) conducted with the Robert C. Byrd Green Bank Telescope (GBT). Initial timing ob-
servations of the binary yielded an accurate astrometric position, which allowed us to identify
its optical counterpart in the Sloan Digital Sky Survey (SDSS) archive (8). The colors and flux
of the counterpart are consistent with a low-mass white dwarf (WD) with a helium core at a dis-
tance of d ⇤ 2.1 kpc. Its relatively high apparent brightness (g⌅ = 20.71 ± 0.03 mag) allowed us
to resolve its spectrum using the Apache Point Optical Telescope. These observations revealed
deep Hydrogen lines, typical of low-mass WDs, confirming our preliminary identification. The
radial velocities of the WD mirrored that of PSR J0348+0432, also verifying that the two stars
are gravitationally bound.

2
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A two-solar-mass neutron star measured using
Shapiro delay
P. B. Demorest1, T. Pennucci2, S. M. Ransom1, M. S. E. Roberts3 & J. W. T. Hessels4,5

Neutron stars are composed of the densest form of matter known
to exist in our Universe, the composition and properties of which
are still theoretically uncertain. Measurements of the masses or
radii of these objects can strongly constrain the neutron starmatter
equation of state and rule out theoretical models of their composi-
tion1,2. The observed range of neutron star masses, however, has
hitherto been too narrow to rule out many predictions of ‘exotic’
non-nucleonic components3–6. The Shapiro delay is a general-relat-
ivistic increase in light travel time through the curved space-time
near a massive body7. For highly inclined (nearly edge-on) binary
millisecond radio pulsar systems, this effect allows us to infer the
masses of both the neutron star and its binary companion to high
precision8,9. Here we present radio timing observations of the binary
millisecond pulsar J1614-223010,11 that show a strong Shapiro delay
signature.We calculate the pulsarmass to be (1.976 0.04)M[, which
rules out almost all currently proposed2–5 hyperon or boson con-
densate equations of state (M[, solar mass). Quark matter can sup-
port a star thismassive only if the quarks are strongly interacting and
are therefore not ‘free’ quarks12.
In March 2010, we performed a dense set of observations of J1614-

2230 with the National Radio Astronomy Observatory Green Bank
Telescope (GBT), timed to follow the system through one complete
8.7-d orbit with special attention paid to the orbital conjunction, where
theShapirodelay signal is strongest.Thesedatawere takenwith thenewly
built Green Bank Ultimate Pulsar Processing Instrument (GUPPI).
GUPPI coherently removes interstellar dispersive smearing from the
pulsar signal and integrates the data modulo the current apparent pulse
period, producing a set of average pulse profiles, or flux-versus-rota-
tional-phase light curves. From these, we determined pulse times of
arrival using standard procedures, with a typical uncertainty of,1ms.
We used themeasured arrival times to determine key physical para-

meters of the neutron star and its binary system by fitting them to a
comprehensive timing model that accounts for every rotation of the
neutron star over the time spanned by the fit. The model predicts at
what times pulses should arrive at Earth, taking into account pulsar
rotation and spin-down, astrometric terms (sky position and proper
motion), binary orbital parameters, time-variable interstellar disper-
sion and general-relativistic effects such as the Shapiro delay (Table 1).
We compared the observed arrival times with the model predictions,
and obtained best-fit parameters by x2 minimization, using the
TEMPO2 software package13. We also obtained consistent results
using the original TEMPO package. The post-fit residuals, that is,
the differences between the observed and the model-predicted pulse
arrival times, effectively measure how well the timing model describes
the data, and are shown in Fig. 1. We included both a previously
recorded long-term data set and our new GUPPI data in a single fit.
The long-term data determine model parameters (for example spin-
down rate and astrometry) with characteristic timescales longer than
a few weeks, whereas the new data best constrain parameters on
timescales of the orbital period or less. Additional discussion of the

long-termdata set, parameter covariance and dispersionmeasure vari-
ation can be found in Supplementary Information.
As shown in Fig. 1, the Shapiro delay was detected in our data with

extremely high significance, and must be included to model the arrival
times of the radio pulses correctly.However, estimating parameter values
and uncertainties can be difficult owing to the high covariance between
many orbital timing model terms14. Furthermore, the x2 surfaces for the
Shapiro-derived companionmass (M2) and inclination angle (i) are often
significantly curved or otherwise non-Gaussian15. To obtain robust error
estimates, we used a Markov chain Monte Carlo (MCMC) approach to
explore the post-fitx2 space andderive posterior probability distributions
for all timing model parameters (Fig. 2). Our final results for the model

1National Radio Astronomy Observatory, 520 Edgemont Road, Charlottesville, Virginia 22093, USA. 2Astronomy Department, University of Virginia, Charlottesville, Virginia 22094-4325, USA. 3Eureka
Scientific, Inc., Oakland, California 94602, USA. 4Netherlands Institute for Radio Astronomy (ASTRON), Postbus 2, 7990 AA Dwingeloo, The Netherlands. 5Astronomical Institute ‘‘Anton Pannekoek’’,
University of Amsterdam, 1098 SJ Amsterdam, The Netherlands.

Table 1 | Physical parameters for PSR J1614-2230
Parameter Value

Ecliptic longitude (l) 245.78827556(5)u
Ecliptic latitude (b) 21.256744(2)u
Proper motion in l 9.79(7)mas yr21

Proper motion in b 230(3)mas yr21

Parallax 0.5(6)mas
Pulsar spin period 3.1508076534271(6)ms
Period derivative 9.6216(9) 310221 s s21

Reference epoch (MJD) 53,600
Dispersion measure* 34.4865pc cm23

Orbital period 8.6866194196(2) d
Projected semimajor axis 11.2911975(2) light s
First Laplace parameter (esinv) 1.1(3) 31027

Second Laplace parameter (ecosv) 21.29(3) 31026

Companion mass 0.500(6)M[
Sine of inclination angle 0.999894(5)
Epoch of ascending node (MJD) 52,331.1701098(3)
Span of timing data (MJD) 52,469–55,330
Number of TOAs{ 2,206 (454, 1,752)
Root mean squared TOA residual 1.1 ms

Right ascension (J2000) 16h 14min 36.5051(5) s
Declination (J2000) 222u 309 31.081(7)99
Orbital eccentricity (e) 1.30(4) 31026

Inclination angle 89.17(2)u
Pulsar mass 1.97(4)M[
Dispersion-derived distance{ 1.2 kpc
Parallax distance .0.9 kpc
Surface magnetic field 1.8 3108G
Characteristic age 5.2Gyr
Spin-down luminosity 1.2 31034 erg s21

Average flux density* at 1.4GHz 1.2mJy
Spectral index, 1.1–1.9GHz 21.9(1)
Rotation measure 228.0(3) radm22

Timingmodel parameters (top), quantities derived from timingmodel parameter values (middle) and
radio spectral and interstellar medium properties (bottom). Values in parentheses represent the 1s
uncertainty in the final digit, asdeterminedbyMCMCerror analysis. The fit includedboth ‘long-term’ data
spanning seven years and new GBT–GUPPI data spanning three months. The new data were observed
using an800-MHz-wide band centred at a radio frequency of 1.5GHz. The rawprofileswere polarization-
and flux-calibrated and averaged into 100-MHz, 7.5-min intervals using the PSRCHIVE software
package25, from which pulse times of arrival (TOAs) were determined. MJD, modified Julian date.
*These quantities vary stochastically on>1-d timescales. Values presented here are the averages for
our GUPPI data set.
{Shown in parentheses are separate values for the long-term (first) and new (second) data sets.
{Calculated using the NE2001 pulsar distance model26.
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parameters, withMCMC error estimates, are given in Table 1. Owing to
the high significance of this detection, our MCMC procedure and a
standard x2 fit produce similar uncertainties.
From the detected Shapiro delay, we measure a companion mass of

(0.50060.006)M[, which implies that the companion is a helium–
carbon–oxygenwhite dwarf16. The Shapiro delay also shows the binary

system to be remarkably edge-on, with an inclination of 89.17u6 0.02u.
This is the most inclined pulsar binary system known at present. The
amplitude and sharpness of the Shapiro delay increase rapidly with
increasing binary inclination and the overall scaling of the signal is
linearly proportional to the mass of the companion star. Thus, the
unique combination of the high orbital inclination and massive white
dwarf companion in J1614-2230 cause a Shapiro delay amplitude
orders of magnitude larger than for most other millisecond pulsars.
In addition, the excellent timing precision achievable from the pulsar
with the GBT and GUPPI provide a very high signal-to-noise ratio
measurement of both Shapiro delay parameters within a single orbit.
The standardKeplerian orbital parameters, combinedwith the known

companionmass and orbital inclination, fully describe the dynamics of a
‘clean’ binary system—one comprising two stable compact objects—
under general relativity and therefore also determine the pulsar’s mass.
Wemeasure a pulsar mass of (1.976 0.04)M[, which is by far the high-
est preciselymeasured neutron star mass determined to date. In contrast
with X-ray-based mass/radius measurements17, the Shapiro delay pro-
videsno informationabout theneutron star’s radius.However, unlike the
X-ray methods, our result is nearly model independent, as it depends
only on general relativity being an adequate description of gravity.
In addition, unlike statistical pulsar mass determinations based on
measurement of the advance of periastron18–20, pure Shapiro delay mass
measurements involve no assumptions about classical contributions to
periastron advance or the distribution of orbital inclinations.
The mass measurement alone of a 1.97M[ neutron star signifi-

cantly constrains the nuclear matter equation of state (EOS), as shown
in Fig. 3. Any proposed EOS whose mass–radius track does not inter-
sect the J1614-2230 mass line is ruled out by this measurement. The
EOSs that produce the lowestmaximummasses tend to be thosewhich
predict significant softening past a certain central density. This is a
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Figure 1 | Shapiro delay measurement for PSR
J1614-2230. Timing residual—the excess delay
not accounted for by the timing model—as a
function of the pulsar’s orbital phase. a, Full
magnitude of the Shapiro delay when all other
model parameters are fixed at their best-fit values.
The solid line shows the functional form of the
Shapiro delay, and the red points are the 1,752
timingmeasurements in ourGBT–GUPPI data set.
The diagrams inset in this panel show top-down
schematics of the binary system at orbital phases of
0.25, 0.5 and 0.75 turns (from left to right). The
neutron star is shown in red, the white dwarf
companion in blue and the emitted radio beam,
pointing towards Earth, in yellow. At orbital phase
of 0.25 turns, the Earth–pulsar line of sight passes
nearest to the companion (,240,000 km),
producing the sharp peak in pulse delay.We found
no evidence for any kind of pulse intensity
variations, as from an eclipse, near conjunction.
b, Best-fit residuals obtained using an orbitalmodel
that does not account for general-relativistic effects.
In this case, some of the Shapiro delay signal is
absorbed by covariant non-relativistic model
parameters. That these residuals deviate
significantly from a random, Gaussian distribution
of zero mean shows that the Shapiro delay must be
included to model the pulse arrival times properly,
especially at conjunction. In addition to the red
GBT–GUPPI points, the 454 grey points show the
previous ‘long-term’ data set. The drastic
improvement in data quality is apparent. c, Post-fit
residuals for the fully relativistic timing model
(including Shapiro delay), which have a root mean
squared residual of 1.1ms and a reduced x2 value of
1.4 with 2,165 degrees of freedom. Error bars, 1s.
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Figure 2 | Results of theMCMCerror analysis. a, Grey-scale image shows the
two-dimensional posterior probability density function (PDF) in theM2–i
plane, computed from a histogram ofMCMC trial values. The ellipses show 1s
and 3s contours based on a Gaussian approximation to the MCMC results.
b, PDF for pulsar mass derived from the MCMC trials. The vertical lines show
the 1s and 3s limits on the pulsar mass. In both cases, the results are very well
described by normal distributions owing to the extremely high signal-to-noise
ratio of our Shapiro delay detection. Unlike secular orbital effects (for example
precession of periastron), the Shapiro delay does not accumulate over time, so
the measurement uncertainty scales simply as T21/2, where T is the total
observing time. Therefore, we are unlikely to see a significant improvement on
these results with currently available telescopes and instrumentation.
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parameters, withMCMC error estimates, are given in Table 1. Owing to
the high significance of this detection, our MCMC procedure and a
standard x2 fit produce similar uncertainties.
From the detected Shapiro delay, we measure a companion mass of

(0.50060.006)M[, which implies that the companion is a helium–
carbon–oxygenwhite dwarf16. The Shapiro delay also shows the binary

system to be remarkably edge-on, with an inclination of 89.17u6 0.02u.
This is the most inclined pulsar binary system known at present. The
amplitude and sharpness of the Shapiro delay increase rapidly with
increasing binary inclination and the overall scaling of the signal is
linearly proportional to the mass of the companion star. Thus, the
unique combination of the high orbital inclination and massive white
dwarf companion in J1614-2230 cause a Shapiro delay amplitude
orders of magnitude larger than for most other millisecond pulsars.
In addition, the excellent timing precision achievable from the pulsar
with the GBT and GUPPI provide a very high signal-to-noise ratio
measurement of both Shapiro delay parameters within a single orbit.
The standardKeplerian orbital parameters, combinedwith the known

companionmass and orbital inclination, fully describe the dynamics of a
‘clean’ binary system—one comprising two stable compact objects—
under general relativity and therefore also determine the pulsar’s mass.
Wemeasure a pulsar mass of (1.976 0.04)M[, which is by far the high-
est preciselymeasured neutron star mass determined to date. In contrast
with X-ray-based mass/radius measurements17, the Shapiro delay pro-
videsno informationabout theneutron star’s radius.However, unlike the
X-ray methods, our result is nearly model independent, as it depends
only on general relativity being an adequate description of gravity.
In addition, unlike statistical pulsar mass determinations based on
measurement of the advance of periastron18–20, pure Shapiro delay mass
measurements involve no assumptions about classical contributions to
periastron advance or the distribution of orbital inclinations.
The mass measurement alone of a 1.97M[ neutron star signifi-

cantly constrains the nuclear matter equation of state (EOS), as shown
in Fig. 3. Any proposed EOS whose mass–radius track does not inter-
sect the J1614-2230 mass line is ruled out by this measurement. The
EOSs that produce the lowestmaximummasses tend to be thosewhich
predict significant softening past a certain central density. This is a
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Figure 1 | Shapiro delay measurement for PSR
J1614-2230. Timing residual—the excess delay
not accounted for by the timing model—as a
function of the pulsar’s orbital phase. a, Full
magnitude of the Shapiro delay when all other
model parameters are fixed at their best-fit values.
The solid line shows the functional form of the
Shapiro delay, and the red points are the 1,752
timingmeasurements in ourGBT–GUPPI data set.
The diagrams inset in this panel show top-down
schematics of the binary system at orbital phases of
0.25, 0.5 and 0.75 turns (from left to right). The
neutron star is shown in red, the white dwarf
companion in blue and the emitted radio beam,
pointing towards Earth, in yellow. At orbital phase
of 0.25 turns, the Earth–pulsar line of sight passes
nearest to the companion (,240,000 km),
producing the sharp peak in pulse delay.We found
no evidence for any kind of pulse intensity
variations, as from an eclipse, near conjunction.
b, Best-fit residuals obtained using an orbitalmodel
that does not account for general-relativistic effects.
In this case, some of the Shapiro delay signal is
absorbed by covariant non-relativistic model
parameters. That these residuals deviate
significantly from a random, Gaussian distribution
of zero mean shows that the Shapiro delay must be
included to model the pulse arrival times properly,
especially at conjunction. In addition to the red
GBT–GUPPI points, the 454 grey points show the
previous ‘long-term’ data set. The drastic
improvement in data quality is apparent. c, Post-fit
residuals for the fully relativistic timing model
(including Shapiro delay), which have a root mean
squared residual of 1.1ms and a reduced x2 value of
1.4 with 2,165 degrees of freedom. Error bars, 1s.
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Figure 2 | Results of theMCMCerror analysis. a, Grey-scale image shows the
two-dimensional posterior probability density function (PDF) in theM2–i
plane, computed from a histogram ofMCMC trial values. The ellipses show 1s
and 3s contours based on a Gaussian approximation to the MCMC results.
b, PDF for pulsar mass derived from the MCMC trials. The vertical lines show
the 1s and 3s limits on the pulsar mass. In both cases, the results are very well
described by normal distributions owing to the extremely high signal-to-noise
ratio of our Shapiro delay detection. Unlike secular orbital effects (for example
precession of periastron), the Shapiro delay does not accumulate over time, so
the measurement uncertainty scales simply as T21/2, where T is the total
observing time. Therefore, we are unlikely to see a significant improvement on
these results with currently available telescopes and instrumentation.
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parameters, withMCMC error estimates, are given in Table 1. Owing to
the high significance of this detection, our MCMC procedure and a
standard x2 fit produce similar uncertainties.
From the detected Shapiro delay, we measure a companion mass of

(0.50060.006)M[, which implies that the companion is a helium–
carbon–oxygenwhite dwarf16. The Shapiro delay also shows the binary

system to be remarkably edge-on, with an inclination of 89.17u6 0.02u.
This is the most inclined pulsar binary system known at present. The
amplitude and sharpness of the Shapiro delay increase rapidly with
increasing binary inclination and the overall scaling of the signal is
linearly proportional to the mass of the companion star. Thus, the
unique combination of the high orbital inclination and massive white
dwarf companion in J1614-2230 cause a Shapiro delay amplitude
orders of magnitude larger than for most other millisecond pulsars.
In addition, the excellent timing precision achievable from the pulsar
with the GBT and GUPPI provide a very high signal-to-noise ratio
measurement of both Shapiro delay parameters within a single orbit.
The standardKeplerian orbital parameters, combinedwith the known

companionmass and orbital inclination, fully describe the dynamics of a
‘clean’ binary system—one comprising two stable compact objects—
under general relativity and therefore also determine the pulsar’s mass.
Wemeasure a pulsar mass of (1.976 0.04)M[, which is by far the high-
est preciselymeasured neutron star mass determined to date. In contrast
with X-ray-based mass/radius measurements17, the Shapiro delay pro-
videsno informationabout theneutron star’s radius.However, unlike the
X-ray methods, our result is nearly model independent, as it depends
only on general relativity being an adequate description of gravity.
In addition, unlike statistical pulsar mass determinations based on
measurement of the advance of periastron18–20, pure Shapiro delay mass
measurements involve no assumptions about classical contributions to
periastron advance or the distribution of orbital inclinations.
The mass measurement alone of a 1.97M[ neutron star signifi-

cantly constrains the nuclear matter equation of state (EOS), as shown
in Fig. 3. Any proposed EOS whose mass–radius track does not inter-
sect the J1614-2230 mass line is ruled out by this measurement. The
EOSs that produce the lowestmaximummasses tend to be thosewhich
predict significant softening past a certain central density. This is a
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Figure 1 | Shapiro delay measurement for PSR
J1614-2230. Timing residual—the excess delay
not accounted for by the timing model—as a
function of the pulsar’s orbital phase. a, Full
magnitude of the Shapiro delay when all other
model parameters are fixed at their best-fit values.
The solid line shows the functional form of the
Shapiro delay, and the red points are the 1,752
timingmeasurements in ourGBT–GUPPI data set.
The diagrams inset in this panel show top-down
schematics of the binary system at orbital phases of
0.25, 0.5 and 0.75 turns (from left to right). The
neutron star is shown in red, the white dwarf
companion in blue and the emitted radio beam,
pointing towards Earth, in yellow. At orbital phase
of 0.25 turns, the Earth–pulsar line of sight passes
nearest to the companion (,240,000 km),
producing the sharp peak in pulse delay.We found
no evidence for any kind of pulse intensity
variations, as from an eclipse, near conjunction.
b, Best-fit residuals obtained using an orbitalmodel
that does not account for general-relativistic effects.
In this case, some of the Shapiro delay signal is
absorbed by covariant non-relativistic model
parameters. That these residuals deviate
significantly from a random, Gaussian distribution
of zero mean shows that the Shapiro delay must be
included to model the pulse arrival times properly,
especially at conjunction. In addition to the red
GBT–GUPPI points, the 454 grey points show the
previous ‘long-term’ data set. The drastic
improvement in data quality is apparent. c, Post-fit
residuals for the fully relativistic timing model
(including Shapiro delay), which have a root mean
squared residual of 1.1ms and a reduced x2 value of
1.4 with 2,165 degrees of freedom. Error bars, 1s.
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observing time. Therefore, we are unlikely to see a significant improvement on
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Mmax = 1.65M� � 1.97± 0.04 M�

Calculation of neutron star properties require EOS up to high densities.

Strategy: 
Use observations to constrain the high-density part of the nuclear EOS.

High-density constraints from observations:

Fig. 1. Radial velocities and spectrum of the white dwarf companion
to PSR J0348+0432. (A) Radial velocities of the WD companion to PSR
J0348+0432 plotted against the orbital phase (shown twice for clarity). Over-
plotted is the best-fit orbit of the WD (blue line) and the mirror orbit of the
pulsar (green). Error bars indicate 1-s confidence intervals. (B) Details of the
fit to the Balmer lines (Hb to H12) in the average spectrumof theWD companion

to PSR J0348+0432 created by the coherent addition of 26 individual spectra
shifted to zero velocity. Lines from Hb (bottom) to H12 are shown. The red
solid lines are the best-fit atmospheric model (see text). Two models, one with
Teff = 9900 K and log10g = 5.70 and one with Teff = 10,200 K and log10 g =
6.30, each ∼ 3-s off from the best-fit central value (including systematics), are
shown for comparison (dashed blue lines).

Fig. 2. Mass measurement of the white dwarf companion to PSR
J0348+0432. (A) Constraints on Teff and g for the WD companion to PSR
J0348+0432 compared with theoretical WD models. The shaded areas depict
the c2 − c2min = 2.3, 6.2, and 11.8 intervals (equivalent to 1-, 2-, and 3-s) of
our fit to the average spectrum. Dashed lines show the detailed theoretical

cooling models of (11). Continuous lines depict tracks with thick envelopes for
masses up to ∼0.2M◉ that yield the most conservative constraints for the mass
of the WD. (B) Finite-temperature mass-radius relations for our models to-
gether with the constraints imposed from modeling of the spectrum. Low
mass–high temperature points are an extrapolation from lower temperatures.
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A Massive Pulsar in a 

Compact Relativistic Binary

John Antoniadis,* Paulo C. C. Freire, Norbert Wex, Thomas M. Tauris, Ryan S. Lynch, 
Marten H. van Kerkwijk, Michael Kramer, Cees Bassa, Vik S. Dhillon, Thomas Driebe, 
Jason W. T. Hessels, Victoria M. Kaspi, Vladislav I. Kondratiev, Norbert Langer, 
Thomas R. Marsh, Maura A. McLaughlin, Timothy T. Pennucci, Scott M. Ransom, 
Ingrid H. Stairs, Joeri van Leeuwen, Joris P. W. Verbiest, David G. Whelan

Introduction: Neutron stars with masses above 1.8 solar masses (M�), possess extreme gravitational 
fi elds, which may give rise to phenomena outside general relativity. Hitherto, these strong-fi eld devia-
tions have not been probed by experiment, because they become observable only in tight binaries 
containing a high-mass pulsar and where orbital decay resulting from emission of gravitational waves 
can be tested. Understanding the origin of such a system would also help to answer fundamental ques-
tions of close-binary evolution.

Methods: We report on radio-timing observations of the pulsar J0348+0432 and phase-resolved 
optical spectroscopy of its white-dwarf companion, which is in a 2.46-hour orbit. We used these to 
derive the component masses and orbital parameters, infer the system’s motion, and constrain its age.

Results: We fi nd that the white dwarf has a mass of 0.172 ± 0.003 M�, which, combined with orbital 
velocity measurements, yields a pulsar mass of 2.01 ± 0.04 M�. Additionally, over a span of 2 years, 
we observed a signifi cant decrease in the orbital period, P�b

obs = –8.6 ± 1.4 µs year�1 in our radio-
timing data.

Discussion: Pulsar J0348+0432 is only the second neutron star with a precisely determined mass 
of 2 M� and independently confi rms the existence of such massive neutron stars in nature. For these 

masses and orbital period, general relativity 
predicts a significant orbital decay, which 
matches the observed value, P�b

obs/ P�b
GR = 1.05 

± 0.18.
The pulsar has a gravitational binding 

energy 60% higher than other known neu-
tron stars in binaries where gravitational-
wave damping has been detected. Because 
the magnitude of strong-field deviations 
generally depends nonlinearly on the bind-
ing energy, the measurement of orbital 
decay transforms the system into a gravita-
tional laboratory for an as-yet untested grav-
ity regime. The consistency of the observed 
orbital decay with general relativity  therefore 
supports its validity, even for such extreme 
gravity-matter couplings, and rules out 
strong-fi eld phenomena predicted by physi-
cally well-motivated alternatives. Moreover, 
our result supports the use of general rela-
tivity–based templates for the detection of 
gravitational waves from merger events with 
advanced ground-based detectors.

Lastly, the system provides insight into 
pulsar-spin evolution after mass accretion. 
Because of its short merging time scale of 
400 megayears, the system is a direct chan-
nel for the formation of an ultracompact x-ray 
binary, possibly leading to a pulsar-planet 
system or the formation of a black hole.

Artist’s impression of the PSR J0348+0432 system. 
The compact pulsar (with beams of radio emission) produces 
a strong distortion of spacetime (illustrated by the green 
mesh). Conversely, spacetime around its white dwarf com-
panion (in light blue) is substantially less curved. According 
to relativistic theories of gravity, the binary system is subject 
to energy loss by gravitational waves.
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companionwith awell-determinedmass of 0.20M◉
(15) that appears to be hot (10), suggesting that its
envelope is thick. For this reason, we base the
WD mass estimate on cooling tracks with thick
hydrogen atmospheres for masses up to 0.2M◉,
which we constructed by using the MESA stellar
evolution code (8, 16). Initial models were built
for masses identical to the ones in (11), for which
previous comparisons have yielded good agree-
ment with observations (14), with the addition
of tracks with 0.175 and 0.185 M◉ for finer
coverage (Fig. 2). For masses up to 0.169M◉, our
models show excellent agreement with (11);
however, our 0.196 M◉ model is quite different,
because it has a thick envelope instead of a thin
one. Being closer to the constraints for the WD
companion to PSR J0348+0432, it yields a more
conservative mass constraint, MWD = 0.165 to
0.185 at 99.73% confidence (Fig. 3 and Table 1),
which we adopt. The corresponding radius is
RWD = 0.046 to 0.092 R◉ at 99.73% confidence.
Our models yield a cooling age of tcool ∼ 2 Gy.

Pulsar Mass
The derived WD mass and the observed mass
ratio q imply a NSmass in the range from 1.97 to
2.05M◉ at 68.27% or 1.90 to 2.18M◉ at 99.73%
confidence. Hence, PSR J0348+0432 is only the
second NS with a precisely determined mass
around 2M◉, after PSR J1614−2230 (2). It has a
3-s lower mass limit 0.05M◉ higher than the latter
and therefore provides a verification, using a dif-
ferent method, of the constraints on the EOS of
superdense matter present in NS interiors (2, 17).
For these masses and the known orbital period,
GR predicts that the orbital period should decrease

at the rate of P
:GR
b ¼ ð−2:58þ0:07

−0:11 Þ % 10−13 s s−1

(68.27%confidence) because of energy loss through
GW emission.

Radio Observations
Since April 2011, we have been observing PSR
J0348+0432 with the 1.4-GHz receiver of the
305-m radio telescope at the Arecibo Observatory
by using its four wide-band pulsar processors (18).
In order to verify the Arecibo data, we have been
independently timing PSR J0348+0432 at 1.4 GHz
by using the 100-m radio telescope in Effelsberg,
Germany. The two timing data sets produce con-
sistent rotational models, providing added con-
fidence in both. Combining the Arecibo and
Effelsberg data with the initial GBTobservations
(7), we derived the timing solution presented in
Table 1. To match the arrival times, the solution
requires a significant measurement of orbital de-
cay, P

:
b ¼ −2:73 % 10−13 T 0:45% 10−13 s s−1

(68.27% confidence).
The total proper motion and distance estimate

(Table 1) allowed us to calculate the kinematic
corrections to P

:
b from its motion in the Galaxy,

plus any contribution from possible variations of
G: dP

:
b ¼ 0:016% 10−13 T 0:003% 10−13 s s−1.

This is negligible compared to the measurement
uncertainty. Similarly, the small rate of rotational
energy loss of the pulsar (Table 1) excludes any
substantial contamination resulting frommass loss
from the system; furthermore, we can exclude
substantial contributions to P

:
b from tidal effects

[see (8) for details]. Therefore, the observedP
:
b is

caused by GW emission, and its magnitude is
entirely consistent with the one predicted by GR:
P
:
b=P

:GR
b ¼ 1:05 T 0:18 (Fig. 3).

If we assume that GR is the correct theory of
gravity, we can then derive the component masses
from the intersection of the regions allowed by
q and P

:
b (Fig. 3): MWD ¼ 0:177þ0:017

−0:018 M◉ and
MPSR ¼ 2:07þ0:20

−0:21 M◉ (68.27% confidence). These
values are not too constraining yet. However, the
uncertainty of the measurement of P

:
b decreases

with T baseline
−5/2 (where Tbaseline is the timing base-

line); therefore, this method will yield very precise
mass measurements within a couple of years.

Discussion

PSR J0348+0432 as a Testbed for Gravity
There are strong arguments for GR not to be valid
beyond a (yet unknown) critical point, like its
incompatibility with quantum theory and its pre-
diction of the formation of spacetime singularities.
Therefore, it remains an open question whether
GR is the final description of macroscopic gravity.
This strongly motivates testing gravity regimes
that have not been tested before, in particular
regimes where gravity is strong and highly non-
linear. Presently, binary pulsars provide the best
high-precision experiments to probe strong-field
deviations from GR and the best tests of the
radiative properties of gravity (19–23). The orbital
period of PSR J0348+0432 is only 15 s longer
than that of the double pulsar system PSR J0737–
3039, but it has ∼two times more fractional grav-
itational binding energy than each of the double-
pulsar NSs. This places it far outside the presently
tested binding energy range (Fig. 4A) (8). Be-
cause the magnitude of strong-field effects gener-
ally depends nonlinearly on the binding energy,
the measurement of orbital decay transforms the

Fig. 3. System masses and
orbital-inclination constraints.
Constraints on system masses and
orbital inclination from radio and
optical measurements of PSR
J0348+0432 and its WD compan-
ion. Each triplet of curves corre-
sponds to the most likely value
and standard deviations (68.27%
confidence) of the respective pa-
rameters. Of these, two (q and MWD)
are independent of specific gravity
theories (in black). The contours
contain the 68.27 and 95.45% of
the two-dimensional probability
distribution. The constraints from
the measured intrinsic orbital decay
(P
:
b
int, in orange) are calculated as-

suming that GR is the correct theory
of gravity. All curves intersect in
the same region, meaning that
GR passes this radiative test (8).
(Bottom left) cosi-MWD plane. The
gray region is excluded by the con-
dition MPSR > 0. (Bottom right)
MPSR-MWD plane. The gray region
is excluded by the condition sini ≤ 1. The lateral graphs depict the one-dimensional probability-distribution function for the WD mass (right), pulsar mass
(top right), and inclination (top left) based on the mass function, MWD, and q.
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Figure 1. Mass measurements and 68% uncertainty intervals
for NSs in DNS (blue) or MSP (purple) systems. See Ozel &
Freire (2016) and references therein for the masses of DNS
systems.

ficult to understand in the context of stellar evolution
(Janka 2012; Wongwathanarat et al. 2013).
Recent developments in pulsar searches and timing

have led to a nearly exponential increase in the mass
measurements of MSPs and, in particular, in the dis-
covery of some fairly massive pulsars (Ozel & Freire
2016). Mass distributions inferred based on earlier
data do not predict many massive ones. For example,
Özel et al. (2012) expect about 5 � 7% of MSPs with
masses above 1.8M�, whereas the new discoveries of
J0348+0432 (M = 2.01(4)M�; Antoniadis et al. 2013)
and J1946+3417 (M = 1.867(13)M� Barr et al. 2016),
as well as a number of other mass refinements (see Fig. 1)
suggest the actual fraction to be larger than 20%. These
systems have very distinct orbital properties, and their
masses have been measured with di↵erent methods. It
is therefore unlikely that the new masses result from

selection e↵ects caused by observational bias.
In this paper, we model the MSP mass distribution

using the most up-to-date ensemble of mass measure-
ments. We compare uni-modal and bi-modal approx-
imations using Bayesian inference techniques and find
that the bimodal distribution in the MSP masses is pre-
ferred by the current data. We examine the implications
of these di↵erent intrinsic distributions for stellar evolu-
tion and the EoS. Furthermore, we use our findings to
make zero-order estimates for future large-scale pulsar
surveys, such as those planned for the Square Kilome-
tre Array (SKA). The lay-out of the paper is as follows:
In Section 2 we provide a brief overview of mass mea-
surement methods and discuss our dataset. In Section 3
we outline our statistical method and then present our
main results in Section 4. We examine the ramifications
for the EoS in Section 5. Finally, we conclude with a
broader discussion in Section 6.

2. MILLISECOND PULSAR MASSES

Pulsar mass measurements can be obtained using a
broad range of techniques at di↵erent wavelengths. For
MSPs, most constraints come from precision radio tim-
ing, sometimes supplemented by optical observations
of their binary companions. In what follows, we shall
briefly review these methods and discuss their strengths
and weaknesses.

2.1. Radio Timing

Radio timing observations of binary pulsars yield pre-
cise measurements of the orbital period P

b

and projected
semi-major axis, x ⌘ ap sin i. These quantities allow to
determine the mass function,

f(m
p

,m

c

, i) =
(m

c

sin i)3

(m
p

+m

c

)2
=

✓
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P

b

◆
2
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3

G

, (2)

which relates the unknown stellar masses, m
p

and m

c

,
and inclination, i.
Because Eq. 2 connects three unknowns, inference of

the pulsar mass requires the measurement of at least two
additional quantities that depend on those parameters.
For su�ciently compact binaries, this can be achieved
with the measurement of post-Keplerian (pK) param-
eters induced by relativistic e↵ects. These include the
precession of the orbital periastron !̇, the Einstein-delay
� (which accounts for time-dilation e↵ects and the vary-
ing gravitational redshift along the orbit), the Shapiro-
delay �t

s

, as modelled by the parameters r and s (de-
scribing the extra travel-time due to the companion’s
gravitational potential), and the orbital decay Ṗ

GW

b

due
to emission of gravitational waves. In General Relativ-
ity (GR) the pK parameters become functions of the
stellar masses and Keplerian parameters (see Lorimer
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Figure 1. Mass measurements and 68% uncertainty intervals
for NSs in DNS (blue) or MSP (purple) systems. See Ozel &
Freire (2016) and references therein for the masses of DNS
systems.
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imations using Bayesian inference techniques and find
that the bimodal distribution in the MSP masses is pre-
ferred by the current data. We examine the implications
of these di↵erent intrinsic distributions for stellar evolu-
tion and the EoS. Furthermore, we use our findings to
make zero-order estimates for future large-scale pulsar
surveys, such as those planned for the Square Kilome-
tre Array (SKA). The lay-out of the paper is as follows:
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we outline our statistical method and then present our
main results in Section 4. We examine the ramifications
for the EoS in Section 5. Finally, we conclude with a
broader discussion in Section 6.
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cise measurements of the orbital period P

b

and projected
semi-major axis, x ⌘ ap sin i. These quantities allow to
determine the mass function,

f(m
p

,m

c

, i) =
(m

c

sin i)3

(m
p

+m

c

)2
=

✓
2⇡

P

b

◆
2

x

3

G

, (2)

which relates the unknown stellar masses, m
p

and m

c

,
and inclination, i.
Because Eq. 2 connects three unknowns, inference of

the pulsar mass requires the measurement of at least two
additional quantities that depend on those parameters.
For su�ciently compact binaries, this can be achieved
with the measurement of post-Keplerian (pK) param-
eters induced by relativistic e↵ects. These include the
precession of the orbital periastron !̇, the Einstein-delay
� (which accounts for time-dilation e↵ects and the vary-
ing gravitational redshift along the orbit), the Shapiro-
delay �t

s

, as modelled by the parameters r and s (de-
scribing the extra travel-time due to the companion’s
gravitational potential), and the orbital decay Ṗ

GW

b

due
to emission of gravitational waves. In General Relativ-
ity (GR) the pK parameters become functions of the
stellar masses and Keplerian parameters (see Lorimer
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Fig. 14.— The mass-radius relation (solid blue curve) corresponding to the most likely triplet of pressures that agrees with all of the
neutron star radius and low energy nucleon-nucleon scattering data and allows for a M > 1.97 M� neutron star mass. The ranges of
mass-radius relations corresponding to the regions of the (P1, P2, P3) parameter space in which the likelihood is within e�1/2 and e�1 of
its highest value are shown in dark and light blue bands, respectively. The left panel shows the result for flat priors in the logarithms of P1,
P2, and P3, while the right panel shows the result for flat priors in P1, P2, and P3 within the physically allowed ranges of these parameters.

Using the two nucleon interaction pressure as an absolute lower bound is justified by the fact that the three-
body interactions in pure neutron matter are always repulsive (J. Carlson, private communication); including their
contributions serves to increase the pressure (see, e.g., Pieper et al. 2001 and Gandolfi et al. 2012, for pure neutron
matter; see also Figure 3 of Akmal et al. 1998). The �v relativistic boost correction, which we do not include, also
gives a positive contribution to the pressure when calculated with the two body interaction alone. Note though that
the contributions of the three body forces and the relativistic boost corrections are not simply additive.
A few words of caution are in order. In symmetric nuclear matter at nuclear matter density, the three nucleon

interaction is quite attractive at nuclear matter density, as it must be to achieve su�cient binding energy for light
nuclei; the three nucleon interaction turns repulsive only for densities roughly above 1.5 ⇢ns. Furthermore, the three
nucleon interaction including the relativistic boost correction, softens the equation of state of symmetric nuclear matter
above nuclear matter density. While the three nucleon interaction as implemented in the APR equation of state is
indeed repulsive in pure neutron rich matter, there remain theoretical uncertainties in the interaction itself. One
should, in addition, take into account the modification of the e↵ects of the three body interaction when imposing beta
equilibrium and hence allowing for a finite proton fraction; as can be seen from Figure 16 of Akmal et al. (1998), the
three body interaction again increases the pressure. A further complication is the onset of a neutron pion-condensed
phase in neutron rich matter at a density ⇠ 0.2 fm�3, which lowers the pressure (as can be seen for pure neutron
matter in Fig. 5 of Akmal et al. 1998).
In Figure 13, we show the posterior likelihoods over the pressures at the three fiducial densities, as well as the

microscopic and experimental bounds on these pressures. We also plot the pressures of a number of proposed equations
of state with widely di↵ering assumptions and calculation techniques. Because pressure P1 has the largest e↵ect on
the stellar radius, it is significantly constrained by the radius data from above. The lower limit on P1 coming from the
two-body interaction potential obtained at low densities excludes the gray region labeled 2NI. The most likely value,
as well as the entire region within the highest posterior likelihood, are, in fact, lower than the pressure predicted by
most equations of state at that density, as shown in the lower panel (see Read et al. 2009 for the acronyms and the
references for the various equations of state). We also include in this figure the recent equation of state labeled NJL
(Kojo et al. 2015), based on a smooth interpolation in pressure vs. baryon chemical potential of a nucleonic equation
of state (APR) at densities below ⇠ ⇢ns with a quark matter equation of state at densities above ⇠ 5� 7⇢ns.
The combination of P2 and P3, on the other hand, is constrained by the maximum mass requirement: a lower value

of P2 pushes P3 to be as high as possible within the causality limit, whereas for moderate to high values of P2, which
already lead to M-R relations that allow high mass stars and are consistent with the radius measurements, the allowed
range of P3 extends to lower values. The combination of P2 and P3 excludes to high confidence the sti↵ equations of
state such as MPA1 and MS1, which produce radii that are too large (see also their inconsistency with P1 in the lower
panel). This combination also excludes equations of state with condensates, such as GS1, with pressures that are too
low to be consistent with the maximum mass requirement.
Figure 13 shows that the combination of the radius measurements with the low density experimental data and the

requirement of a ⇠ 2 M� maximum mass pins down the parameters of the equation of state extremely well across
a wide range of supranuclear densities and points to a preferred equation of state that is somewhat softer than the
nuclear equation of state AP4 (a version of the APR equation of state). To see this on the mass-radius plane, we also
show in Figure 14 the mass-radius relation corresponding to the most likely triplet of pressures as well as the range of
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Figure 5. The �2 confidence regions (68, 90 and 99% probabilities) in the
mass-radius plane for SAX J1810.8–2609 obtained using the direct cooling
tail method. The data above Fmin = 0.2Ftd (see Fig. 3) are used. The
red solid and dashed curves correspond to the best-fitting TEdd,1 obtained
for log g=14.3 for Fmin = 0.2Ftd and 0.4Ftd, respectively, while the
red dotted curve gives the results from Nättilä et al. (2016). The black dot-
dashed curves correspond to the constant distance of 4.0, 4.5, and 5.0 kpc.

Nättilä et al. 2016) is also shown (red dotted curve). We remind
here that the method does not suffer from the problems with the
Jacobian transformation from FEdd,⌦ to M,R (see discussion in
Özel & Psaltis 2015), because we fit directly on the M �R plane.
We also see that instead of the two regions of allowed solutions
(small R, large M and large R, smaller M ; see e.g. Suleimanov
et al. 2011b; Poutanen et al. 2014) the solution here prefers larger
R and smaller M values. This is a direct consequence of the fact
that the shape of the w � wf4

c ` curves depends on log g and a
smaller log g gives a better description of the data (see Table 1).

We conclude that the most probable radius of the NS in
SAX J1810.8–2609 lies in the range between 11.5 and 13.0 km
for the mass range of 1.3–1.8M�. However, the smaller radii of
⇠10 km for a high-mass (⇠ 2M�) NS cannot be formally ex-
cluded. The obtained constraints also limit the possible distance to
the source, which likely lies in the interval between 3.7 and 4.7 kpc.

4 SUMMARY

We have presented the direct cooling tail method, which takes NS
mass and radius together with the distance as the direct fitting pa-
rameters. This method implies fitting of an observed dependence
between blackbody fitting parameters, the normalization and the
observed blackbody flux, K � FBB, with the corresponding theo-
retical dependence, w � wf4

c `, which is found for every given M
and R pair by interpolation in the extended grid (for nine values
of log g) of the computed dependences fc � ` and wf4

c � `. Such
grids were computed for 4 chemical compositions: pure H and pure
He, and solar H/He mix with the solar (Z = Z�) and sub-solar
(Z = 0.01Z�) metal abundances. The fitting procedure results in
the �2 maps and corresponding confidence regions in the M � R
plane. Other fitting methods (robust likelihood, Bayesian) give very
similar results with slightly larger errors. Compared with the stan-
dard cooling tail method, the new method does not suffer from

the problems with the Jacobian transformation from (FEdd,⌦) to
(M,R) allowing to obtain solution anywhere on the M �R plane.

We applied the new method to a PRE burst that occurred in
the low/hard state of SAX J1810.8–2609. The direct cooling tail
method gives the Eddington temperature slightly smaller than the
standard cooling tail method, resulting in a systematic shift of the
radii by ⇠ 1� to larger values (which is still within the statisti-
cal uncertainties). However, instead of the two separated (M,R)

regions usually obtained with the standard method, our solution
prefers larger R and smaller M values corresponding to smaller
log g values, which is a direct consequence of the dependence of
the theoretical cooling curves w�wf4

c ` on gravity. We finally con-
strain the NS radius in SAX J1810.8–2609 to lie between 11.5 and
13.0 km for the assumed mass range of 1.3–1.8M�. The distance
to the source likely lies between 3.7 and 4.7 kpc.
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Fig. 9.— The upper panels give the probability distributions for the mass versus radius curves implied by
the data, and the solid (dotted) contour lines show the 2-σ (1-σ) contours implied by the data. The lower
panes summarize the 2-σ probability distributions for the 7 objects considered in the analysis. The left
panels show results under the assumption rph = R, and the right panes show results assuming rph ≫ R. The
dashed line in the upper left is the limit from causality. The dotted curve in the lower right of each panel
represents the mass-shedding limit for neutron stars rotating at 716 Hz.
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Fig. 10.— A comparison of our EoSs with those of Hebeler et al.
(2013), labeled HLPS in the figure. As is clear from the sizes
of the green and light blue regions, corresponding respectively to
our bitropic EoSs and the HLPS results (with the two solar mass
constraint implemented in both), the high-density constraint sig-
nificantly shrinks the allowed range of EoSs.

in fact justified when searching for the least restrictive
bounds for the EoS.
For EoSs displaying a phase transition, one can also

estimate the amount of quark matter in the cores of the
stars. This is seen from Fig. 6, which shows the relation
between the maximal chemical potential reached at the
center of a maximally massive star µcenter and the critical
(matching) chemical potential µc. We see that all EoSs
that fulfill the mass constraint lie above the µcenter > µc

line, and are therefore able to support stars with quark
matter cores. However, the stronger the transition is,
the smaller the window for quark matter: for ∆Q =
(250GeV)4, there is practically no quark matter left in
the cores of the stars.
In Fig. 9, we finally show the effect of the third

monotrope and a nonzero latent heat on the obtained
M − R clouds. In particular, we see from here that
allowing for a tritropic interpolation does not have a
large impact on the M − R plot: the most important
change is simply the shift of the maximal mass star
to {Mmax, R} = {2.75M⊙, 14.6km}. A more complete
analysis of the case of a first-order phase transition has
been recently performed by Alford et al. (2013). In this
reference, the authors in particular consider all possi-
ble branching cases, including twin star configurations,
which we have completely omitted in our work.

4. CONCLUSIONS AND SUMMARY

In the paper at hand, we have constructed a novel
scheme for determining the EoS of compact star mat-
ter that involves an interpolation between the regimes of
low-energy chiral effective theory and high-density per-
turbative QCD. These two limiting results are truly ro-
bust within their ranges of applicability, as they represent
controlled calculations in the fundamental theory of the
strong interactions. Our work on the other hand con-
stitutes the first ever attempt to take constraints from
both sides on equal footing when determining the EoS
between these limits. We have demonstrated that this
leads to important new constraints on the properties of
compact star matter on a wide density range, and thus
even for stars containing only hadronic matter.
The strictness of the constraints placed on the stellar

EoS by its high-density limit can be understood through
the tension between the softness of the perturbative EoS
and the stiffness required by the confirmed existence of a
two solar mass compact star. For the two interpolating
monotropes we employ in our calculation, this translates
into a significant difference between the respective poly-
tropic indices: While the first one needs to be rather stiff,
with γ1 > 2.86, the latter must be considerably softer,
1 < γ2 < 1.5. Although the polytropes themselves of
course do not carry information about the underlying
microphysics, such a strong shift in the polytropic index
might be interpreted as a sign of the effective degrees of
freedom of the system changing from hadronic to den-
confined ones.
The effect of the high density constraint is perhaps best

illustrated in Fig. 10, which displays our EoS band in the
form of energy density vs. pressure, plotted together with
the previous prediction of Hebeler et al. (2013), dubbed
HLPS. The latter work applied the same low-density EoS
we did and took into account the two solar mass con-
straint, but did not require the result to approach the
pQCD EoS at large densities. As expected, the main
difference between the two results is seen in the HLPS
cloud containing somewhat softer EoSs at low density
and stiffer ones at high density.
The rather narrow EoS band that results from our in-

terpolation naturally corresponds to a well defined re-
gion in the mass-radius diagram of compact stars. For a
1.4M⊙ neutron star, the radii we obtain range between
11 and 14.5 km, while the radius of a 2M⊙ pulsar lies
within R ≈ 10−15 km. Interestingly, we do not find con-
figurations with masses above 2.75M⊙ (for bitropic inter-
polation the maximal mass is 2.5M⊙). This conclusion
is in contrast with what has been found before without
the high-density constraint; see e.g. Hebeler et al. (2013),
where stars with masses up to 3M⊙ were discovered.
For the convenience of the reader, we finally provide

three representative EoSs in a tabulated form at the end
of this paper. These EoSs are all subluminal, able to
sustain a two solar mass star, and maximally different
from each other. Of them, EoS I gives the minimal ra-
dius, EoS II the maximal mass and EoS III the maximal
radius for our compact stars.
In conclusion, we find it remarkable, how the proper-

ties of quark matter at asymptotically high densities can
be seen to have such a strong impact on the structure of
compact stars at much lower energies. As we have high-
lighted in Fig. 1, this fact appears to make it possible
to largely bridge the gap between the respective EoSs of
low-density nuclear matter and high-density (perturba-
tive) quark matter.
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leading order, is not yet available. However, we can present
a rough estimate of the admixture of ⇤ hyperon admixtures
to the previously derived EoS that combines chiral EFT in
the hadronic sector with the three-flavor NJL model for quark
matter (see Figs. 10, 11), by simply adding a ⇤ contribution
to the energy density, using an attractive mean-field (Hartree)
potential adjusted to reproduce hypernuclear data.
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FIG. 15: Particle ratios as a function of baryon density % (in units of
%

0

= 0.16 fm�3) for the particles indicated, as in Fig. 11 but with
inclusion of ⇤ hyperons.

The result, Fig. 15, can be considered as typical and repre-
sentative for a large class of similar model calculations. The
onset of hadron-quark coexistence at % ' 3.5 %0 takes place
for a system in which a substantial fraction of neutrons is now
substituted by ⇤ hyperons (implemented here according to the
RMF treatment of Ref. [88]). However, the corresponding
EoS has now become too soft. It does not satisfy the perti-
nent constraints and fails to support a two-solar-mass neutron
star. For the example shown the maximum neutron star mass
is Mmax ' 1.5 M�. Once ⇤ hyperons are present, the only
possiblity to preserve stability of the star within the “allowed”
regions of Fig. 1 appears to be through extra repulsive interac-
tions of the hyperons with the surrounding baryonic medium.

Understanding the origin of such repulsive hyperon-nuclear
interactions at high baryon densities is thus a key issue for
the near future. Advanced Monte Carlo calculations of hyper-
nuclear matter [89–91] have recently focused on the role of
repulsive three-body ⇤NN forces. These computations use
semi-phenomenological ⇤N interactions fitted to the avail-
able two-body scattering data together with parametrized
⇤NN potentials constrained by the systematics of ⇤ sepa-
ration energies in a series of hypernuclei. A sufficiently large
⇤NN coupling strength in hyper-neutron matter [91] does in-
deed meet the requirement of producing a stiff equation-of-
state such that it can satisfy the two-solar-mass constraint.

Steps forward are now taken towards a more systematic
foundation of hyperon-nucleon interactions and related three-
body forces. An example is the hyperon-nucleon potential in
momentum space generated from chiral SU(3) EFT at next-
to-leading order (NLO) [93]. At this order all two-pion ex-
change processes are explicitly constructed. Also included

is the second-order pion exchange mechanism that drives
⇤N $ ⌃N coupled-channels dynamics. This mechanism
primarily generates the attractive mean field that binds the
⇤ in hypernuclei. It is accompanied by smaller repulsive
corrections from kaon-exchange Fock terms and from Pauli
blocking of the propagating nucleon in the intermediate ⌃N

state of the two-pion exchange process [94]. The Pauli ef-
fect just mentioned acts like an equivalent three-body piece
in a description without explicit ⌃, translating the in-medium
⇤N $ ⌃N coupled-channels into effective ⇤N and ⇤NN

potentials. Such interactions are beginning to be adopted in
many-body calculations of hypernuclei [95]. An additional
important feature of the chiral SU(3) approach at NLO is the
emergence of momentum-dependent repulsive terms [93] that
grow rapidly with increasing ⇤N relative momentum. While
these terms play only a limited role in ⇤ hypernuclei, they
are expected to become increasingly important at the higher
baryon densities and Fermi momenta encountered in the cen-
ter of a neutron star.

V. SUMMARY AND CONCLUSIONS

The present work contributes to the discussion of the equa-
tion of state for dense baryonic matter in view of the by now
well established existence of two-solar-mass neutron stars.
This study consists of two parts with the following aims: first,
to update the constraints for the pressure as a function of en-
ergy density from the new mass determinations together with
(less accurate) limits on neutron star radii; secondly, to con-
struct equations of state that are compatible with these ob-
servational constraints, while at the same time satisfying the
conditions provided by nuclear physics and known properties
of nuclear and neutron matter.

1. Concerning the first part, the observational constraints
determine a band of acceptable neutron star equations of state
that are characterized by their pronounced stiffness: at baryon
densities % ' 0.8 fm�3, about five times the density of nor-
mal nuclear matter in equilibrium, the pressure must at least
be P & 150 MeV fm�3 in order to support 2M� neutron
stars. This conclusion does not depend on the detailed com-
position of the matter forming the core of the star. Our results
at this point are compatible with related studies reported in
Refs. [21–23, 44, 45].

2. Within the present model investigation of mass-radius
trajectories, the stiffness condition on the equation of state has
an important implication: the maximum density in the center
of the neutron star does not exceed about five times nuclear
matter density, corresponding to neutron Fermi momenta less
than 0.6 GeV and average kinetic energies of less than 100
MeV.

3. The modeling of the equation of state in the second part
of this work has been performed according to the following
criteria. The theory used to construct this equation of state
should accurately reproduce:

a) nuclear phenomenology and the thermodynamics of
symmetric nuclear matter;

b) advanced many-body calculations, such as recent Monte
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FIG. 4: Density ratios for different particles for a "soft" nu-
cleonic EoS as a function of the baryon density using the
χEFT600 model.

with the corresponding lepton density ratio xl = ρl/ρL.
The total lepton density ρL is the sum over all three lep-
tons. For nonrelativistic interacting baryons, the chemi-
cal potential for species b reads

µb = Mb +
k2Fb

2Mb
+ Ub(kFb

) . (20)

For a given total baryon density ρB the equations (15)-
(18) govern the composition of matter, i.e. the baryonic
and leptonic concentrations. The corresponding solution
is referred to as β-stable matter.

For the sake of consistency we now have to treat the
nucleonic part of the chemical potential µN in the same
way as the corresponding energy per particle. Since the
chemical potential can be obtained as a derivative of the
energy density ϵ and is related to the energy per particle
via ϵ = ρBE/A, we use the definition

µb =
∂ϵ

∂ρb
, (21)

to have the appropriate replacement in the nucleonic
chemical potential. Finally, we arrive at the expression

µN =
∂ϵNN

∂ρN
+ UY

N (kFY
), (22)

where we have effectively replaced MN+
k2
FN

2MN
+UN

N (kFN
)

of Eq. (20) with the derivative ∂ϵNN/∂ρN . In this way
the parameterization Eq. (9) enters in the nucleonic part
of the chemical potential.

Since we are only parameterizing the nucleonic sec-
tor, no such replacement is necessary for the hyperons.
However, since we have neglected the Y Y interaction
UY
Y (kFY

) is zero and Eq. (20) reduces to

µY = MY +
k2FY

2MY
+ UN

Y (kFY
) . (23)
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FIG. 5: Same as Fig. 4 but for "stiff" nucleonic EoS using the
NSC97f model.

For the determination of the particle concentration the
single-particle potential in equilibrium is used. For hy-
perons below the threshold density it is given by UY (p =
0), similar to the symmetric matter case. Above the
threshold density it depends on composition and den-
sity. In Fig. 6 the density dependence of UΣ−(kF

Σ−
) in

β-equilibrium for two different incompressibilities K0 is
shown. In the figure a kink in the curves appears at the
point where the hyperons appear.

Another observation is the relative ordering and the
magnitudes which resemble those of the single-particle
potentials at zero momentum in symmetric matter as
shown in Fig. 1. Essentially, the NSC97a, NCS97c,
NSC97f and J04 interactions are still slightly attractive
while the NSC89 and χEFT600 remain repulsive. Simi-
lar observations hold for the Λ system. A new structure
in form of a second inflection point emerges due to the
appearance of the Σ− hyperon.

A better indicator at which densities hyperons start to
appear is given by the concentrations of all particles and
is displayed in Figs. 4 and 5. In Fig. 4 a “soft” nucle-
onic EoS is used in combination with an attractive ΛN
and a very repulsive ΣN interaction implemented by the
χEFT600 model. In contrast in Fig. 5 a “stiff” EoS is
used represented by the NSC97f model which has a simi-
lar ΛN interaction compared to the χEFT600 model but
also an attractive ΣN interaction. This difference already
leads to very different density profiles. While in Fig. 4
the Λ hyperon is the first one which appears and no Σ−

hyperons are present, the Σ− hyperon appears first in
Fig. 5.

One should note that with the appearance of the Σ−

hyperon the density of the negatively charged leptons
starts to drop immediately. This is because their role in
the charge neutrality condition, Eq. (15), is now being
taken over by the Σ−. Similarly, the appearance of the
Λ hyperon will accelerate the disappearance of neutrons
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cant softening of the EoS which in turn results in smaller
maximum masses of a neutron star compared to a purely
nucleonic EoS. Notably, the predicted maximum masses
are well below the observed value of 1.4 M⊙, an outcome
also known from other works, e.g. [8, 33–35]. This poses
a serious problem.

The softening of the EoS due to hyperons cannot be
circumvented by stiffening the nucleonic EoS, i.e., by in-
creasing K0, since this will cause hyperons to appear ear-

lier. Changing the high-density behavior of the symmetry
energy dependence or including the S = −2 sector does
not alter this conclusion either. For more details about
the S = −2 sector, in particular Ξ hyperons in dense
baryonic matter see e.g. [39–42]. This can only mean,
that correlations beyond the one-loop level could be im-
portant to stiffen the hyperon contributions to the EoS.
This, however, is not sufficient as Brueckner-Hartree-
Fock calculations indicate [9, 26]. As has been known

Adding hyperons:  equation of state far too soft 
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been performed. In this case the additional repulsion
provided by the model (II) pushes �th

� towards a density
region where the contribution coming from the hyperon-
nucleon potential cannot be compensated by the gain in
kinetic energy. It has to be stressed that (I) and (II) give
qualitatively similar results for hypernuclei. This clearly
shows that an EoS constrained on the available binding
energies of light hypernuclei is not sufficient to draw any
definite conclusion about the composition of the neutron
star core.

The mass-radius relations for PNM and HNM obtained
by solving the Tolman-Oppenheimer-Volkoff (TOV)
equations [47] with the EoS of Fig. 1 are shown in Fig. 2.
The onset of � particles in neutron matter sizably reduces
the predicted maximum mass with respect to the PNM
case. The attractive feature of the two-body �N interac-
tion leads to the very low maximum mass of 0.66(2)M�,
while the repulsive �NN potential increases the pre-
dicted maximum mass to 1.36(5)M�. The latter result
is compatible with Hartree-Fock and Brueckner-Hartree-
Fock calculations (see for instance Refs. [2–5]).

M
 [M
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�N + �NN (I)
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Figure 2. (Color online) Mass-radius relations. The key is
the same of Fig. 1. Full dots represent the predicted max-
imum masses. Horizontal bands at � 2M� are the ob-
served masses of the heavy pulsars PSR J1614-2230 [18] and
PSR J0348+0432 [19]. The grey shaded region is the excluded
part of the plot due to causality.

The repulsion introduced by the three-body force plays
a crucial role, substantially increasing the value of the
� threshold density. In particular, when model (II) for
the �NN force is used, the energy balance never favors
the onset of hyperons within the the density domain that
has been studied in the present work (� � 0.56 fm�3).
It is interesting to observe that the mass-radius relation
for PNM up to � = 3.5�0 already predicts a NS mass
of 2.09(1)M� (black dot-dashed curve in Fig. 2). Even
if � particles would appear at higher baryon densities,
the predicted maximum mass is consistent with present

astrophysical observations.

In this Letter we have reported on the first Quantum
Monte Carlo calculations for hyperneutron matter, in-
cluding neutrons and � particles. As already verified
in hypernuclei, we found that the three-body hyperon-
nucleon interaction dramatically affects the onset of hy-
perons in neutron matter. When using a three-body
�NN force that overbinds hypernuclei, hyperons appear
around twice saturation density and the predicted max-
imum mass is 1.36(5)M�. By employing a hyperon-
nucleon-nucleon interaction that better reproduces the
experimental separation energies of medium-light hyper-
nuclei, the presence of hyperons is disfavored in the neu-
tron bulk at least until � = 0.56 fm�3 and the lower
limit for the predicted maximum mass is 2.09(1)M�.
Therefore, within the �N model that we have consid-
ered, the presence of hyperons in the core of the neutron
stars cannot be satisfactory established and thus there is
no clear incompatibility with astrophysical observations
when lambdas are included. We conclude that in order to
discuss the role of hyperons - at least lambdas - in neu-
tron stars, the �NN interaction cannot be completely
determined by fitting the available experimental energies
in � hypernuclei. In other words, the �-neutron-neutron
component of the �NN will need additional theoret-
ical investigation and a substantial additional amount
of experimental data. In particular, there are some
features of the hyperon-nucleon interaction (�-neutron-
neutron channels, spin-orbit contributions) which might
be efficiently constrained only by experiments involving
highly asymmetric hypernuclei and/or excitation of the
hyperon. We believe that our conclusions will not change
qualitatively if other hyperons and/or a v�� are included
in the calculation.
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Fig. 5 Mass-radius relations for neutron stars. Solid black curve: ChEFT result (nucleon +
pion degrees of freedom) taken from [29]; colored curves: QMC computations [30] including
⇤ hyperons with phenomenological ⇤N forces and two versions of repulsive ⇤NN three-body
interactions. Version ⇤NN(2) reproduces the systematics of hypernuclear binding energies.

tational collapse. An EoS based on ChEFT with “conventional” nucleon and
pion degrees of freedom can produce su�cient pressure at high density, gen-
erated by repusive three-body forces and the impact of the Pauli principle on
the in-medium nucleon-nucleon e↵ective interaction [29] (see Fig. 5). However,
neutrons in the core of the star tend to be replaced by ⇤ hyperons at densities
(typically around 2-3 %0) where this becomes energetically favorable. Then
the EoS would soften too much so that maximum neutron star masses of 2M�
cannot be sustained any more.

A recent advanced quantum Monte Carlo (QMC) computation of neutron
star matter, with hyperons added [30], emphasizes this issue. While this cal-
culation still uses phenomenological ⇤N input interactions, the conclusions
are nonetheless instructive. When parametrized repulsive ⇤NN three-body
forces are added subject to the condition that the systematics of hypernuclear
binding energies be reproduced, the admixture of ⇤’s in neutron star mat-
ter gets strongly reduced such that the pressure to support a 2M� star can
be maintained as demonstrated in Fig. 5. The pending question is whether
the necessary repulsive e↵ect can be entirely relegated to a hypothetical ⇤NN
three-body force, or whether at least a large part of it comes from momentum-
dependent ⇤N two-body interactions as they appear in the SU(3) ChEFT
treatment [26] at next-to-leading order.

5 Concluding remarks and summary

Progress has been made in establishing chiral SU(3) e↵ective field theory as
the adequate realization of low-energy QCD with strange quarks. It defines a
consistent and well organized coupled-channels framework for kaon-, antikaon-
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Figure 2: The allowed region (shown in white)
for up quark and down quark masses. This re-
gion was determined in part from papers report-
ing values for mu and md (data points shown)
and in part from analysis of the allowed ranges
of other mass parameters (see Fig. 3). The pa-
rameter (mu + md)/2 yields the two downward-
sloping lines, while mu/md yields the two rising
lines originating at (0,0).
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Figure 3. The values of each quark mass parameter taken from
the Data Listings. The points are in chronological order with
the more recent measurements at the top. Points from papers
reporting no error bars are colored grey. The shaded regions
indicate values excluded by our evaluations; some regions were
determined in part through examination of Fig. 2.
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NAMBU - GOLDSTONE  BOSONS: 

Spontaneously Broken   
CHIRAL                                SYMMETRYSU(3)L × SU(3)R

Pseudoscalar SU(3) meson octet {φa} = {π, K, K̄, η8}

DECAY CONSTANTS:   

µ

ν

  axial  
current

π

K

Chiral limit: f = 86.2 MeV

⟨0|Aµ
a(0)|φb(p)⟩ = iδab pµ

fb

m
2
π
f
2
π

= −
mu + md

2
⟨ūu + d̄d⟩Gell-Mann,

Oakes,
Renner
relations m

2

K f
2

K = −
mu + ms

2
⟨ūu + s̄s⟩

+ higher order 
corrections

Order parameter :
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f⇡ = 92.21± 0.16 MeV

fK = 110.5± 0.5 MeV
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Chiral                                  Effective Field Theory SU(3)L ⇥ SU(3)R

Pseudoscalar meson octet of          

Realization of Low-Energy QCD for energies / momenta 

SU(3)L ⇥ SU(3)R
coupled to baryon octetNambu-Goldstone bosons

Author's personal copy
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Table 1
SU(3) relations for the various contact potentials in the isospin basis. C27

ξ etc. refers to the corresponding irreducible
SU(3) representation for a particular partial wave ξ . The actual potential still needs to be multiplied by pertinent powers
of the momenta p and p′.

Channel I V (ξ)

ξ = 1S0, 3P0, 3P1, 3P2 ξ = 3S1, 3S1–3D1, 1P1 ξ = 1P1–3P1

S = 0 NN → NN 0 – C10∗
ξ –

NN → NN 1 C27
ξ – –

S = −1 ΛN →ΛN 1
2

1
10 (9C27

ξ + C
8s
ξ ) 1

2 (C
8a
ξ + C10∗

ξ ) −1√
20

C
8s8a
ξ

ΛN →ΣN 1
2

3
10 (−C27
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singlet representation (C1) is present in the strangeness S = −2 channels with isospin I = 0 [45]
and there are four more LECs that contribute to the S = −2 sector at NLO [50].

2.2. Goldstone boson exchange

The one- and two-pseudoscalar-meson exchange potentials follow from the SU(3)-invariant
meson–baryon interaction Lagrangian
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)
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with DµB = ∂µB + [Γµ,B], Γµ = 1
2 (u†∂µu + u∂µu†) and uµ = i(u†∂µu − u∂µu†), and where

the trace is taken in flavor space. The constant M0 denotes the baryon mass in the three-flavor
chiral limit. The coupling constants F and D satisfy the relation F + D = gA ≃ 1.26, where gA

is the axial-vector strength measured in neutron β-decay. The pseudoscalar mesons and octet
baryons are collected in traceless 3 × 3 matrices [51]
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For the pseudoscalar mesons we use the usual non-linear realization of chiral symmetry with
U(x) = u2(x) = exp(i

√
2P(x)/f0), where f0 is the Goldstone boson decay constant in the chiral

limit. These fields transform under the chiral group SU(3)L × SU(3)R as U → RUL† and B →
KBK† with L ∈ SU(3)L, R ∈ SU(3)R and the SU(3) valued compensator field K = K(L,R,U),
cf. Ref. [52]. After an expansion of the interaction Lagrangian in powers of P one obtains from
the terms proportional to D and F the pseudovector coupling term

L1 = −
√

2
2f0

tr
(
DB̄γ µγ5{∂µP,B} + FB̄γ µγ5[∂µP,B]

)
, (16)
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V(1P1 − 3P1) = −
4
√
2π
3

C8 p p′ = C1P1−3P1 p p
′ , (8)

V(3P0) =
2π
3
(−4C1 +C2 − 4C3 +C4 + 4C5 + 12C6 − 3C7) p p′ = C3P0 p p

′ , (9)

V(3P2) =
2π
3
(−4C1 +C2 − 4C3 +C4 − 2C5) p p′ = C3P2 p p

′ , (10)

V(3D1 − 3S 1) =
2
√
2π
3

(4C6 +C7) p′2 = C3S 1− 3D1 p
′2 , (11)

V(3S 1 − 3D1) =
2
√
2π
3

(4C6 +C7) p2 = C3S 1− 3D1 p
2 , (12)

with p = |p | and p′ = |p ′|. Note that the term proportional to C8 in Eqs. (7) and (7) represents an antisymmetric
spin-orbit force and gives rise to spin singlet-triplet transitions (i.e. 1P1 − 3P1). Such transitions cannot occur in the
NN interaction, unless isospin symmetry breaking is included, and, therefore, this term is absent in the equations
given in Ref. [32]. However, in general, this antisymmetric spin-orbit term is allowed. Specifically, it does not break
SU(3) symmetry.

Assuming only isospin symmetry, the LECs for each spin-isospin channel of the various BB → BB interaction
potentials are independent. When imposing SU(3) flavor symmetry one obtains relations between the LECs and,
thereby, the number of terms that need to be fitted to data gets reduced. The relevant SU(3) structure for the scattering
of two octet baryons follows from the tensor product decomposition 8 ⊗ 8 = 1 ⊕ 8a ⊕ 8s ⊕ 10∗ ⊕ 10 ⊕ 27 (for details
see Refs. [46, 47]). With that one can express all the C1S 0,ν, C3S 1,ν, . . ., in Eqs. (3) – (12) (ν= NN → NN, ΛN → ΛN,
ΛN → ΣN, ΣN → ΣN) by coefficients corresponding to the SU(3) irreducible representations: C1, C8a , C8s , C10∗ ,
C10, C27. The particular combinations of LECs in the various BB → BB channels and for the various partial waves
are summarized in Tab. 1. For example, for the potential in the 1S 0 partial wave of the ΛN → ΛN channel we get

VΛN→ΛN(1S 0) =
1
10

[

9C̃271S 0 + C̃
8s
1S 0
+ (9C271S 0 +C

8s
1S 0
)(p2 + p′2)

]

. (13)

Note that Tab. 1 gives the weight factors of the various baryon-baryon channels with respect to the irreducible SU(3)
representations. In addition, it reflects the constraints from the generalized Pauli principle. The interaction in partial
waves like the 3S 1, 3D1, and 1P1, which are symmetric with regard to their spin-space component, is given by linear
combinations of coefficients corresponding to antisymmetric SU(3) representations (C8a , C10∗ , C10), whereas those
with antisymmetric spin-space part (1S 0, 3P0, 3P1, 3P2) receive only contributions from symmetric representations
(C8s , C27). The C8-term induces transitions between singlet and triplet states in the octet-representation 8a and 8s,
respectively [47]. For a detailed derivation of the SU(3) constraints on the LECs see Ref. [20] or [48].

Due to the imposed SU(3) constraints at LO there are only five independent LECs for the NN and the YN sectors
together, as outlined in Ref. [20]. Note that without SU(3) symmetry, there would be twice as many. At NLO SU(3)
symmetry implies that in case of the NN and YN interactions there are eight new LECs entering the S -waves and S -D
transitions, respectively, and ten coefficients in the P-waves. Note that the sixth leading-order LEC corresponding to
the singlet representation (C1) is present in the strangeness S = −2 channels with isospin I = 0 [49] and there are four
more LECs that contribute to the S = −2 sector at NLO.
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potentials are independent. When imposing SU(3) flavor symmetry one obtains relations between the LECs and,
thereby, the number of terms that need to be fitted to data gets reduced. The relevant SU(3) structure for the scattering
of two octet baryons follows from the tensor product decomposition 8 ⊗ 8 = 1 ⊕ 8a ⊕ 8s ⊕ 10∗ ⊕ 10 ⊕ 27 (for details
see Refs. [46, 47]). With that one can express all the C1S 0,ν, C3S 1,ν, . . ., in Eqs. (3) – (12) (ν= NN → NN, ΛN → ΛN,
ΛN → ΣN, ΣN → ΣN) by coefficients corresponding to the SU(3) irreducible representations: C1, C8a , C8s , C10∗ ,
C10, C27. The particular combinations of LECs in the various BB → BB channels and for the various partial waves
are summarized in Tab. 1. For example, for the potential in the 1S 0 partial wave of the ΛN → ΛN channel we get

VΛN→ΛN(1S 0) =
1
10

[

9C̃271S 0 + C̃
8s
1S 0
+ (9C271S 0 +C

8s
1S 0
)(p2 + p′2)

]

. (13)

Note that Tab. 1 gives the weight factors of the various baryon-baryon channels with respect to the irreducible SU(3)
representations. In addition, it reflects the constraints from the generalized Pauli principle. The interaction in partial
waves like the 3S 1, 3D1, and 1P1, which are symmetric with regard to their spin-space component, is given by linear
combinations of coefficients corresponding to antisymmetric SU(3) representations (C8a , C10∗ , C10), whereas those
with antisymmetric spin-space part (1S 0, 3P0, 3P1, 3P2) receive only contributions from symmetric representations
(C8s , C27). The C8-term induces transitions between singlet and triplet states in the octet-representation 8a and 8s,
respectively [47]. For a detailed derivation of the SU(3) constraints on the LECs see Ref. [20] or [48].

Due to the imposed SU(3) constraints at LO there are only five independent LECs for the NN and the YN sectors
together, as outlined in Ref. [20]. Note that without SU(3) symmetry, there would be twice as many. At NLO SU(3)
symmetry implies that in case of the NN and YN interactions there are eight new LECs entering the S -waves and S -D
transitions, respectively, and ten coefficients in the P-waves. Note that the sixth leading-order LEC corresponding to
the singlet representation (C1) is present in the strangeness S = −2 channels with isospin I = 0 [49] and there are four
more LECs that contribute to the S = −2 sector at NLO.

2.2. Goldstone boson exchange
The one- and two-pseudoscalar-meson-exchange potentials follow from the SU(3)-invariant meson-baryon inter-

action Lagrangian

LMB = tr
(

B̄
(

iγµDµ − M0
)

B
)

−
D
2
tr

(

B̄γµγ5{uµ, B}
)

−
F
2
tr

(

B̄γµγ5[uµ, B]
)

, (14)

with DµB = ∂µB + [Γµ, B], Γµ = 1
2 (u
†∂µu + u∂µu†) and uµ = i(u†∂µu − u∂µu†), and where the trace is taken in flavor

space. The constant M0 denotes the baryon mass in the three-flavor chiral limit. The coupling constants F and D
satisfy the relation F + D = gA ≃ 1.26, where gA is the axial-vector strength measured in neutron β–decay. For the
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V(1P1 − 3P1) = −
4
√
2π
3

C8 p p′ = C1P1−3P1 p p
′ , (8)

V(3P0) =
2π
3
(−4C1 +C2 − 4C3 +C4 + 4C5 + 12C6 − 3C7) p p′ = C3P0 p p

′ , (9)

V(3P2) =
2π
3
(−4C1 +C2 − 4C3 +C4 − 2C5) p p′ = C3P2 p p

′ , (10)

V(3D1 − 3S 1) =
2
√
2π
3

(4C6 +C7) p′2 = C3S 1− 3D1 p
′2 , (11)

V(3S 1 − 3D1) =
2
√
2π
3

(4C6 +C7) p2 = C3S 1− 3D1 p
2 , (12)

with p = |p | and p′ = |p ′|. Note that the term proportional to C8 in Eqs. (7) and (7) represents an antisymmetric
spin-orbit force and gives rise to spin singlet-triplet transitions (i.e. 1P1 − 3P1). Such transitions cannot occur in the
NN interaction, unless isospin symmetry breaking is included, and, therefore, this term is absent in the equations
given in Ref. [32]. However, in general, this antisymmetric spin-orbit term is allowed. Specifically, it does not break
SU(3) symmetry.

Assuming only isospin symmetry, the LECs for each spin-isospin channel of the various BB → BB interaction
potentials are independent. When imposing SU(3) flavor symmetry one obtains relations between the LECs and,
thereby, the number of terms that need to be fitted to data gets reduced. The relevant SU(3) structure for the scattering
of two octet baryons follows from the tensor product decomposition 8 ⊗ 8 = 1 ⊕ 8a ⊕ 8s ⊕ 10∗ ⊕ 10 ⊕ 27 (for details
see Refs. [46, 47]). With that one can express all the C1S 0,ν, C3S 1,ν, . . ., in Eqs. (3) – (12) (ν= NN → NN, ΛN → ΛN,
ΛN → ΣN, ΣN → ΣN) by coefficients corresponding to the SU(3) irreducible representations: C1, C8a , C8s , C10∗ ,
C10, C27. The particular combinations of LECs in the various BB → BB channels and for the various partial waves
are summarized in Tab. 1. For example, for the potential in the 1S 0 partial wave of the ΛN → ΛN channel we get

VΛN→ΛN(1S 0) =
1
10

[

9C̃271S 0 + C̃
8s
1S 0
+ (9C271S 0 +C

8s
1S 0
)(p2 + p′2)

]

. (13)

Note that Tab. 1 gives the weight factors of the various baryon-baryon channels with respect to the irreducible SU(3)
representations. In addition, it reflects the constraints from the generalized Pauli principle. The interaction in partial
waves like the 3S 1, 3D1, and 1P1, which are symmetric with regard to their spin-space component, is given by linear
combinations of coefficients corresponding to antisymmetric SU(3) representations (C8a , C10∗ , C10), whereas those
with antisymmetric spin-space part (1S 0, 3P0, 3P1, 3P2) receive only contributions from symmetric representations
(C8s , C27). The C8-term induces transitions between singlet and triplet states in the octet-representation 8a and 8s,
respectively [47]. For a detailed derivation of the SU(3) constraints on the LECs see Ref. [20] or [48].

Due to the imposed SU(3) constraints at LO there are only five independent LECs for the NN and the YN sectors
together, as outlined in Ref. [20]. Note that without SU(3) symmetry, there would be twice as many. At NLO SU(3)
symmetry implies that in case of the NN and YN interactions there are eight new LECs entering the S -waves and S -D
transitions, respectively, and ten coefficients in the P-waves. Note that the sixth leading-order LEC corresponding to
the singlet representation (C1) is present in the strangeness S = −2 channels with isospin I = 0 [49] and there are four
more LECs that contribute to the S = −2 sector at NLO.

2.2. Goldstone boson exchange
The one- and two-pseudoscalar-meson-exchange potentials follow from the SU(3)-invariant meson-baryon inter-

action Lagrangian

LMB = tr
(

B̄
(

iγµDµ − M0
)

B
)

−
D
2
tr

(

B̄γµγ5{uµ, B}
)

−
F
2
tr

(

B̄γµγ5[uµ, B]
)

, (14)

with DµB = ∂µB + [Γµ, B], Γµ = 1
2 (u
†∂µu + u∂µu†) and uµ = i(u†∂µu − u∂µu†), and where the trace is taken in flavor

space. The constant M0 denotes the baryon mass in the three-flavor chiral limit. The coupling constants F and D
satisfy the relation F + D = gA ≃ 1.26, where gA is the axial-vector strength measured in neutron β–decay. For the
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Table 1
SU(3) relations for the various contact potentials in the isospin basis. C27

ξ etc. refers to the corresponding irreducible
SU(3) representation for a particular partial wave ξ . The actual potential still needs to be multiplied by pertinent powers
of the momenta p and p′.

Channel I V (ξ)

ξ = 1S0, 3P0, 3P1, 3P2 ξ = 3S1, 3S1–3D1, 1P1 ξ = 1P1–3P1

S = 0 NN → NN 0 – C10∗
ξ –

NN → NN 1 C27
ξ – –

S = −1 ΛN →ΛN 1
2

1
10 (9C27

ξ + C
8s
ξ ) 1

2 (C
8a
ξ + C10∗

ξ ) −1√
20

C
8s8a
ξ

ΛN →ΣN 1
2

3
10 (−C27

ξ + C
8s
ξ ) 1

2 (−C
8a
ξ + C10∗

ξ ) −3√
20

C
8s8a
ξ

ΣN →ΛN 1√
20

C
8s8a
ξ

ΣN →ΣN 1
2

1
10 (C27

ξ + 9C
8s
ξ ) 1

2 (C
8a
ξ + C10∗

ξ ) 3√
20

C
8s8a
ξ

ΣN →ΣN 3
2 C27

ξ C10
ξ –

singlet representation (C1) is present in the strangeness S = −2 channels with isospin I = 0 [45]
and there are four more LECs that contribute to the S = −2 sector at NLO [50].

2.2. Goldstone boson exchange

The one- and two-pseudoscalar-meson exchange potentials follow from the SU(3)-invariant
meson–baryon interaction Lagrangian

LMB = tr
(
B̄

(
iγ µDµ − M0

)
B

)
− D

2
tr
(
B̄γ µγ5{uµ,B}

)
− F

2
tr
(
B̄γ µγ5[uµ,B]

)
, (14)

with DµB = ∂µB + [Γµ,B], Γµ = 1
2 (u†∂µu + u∂µu†) and uµ = i(u†∂µu − u∂µu†), and where

the trace is taken in flavor space. The constant M0 denotes the baryon mass in the three-flavor
chiral limit. The coupling constants F and D satisfy the relation F + D = gA ≃ 1.26, where gA

is the axial-vector strength measured in neutron β-decay. The pseudoscalar mesons and octet
baryons are collected in traceless 3 × 3 matrices [51]

P =

⎛

⎜⎜⎝

π0√
2

+ η√
6

π+ K+

π− − π0√
2

+ η√
6

K0

K− K̄0 − 2η√
6

⎞

⎟⎟⎠ , B =

⎛

⎜⎝

Σ0√
2

+ Λ√
6

Σ+ p

Σ− −Σ0√
2

+ Λ√
6

n

−Ξ− Ξ0 − 2Λ√
6

⎞

⎟⎠ .

(15)

For the pseudoscalar mesons we use the usual non-linear realization of chiral symmetry with
U(x) = u2(x) = exp(i

√
2P(x)/f0), where f0 is the Goldstone boson decay constant in the chiral

limit. These fields transform under the chiral group SU(3)L × SU(3)R as U → RUL† and B →
KBK† with L ∈ SU(3)L, R ∈ SU(3)R and the SU(3) valued compensator field K = K(L,R,U),
cf. Ref. [52]. After an expansion of the interaction Lagrangian in powers of P one obtains from
the terms proportional to D and F the pseudovector coupling term

L1 = −
√

2
2f0

tr
(
DB̄γ µγ5{∂µP,B} + FB̄γ µγ5[∂µP,B]

)
, (16)
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which leads to a vertex between two baryons and one meson. In the same way, the term involving
the chiral connection Γµ gives

L2 = 1

4f 2
0

tr
(
iB̄γ µ

[
[P, ∂µP ],B

])
, (17)

which describes a (Weinberg–Tomozawa) vertex between two baryons and two mesons.
Writing the pseudovector interaction Lagrangian L1 explicitly in the isospin basis, one gets

L1 = −fNNπ N̄γ µγ5τN · ∂µπ + ifΣΣπ Σ̄γ µγ5 × Σ · ∂µπ

− fΛΣπ

[
Λ̄γ µγ5Σ + Σ̄γ µγ5Λ

]
· ∂µπ − fΞΞπΞ̄γ µγ5τΞ · ∂µπ

− fΛNK

[
N̄γ µγ5Λ∂µK + h.c.

]
− fΞΛK

[
Ξ̄γ µγ5Λ∂µK̄ + h.c.

]

− fΣNK

[
N̄γ µγ5τ∂µK · Σ + h.c.

]
− fΣΞK

[
Ξ̄γ µγ5τ∂µK̄ · Σ + h.c.

]

− fNNη8N̄γ µγ5N∂µη − fΛΛη8Λ̄γ µγ5Λ∂µη

− fΣΣη8Σ̄ · γ µγ5Σ∂µη − fΞΞη8Ξ̄γ µγ5Ξ∂µη. (18)

Here, we have introduced the isospin doublets

N =
(

p

n

)
, Ξ =

(
Ξ0

Ξ−

)
, K =

(
K+

K0

)
, K̄ =

(
K̄0

−K−

)
. (19)

The signs have been chosen according to the conventions of Ref. [48], such that the inner product
of the isovector Σ (or π ) defined in spherical components reads

Σ · Σ =
∑

m

(−1)mΣmΣ−m = Σ+Σ− + Σ0Σ0 + Σ−Σ+. (20)

Since the original interaction Lagrangian in Eq. (16) is SU(3)-invariant, the various coupling
constants are related to each other by [48]

fNNπ = f, fNNη8 = 1√
3
(4α − 1)f, fΛNK = − 1√

3
(1 + 2α)f,

fΞΞπ = −(1 − 2α)f, fΞΞη8 = − 1√
3
(1 + 2α)f, fΞΛK = 1√

3
(4α − 1)f,

fΛΣπ = 2√
3
(1 − α)f, fΣΣη8 = 2√

3
(1 − α)f, fΣNK = (1 − 2α)f,

fΣΣπ = 2αf, fΛΛη8 = − 2√
3
(1 − α)f, fΞΣK = −f. (21)

Evidently, all coupling constants are given in terms of f ≡ gA/2f0 and the ratio α = F/(F +D).
The expression for the one-pseudoscalar-meson exchange potential is similar to the standard

one-pion-exchange potential [33]

V OBE
B1B2→B3B4

= −fB1B3P fB2B4P
(σ 1 · q)(σ 2 · q)

q2 + m2
P

IB1B2→B3B4 . (22)

Here, mP is the mass of the exchanged pseudoscalar meson. In the present calculation we use
the physical masses mπ , mK , mη in Eq. (22). Thus, the explicit SU(3) breaking reflected in the
mass splitting between the pseudoscalar mesons is taken into account. The η meson is identified
with the octet-state η8. The isospin factors IB1B2→B3B4 are given in Table 2.

mass terms +

Input :

Lint = L1 + L2 + . . .

F = 0.46 D = 0.81
(gA = F +D = 1.27) f = 0.09GeV

++

[8] [8][8] [8] [8] [8]

++

[8] [8][8] [8] [8] [8]

Physical meson and baryon masses  (SU(3) breaking)
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Table 1: SU(3) relations for the various contact potentials in the isospin basis. C27
ξ
etc. refers to the corresponding irreducible SU(3) representation

for a particular partial wave ξ. The actual potential still needs to be multiplied by pertinent powers of the momenta p and p′.

Channel I V(ξ)
ξ = 1S 0, 3P0, 3P1, 3P2 ξ = 3S 1, 3S 1-3D1, 1P1 ξ = 1P1-3P1

S = 0 NN → NN 0 – C10∗
ξ

–
NN → NN 1 C27ξ – –

S = −1 ΛN → ΛN 1
2

1
10

(

9C27ξ +C
8s
ξ

)

1
2

(

C8aξ + C
10∗
ξ

)

−1√
20
C8s8aξ

ΛN → ΣN 1
2

3
10

(

−C27ξ +C
8s
ξ

)

1
2

(

−C8aξ +C
10∗
ξ

)

3√
20
C8s8aξ

ΣN → ΛN −1√
20
C8s8aξ

ΣN → ΣN 1
2

1
10

(

C27ξ + 9C
8s
ξ

)

1
2

(

C8a
ξ
+ C10∗ξ

)

3√
20
C8s8a
ξ

ΣN → ΣN 3
2 C27ξ C10ξ –

pseudoscalar mesons and octet baryons, collected in traceless 3 × 3 matrices,

P =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

π0√
2
+
η√
6

π+ K+

π− − π
0
√
2
+
η√
6

K0

K− K
0

− 2η√
6

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, B =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

Σ0√
2
+ Λ√

6
Σ+ p

Σ− − Σ
0
√
2
+ Λ√

6
n

−Ξ− Ξ0 − 2Λ√
6

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, (15)

we use the usual non-linear realization of chiral symmetry with U(x) = u2(x) = exp
(

i
√
2P(x)/ f0

)

, and f0 is the
Goldstone boson decay constant in the chiral limit. These fields transform under the chiral group SU(3)L × SU(3)R as
U → RUL† and B → KBK† with L ∈ SU(3)L ,R ∈ SU(3)R and the SU(3) valued compensator field K = K(L,R,U),
cf. Ref. [50]. After an expansion of the interaction Lagrangian in powers of P one obtains from the terms proportional
to D and F the pseudovector coupling term

L1 = −
√
2

2 f0
tr

(

DB̄γµγ5
{

∂µP, B
}

+ FB̄γµγ5
[

∂µP, B
])

, (16)

which leads to a vertex between two baryons and one meson. In the same way, the term involving the chiral connection
Γµ gives

L2 =
1
4 f 20

tr
(

iB̄γµ
[[

P, ∂µP
]

, B
])

, (17)

which describes a (Weinberg-Tomozawa) vertex between two baryons and two mesons.
When writing the pseudovector interaction LagrangianL1 explicitly in the isospin basis, one gets

L1 = − fNNπN̄γµγ5τN · ∂µπ + i fΣΣπΣ̄γµγ5 × Σ · ∂µπ

− fΛΣπ
[

Λ̄γµγ5Σ + Σ̄γ
µγ5Λ

]

· ∂µπ − fΞΞπΞ̄γµγ5τΞ · ∂µπ

− fΛNK
[

N̄γµγ5Λ∂µK + h.c.
]

− fΞΛK
[

Ξ̄γµγ5Λ∂µK + h.c.
]

− fΣNK
[

N̄γµγ5τ∂µK · Σ + h.c.
]

− fΣΞK
[

Ξ̄γµγ5τ∂µK · Σ + h.c.
]

− fNNη8 N̄γ
µγ5N∂µη − fΛΛη8 Λ̄γ

µγ5Λ∂µη

− fΣΣη8 Σ̄ · γ
µγ5Σ∂µη − fΞΞη8 Ξ̄γ

µγ5Ξ∂µη . (18)

Here, we have introduced the isospin doublets

N =
(

p
n

)

, Ξ =

(

Ξ0

Ξ−

)

, K =
(

K+
K0

)

, K =
⎛

⎜

⎜

⎜

⎜

⎝

K
0

−K−

⎞

⎟

⎟

⎟

⎟

⎠

. (19)

5

Table 2: Isospin factors I for the various one–pseudoscalar-meson exchanges.

Channel Isospin π K η

S = 0 NN → NN 0 −3 0 1
1 1 0 1

S = −1 ΛN → ΛN 1
2 0 1 1

ΛN → ΣN 1
2 −

√
3 −

√
3 0

ΣN → ΣN 1
2 −2 −1 1
3
2 1 2 1

The signs have been chosen according to the conventions of Ref. [46], such that the inner product of the isovector Σ
(or π) defined in spherical components reads

Σ · Σ =
∑

m
(−1)mΣmΣ−m = Σ+Σ− + Σ0Σ0 + Σ−Σ+ . (20)

Since the original interaction Lagrangian in Eq. (16) is SU(3)-invariant, the various coupling constants are related
to each other by [46]

fNNπ = f , fNNη8 = 1√
3
(4α − 1) f , fΛNK = − 1√

3
(1 + 2α) f ,

fΞΞπ = −(1 − 2α) f , fΞΞη8 = − 1√
3
(1 + 2α) f , fΞΛK = 1√

3
(4α − 1) f ,

fΛΣπ = 2√
3
(1 − α) f , fΣΣη8 = 2√

3
(1 − α) f , fΣNK = (1 − 2α) f ,

fΣΣπ = 2α f , fΛΛη8 = − 2√
3
(1 − α) f , fΞΣK = − f .

(21)

Evidently, all coupling constants are given in terms of f ≡ gA/2 f0 and the ratio α = F/(F + D).
The expression for the one–pseudoscalar-meson exchange potential is similar to the standard one-pion-exchange

potential [32]

VOBEB1B2→B3B4 = − fB1B3P fB2B4P
(σ1 · q) (σ2 · q)
q2 + m2P

IB1B2→B3B4 . (22)

Here, mP is the mass of the exchanged pseudoscalar meson. In the present calculation we use the physical masses
mπ,mK ,mη in Eq. (22). Thus, the explicit SU(3) breaking reflected in the mass splitting between the pseudoscalar
mesons is taken into account. The η meson is identified with the octet-state η8. The isospin factors IB1B2→B3B4 are
given in Tab. 2.

The two–pseudoscalar-meson exchange potential, built up by a set of one-loop diagrams, is described in detail in
Appendix A. Relativistic corrections to the one-meson exchange potential that arise at NLO due to differences of the
baryon masses are discussed in Appendix B.

2.3. Scattering equation
In the actual calculation a partial-wave projection of the interaction potentials is performed, as described in detail

in Ref. [20]. The reaction amplitudes are obtained from the solution of a coupled-channel Lippmann-Schwinger (LS)
equation:

T ρ
′′ρ′,J
ν′′ν′ (p

′′, p′;
√
s) = Vρ

′′ρ′,J
ν′′ν′ (p

′′, p′) +
∑

ρ,ν

∫ ∞

0

dpp2

(2π)3
Vρ

′′ρ ,J
ν′′ν (p′′, p) 2µν

q2ν − p2 + iη
T ρρ

′,J
νν′ (p, p

′;
√
s) . (23)

Here, the label ν indicates the particle channels and the label ρ the partial wave. µν is the pertinent reduced baryon
mass. The on-shell momentum qν in the intermediate state, is determined by

√
s =

√

M2
B1,ν + q

2
ν +

√

M2
B2,ν + q

2
ν.

Relativistic kinematics is used for relating the laboratory momentum plab of the hyperons to the center-of-mass mo-
mentum.

6
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Fig. 1. Relevant Feynman diagrams up-to-and-including next-to-leading order. Solid and dashed lines denote octet
baryons and pseudoscalar mesons, respectively. The square symbolizes a contact vertex with two derivatives. From left
to right: LO contact term, one-meson exchange, NLO contact term, planar box, crossed box, left triangle, right triangle,
football diagram.

2. Chiral potential at next-to-leading order

The derivation of chiral baryon–baryon potentials for the strangeness sector at LO using the
Weinberg power counting has been outlined in Refs. [21,44–46]. The NLO contributions for the
NN case are described in detail in Ref. [33], while the extension to baryon–baryon systems with
any combination of octet baryons has been worked out in Ref. [47]. The LO potential consists
of four-baryon contact terms without derivatives and of one-pseudoscalar-meson exchanges. At
NLO contact terms with two derivatives arise, together with loop contributions from (irreducible)
two-pseudoscalar-meson exchanges. The corresponding Feynman diagrams are shown in Fig. 1.

2.1. Contact terms

The spin dependence of the potentials due to leading order contact terms is given by [33]

V
(0)
BB→BB = CS + CT σ 1 · σ 2, (1)

where the parameters CS and CT are low-energy constants (LECs), depending on the considered
baryon–baryon channel, which need to be determined in a fit to data. At next-to-leading order
the spin and momentum dependence of the contact terms reads

V
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BB→BB = C1q2 + C2k2 +

(
C3q2 + C4k2)σ 1 · σ 2 + i

2
C5(σ 1 + σ 2) · (q × k)

+ C6(q · σ 1)(q · σ 2) + C7(k · σ 1)(k · σ 2) + i
2
C8(σ 1 − σ 2) · (q × k), (2)

where Ci (i = 1, . . . ,8) are additional LECs. The transferred and average momenta, q and k,
are defined in terms of the final and initial center-of-mass momenta of the baryons, p′ and p, as
q = p′−p and k = (p′+p)/2. When performing a partial-wave projection, these terms contribute
to the two S-wave (1S0, 3S1) potentials, the four P -wave (1P1, 3P0, 3P1, 3P2) potentials, and
the 3S1–3D1 and 1P1–3P1 transition potentials in the following way [29]:
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Fig. 1. Relevant Feynman diagrams up-to-and-including next-to-leading order. Solid and dashed lines denote octet
baryons and pseudoscalar mesons, respectively. The square symbolizes a contact vertex with two derivatives. From left
to right: LO contact term, one-meson exchange, NLO contact term, planar box, crossed box, left triangle, right triangle,
football diagram.

2. Chiral potential at next-to-leading order

The derivation of chiral baryon–baryon potentials for the strangeness sector at LO using the
Weinberg power counting has been outlined in Refs. [21,44–46]. The NLO contributions for the
NN case are described in detail in Ref. [33], while the extension to baryon–baryon systems with
any combination of octet baryons has been worked out in Ref. [47]. The LO potential consists
of four-baryon contact terms without derivatives and of one-pseudoscalar-meson exchanges. At
NLO contact terms with two derivatives arise, together with loop contributions from (irreducible)
two-pseudoscalar-meson exchanges. The corresponding Feynman diagrams are shown in Fig. 1.

2.1. Contact terms

The spin dependence of the potentials due to leading order contact terms is given by [33]
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where the parameters CS and CT are low-energy constants (LECs), depending on the considered
baryon–baryon channel, which need to be determined in a fit to data. At next-to-leading order
the spin and momentum dependence of the contact terms reads
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where Ci (i = 1, . . . ,8) are additional LECs. The transferred and average momenta, q and k,
are defined in terms of the final and initial center-of-mass momenta of the baryons, p′ and p, as
q = p′−p and k = (p′+p)/2. When performing a partial-wave projection, these terms contribute
to the two S-wave (1S0, 3S1) potentials, the four P -wave (1P1, 3P0, 3P1, 3P2) potentials, and
the 3S1–3D1 and 1P1–3P1 transition potentials in the following way [29]:
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Fig. 1. Relevant Feynman diagrams up-to-and-including next-to-leading order. Solid and dashed lines denote octet
baryons and pseudoscalar mesons, respectively. The square symbolizes a contact vertex with two derivatives. From left
to right: LO contact term, one-meson exchange, NLO contact term, planar box, crossed box, left triangle, right triangle,
football diagram.

2. Chiral potential at next-to-leading order

The derivation of chiral baryon–baryon potentials for the strangeness sector at LO using the
Weinberg power counting has been outlined in Refs. [21,44–46]. The NLO contributions for the
NN case are described in detail in Ref. [33], while the extension to baryon–baryon systems with
any combination of octet baryons has been worked out in Ref. [47]. The LO potential consists
of four-baryon contact terms without derivatives and of one-pseudoscalar-meson exchanges. At
NLO contact terms with two derivatives arise, together with loop contributions from (irreducible)
two-pseudoscalar-meson exchanges. The corresponding Feynman diagrams are shown in Fig. 1.
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where the parameters CS and CT are low-energy constants (LECs), depending on the considered
baryon–baryon channel, which need to be determined in a fit to data. At next-to-leading order
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where Ci (i = 1, . . . ,8) are additional LECs. The transferred and average momenta, q and k,
are defined in terms of the final and initial center-of-mass momenta of the baryons, p′ and p, as
q = p′−p and k = (p′+p)/2. When performing a partial-wave projection, these terms contribute
to the two S-wave (1S0, 3S1) potentials, the four P -wave (1P1, 3P0, 3P1, 3P2) potentials, and
the 3S1–3D1 and 1P1–3P1 transition potentials in the following way [29]:
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Fig. 1. Relevant Feynman diagrams up-to-and-including next-to-leading order. Solid and dashed lines denote octet
baryons and pseudoscalar mesons, respectively. The square symbolizes a contact vertex with two derivatives. From left
to right: LO contact term, one-meson exchange, NLO contact term, planar box, crossed box, left triangle, right triangle,
football diagram.

2. Chiral potential at next-to-leading order

The derivation of chiral baryon–baryon potentials for the strangeness sector at LO using the
Weinberg power counting has been outlined in Refs. [21,44–46]. The NLO contributions for the
NN case are described in detail in Ref. [33], while the extension to baryon–baryon systems with
any combination of octet baryons has been worked out in Ref. [47]. The LO potential consists
of four-baryon contact terms without derivatives and of one-pseudoscalar-meson exchanges. At
NLO contact terms with two derivatives arise, together with loop contributions from (irreducible)
two-pseudoscalar-meson exchanges. The corresponding Feynman diagrams are shown in Fig. 1.

2.1. Contact terms

The spin dependence of the potentials due to leading order contact terms is given by [33]

V
(0)
BB→BB = CS + CT σ 1 · σ 2, (1)

where the parameters CS and CT are low-energy constants (LECs), depending on the considered
baryon–baryon channel, which need to be determined in a fit to data. At next-to-leading order
the spin and momentum dependence of the contact terms reads
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+ C6(q · σ 1)(q · σ 2) + C7(k · σ 1)(k · σ 2) + i
2
C8(σ 1 − σ 2) · (q × k), (2)

where Ci (i = 1, . . . ,8) are additional LECs. The transferred and average momenta, q and k,
are defined in terms of the final and initial center-of-mass momenta of the baryons, p′ and p, as
q = p′−p and k = (p′+p)/2. When performing a partial-wave projection, these terms contribute
to the two S-wave (1S0, 3S1) potentials, the four P -wave (1P1, 3P0, 3P1, 3P2) potentials, and
the 3S1–3D1 and 1P1–3P1 transition potentials in the following way [29]:
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Fig. 1. Relevant Feynman diagrams up-to-and-including next-to-leading order. Solid and dashed lines denote octet
baryons and pseudoscalar mesons, respectively. The square symbolizes a contact vertex with two derivatives. From left
to right: LO contact term, one-meson exchange, NLO contact term, planar box, crossed box, left triangle, right triangle,
football diagram.

2. Chiral potential at next-to-leading order

The derivation of chiral baryon–baryon potentials for the strangeness sector at LO using the
Weinberg power counting has been outlined in Refs. [21,44–46]. The NLO contributions for the
NN case are described in detail in Ref. [33], while the extension to baryon–baryon systems with
any combination of octet baryons has been worked out in Ref. [47]. The LO potential consists
of four-baryon contact terms without derivatives and of one-pseudoscalar-meson exchanges. At
NLO contact terms with two derivatives arise, together with loop contributions from (irreducible)
two-pseudoscalar-meson exchanges. The corresponding Feynman diagrams are shown in Fig. 1.

2.1. Contact terms

The spin dependence of the potentials due to leading order contact terms is given by [33]

V
(0)
BB→BB = CS + CT σ 1 · σ 2, (1)

where the parameters CS and CT are low-energy constants (LECs), depending on the considered
baryon–baryon channel, which need to be determined in a fit to data. At next-to-leading order
the spin and momentum dependence of the contact terms reads
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C8(σ 1 − σ 2) · (q × k), (2)

where Ci (i = 1, . . . ,8) are additional LECs. The transferred and average momenta, q and k,
are defined in terms of the final and initial center-of-mass momenta of the baryons, p′ and p, as
q = p′−p and k = (p′+p)/2. When performing a partial-wave projection, these terms contribute
to the two S-wave (1S0, 3S1) potentials, the four P -wave (1P1, 3P0, 3P1, 3P2) potentials, and
the 3S1–3D1 and 1P1–3P1 transition potentials in the following way [29]:
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Fig. 1. Relevant Feynman diagrams up-to-and-including next-to-leading order. Solid and dashed lines denote octet
baryons and pseudoscalar mesons, respectively. The square symbolizes a contact vertex with two derivatives. From left
to right: LO contact term, one-meson exchange, NLO contact term, planar box, crossed box, left triangle, right triangle,
football diagram.

2. Chiral potential at next-to-leading order

The derivation of chiral baryon–baryon potentials for the strangeness sector at LO using the
Weinberg power counting has been outlined in Refs. [21,44–46]. The NLO contributions for the
NN case are described in detail in Ref. [33], while the extension to baryon–baryon systems with
any combination of octet baryons has been worked out in Ref. [47]. The LO potential consists
of four-baryon contact terms without derivatives and of one-pseudoscalar-meson exchanges. At
NLO contact terms with two derivatives arise, together with loop contributions from (irreducible)
two-pseudoscalar-meson exchanges. The corresponding Feynman diagrams are shown in Fig. 1.

2.1. Contact terms

The spin dependence of the potentials due to leading order contact terms is given by [33]

V
(0)
BB→BB = CS + CT σ 1 · σ 2, (1)

where the parameters CS and CT are low-energy constants (LECs), depending on the considered
baryon–baryon channel, which need to be determined in a fit to data. At next-to-leading order
the spin and momentum dependence of the contact terms reads
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where Ci (i = 1, . . . ,8) are additional LECs. The transferred and average momenta, q and k,
are defined in terms of the final and initial center-of-mass momenta of the baryons, p′ and p, as
q = p′−p and k = (p′+p)/2. When performing a partial-wave projection, these terms contribute
to the two S-wave (1S0, 3S1) potentials, the four P -wave (1P1, 3P0, 3P1, 3P2) potentials, and
the 3S1–3D1 and 1P1–3P1 transition potentials in the following way [29]:
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Fig. 1. Relevant Feynman diagrams up-to-and-including next-to-leading order. Solid and dashed lines denote octet
baryons and pseudoscalar mesons, respectively. The square symbolizes a contact vertex with two derivatives. From left
to right: LO contact term, one-meson exchange, NLO contact term, planar box, crossed box, left triangle, right triangle,
football diagram.

2. Chiral potential at next-to-leading order

The derivation of chiral baryon–baryon potentials for the strangeness sector at LO using the
Weinberg power counting has been outlined in Refs. [21,44–46]. The NLO contributions for the
NN case are described in detail in Ref. [33], while the extension to baryon–baryon systems with
any combination of octet baryons has been worked out in Ref. [47]. The LO potential consists
of four-baryon contact terms without derivatives and of one-pseudoscalar-meson exchanges. At
NLO contact terms with two derivatives arise, together with loop contributions from (irreducible)
two-pseudoscalar-meson exchanges. The corresponding Feynman diagrams are shown in Fig. 1.

2.1. Contact terms

The spin dependence of the potentials due to leading order contact terms is given by [33]

V
(0)
BB→BB = CS + CT σ 1 · σ 2, (1)

where the parameters CS and CT are low-energy constants (LECs), depending on the considered
baryon–baryon channel, which need to be determined in a fit to data. At next-to-leading order
the spin and momentum dependence of the contact terms reads
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C8(σ 1 − σ 2) · (q × k), (2)

where Ci (i = 1, . . . ,8) are additional LECs. The transferred and average momenta, q and k,
are defined in terms of the final and initial center-of-mass momenta of the baryons, p′ and p, as
q = p′−p and k = (p′+p)/2. When performing a partial-wave projection, these terms contribute
to the two S-wave (1S0, 3S1) potentials, the four P -wave (1P1, 3P0, 3P1, 3P2) potentials, and
the 3S1–3D1 and 1P1–3P1 transition potentials in the following way [29]:
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SU(3) symmetry and contact terms
• poor database for YN interaction
• use SU(3) symmetric contact terms for reduction of LECs

( SU(3) breaking e�ects from mu,d ”= ms derived in [Petschauer, Kaiser, NPA916, 2013] )

• LO+NLO contact terms of NN interaction [Epelbaum, 2000]
generalized by SU(3) flavor symmetry
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[Haidenbauer, Meißner, NPA936, 2015]
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Figure 5: Hierarchical organization of nuclear forces in chiral e↵ective field theory.

an explicit degree of freedom. Here arises the arctan loop function. At the same order there are additional relativistic

1/MN -corrections to 2⇡-exchange. Their explicit form depends on the precise definition of the nucleon-nucleon potential

VNN , which by itself is not an observable. Covariant perturbation theory [? ] and the method of unitary transformations

[? ] thus lead to slightly di↵erent expressions for these small 1/MN -corrections. As the state of the art, the chiral

NN-potential has been constructed up to order N3LO and it includes two-loop 2⇡-exchange, 3⇡-exchange and contact-

terms quartic in the momenta parameterized by 15 additional low-energy constants D1, . . . , D15. When inserted into the

Lippmann-Schwinger equation (in order to solve for the unitary S-matrix or the T -matrix) the chiral NN-potential is

multiplied by an exponential regulator function with a cuto↵ scale ⇤ = 500� 700MeV in order to restrict the potential

to the low-momentum region where chiral perturbation theory is applicable. The resulting NN partial-wave amplitudes

should then be independent of the cuto↵ ⇤ within a physically meaningful range of ⇤. The development of an alternative

power counting that would extend renormalization group invariance beyond the hard scale ⇤� is currently an area of

active investigation [? ? ? ]. Furthermore, methods of spectral function regularization [? ] have been employed in order

to eliminate the high-momentum region in the pion-loop integrals directly. In this case the loop functions L(q) and A(q)

receive an additional dependence on a regulator scale ⇤̃.

At order N3LO the chiral NN-potential reaches the quality of a “high-precision” potential in reproducing empirical

NN-phase shifts and deuteron properties. At the same time it provides the appropriate two-body interaction constrained

by chiral symmetry of QCD for nuclear few- and many-body calculations.

3.1.2. Nuclear many-body forces

Within the chiral e↵ective field theory framework employing nucleons and pions as the explicit degrees of freedom,

the leading-order contribution to the nuclear three-body potential arises at order N2LO and consists of three terms. The
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Fig. 2. “Total” cross section σ (as defined in Eq. (24)) as a function of plab. The experimental cross sections are taken
from Refs. [54] (filled circles), [55] (open squares), [69] (open circles), and [70] (filled squares) (Λp → Λp), from [56]
(Σ−p → Λn, Σ−p → Σ0n) and from [57] (Σ−p → Σ−p, Σ+p → Σ+p). The red/dark band shows the chiral EFT
results to NLO for variations of the cutoff in the range Λ = 500, . . . ,650 MeV, while the green/light band are results to
LO for Λ = 550, . . . ,700 MeV. The dashed curve is the result of the Jülich ’04 meson-exchange potential [37].

also for Λp the NLO results are now well in line with the data even up to the ΣN threshold.
Furthermore, one can see that the dependence on the cutoff mass is strongly reduced in the NLO
case. We also note that in some cases the LO and the NLO bands do not overlap. This is partly
due to the fact that the description at LO is not as precise as at NLO (cf. the total χ2 values in
Table 5). Also, the error bands are just given by the cutoff variation and thus can be considered
as lower limits.

A quantitative comparison with the experiments is provided in Table 5. There we list the
obtained overall χ2 but also separate values for each data set that was included in the fitting
procedure. Obviously the best results are achieved in the range Λ = 500–650 MeV. Here, in
addition, the χ2 exhibits also a fairly weak cutoff dependence so that one can really speak of
a plateau region. For larger cutoff values the χ2 increases smoothly while it grows dramatically
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Fig. 6. The Λp 1S0 and 1P1 phase shifts δ as a function of plab. The red/dark band shows the chiral EFT results to
NLO for variations of the cutoff in the range Λ = 500, . . . ,650 MeV, while the green/light band shows results to LO for
Λ = 550, . . . ,700 MeV. The dashed curve is the result of the Jülich ’04 meson-exchange potential [37].

Fig. 7. The Λp phase shifts for the coupled 3S1–3D1 partial wave as a function of plab. Same description of curves as
in Fig. 6.

state in the ΣN system. It should be said, however, that the majority of the meson-exchange
potentials [36,38,39] produce an unstable bound state, similar to our NLO interaction. The only
characteristic difference of the chiral EFT interactions to the meson-exchange potentials might
be the mixing parameter ϵ1 which is fairly large in the former case and close to 45◦ at the ΣN

threshold, see Fig. 7. It is a manifestation of the fact that the pertinent Λp T -matrices (for the
3S1 → 3S1, 3D1 → 3D1, and 3S1 ↔ 3D1 transitions) are all of the same magnitude.

The strong variation of the 3S1–3D1 amplitudes around the ΣN threshold is reflected in
an impressive increase in the Λp cross section at the corresponding energy, as seen in Fig. 2.
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FIG. 2. ⇤N phase-shifts in the 1S0 and 3S1 partial waves. Full results including the coupling to ⌃N , taken from Ref. [17], are
shown in the left and middle panel, respectively. The red/dark band is the result for the chiral EFT interaction at NLO. The
dashed curve corresponds to the Jülich ’04 meson-exchange interaction [29], the dotted curve to that of the Nijmegen NSC97f
interaction [30]. In the right panel results for the 3S1 phase-shift are displayed (for cuto↵s ⇤=450MeV and 500MeV) where
the coupling to the ⌃N channel is switched o↵.

required to describe the ⇤N scattering data. In fact,
the ⇤N and ⌃N scattering data themselves do not allow
to discriminate between these scenarios. The situation
is quite di↵erent, however, when such interactions are
employed in calculations of hypernuclei [36–38] and/or
hyperon properties in nuclear matter [39]. This is well-
known since many years and has been discussed, e.g., in
the context of light hypernuclei in Refs. [36–38]. Specifi-
cally, in the work by Gibson et al. [36] the e↵ect of ⇤N–
⌃N coupling (also called ⇤–⌃ conversion) has been re-
viewed and it has been argued that the ⇤–⌃ conversion
in the nuclear medium is suppressed as compared to that
in free space. For a discussion in the context of neutron
matter results see Ref. [39].

Accordingly, with regard to our G-matrix calculation
one has to expect that at higher density the ⇤N–⌃N cou-
pling gets increasingly suppressed. As a consequence, the
in-medium properties are to a greater extent determined
by the (diagonal) ⇤N -interaction alone. If this interac-
tion is only weakly attractive or even repulsive as for the
NLO chiral EFT interaction [17], U⇤(0, ⇢) will become
repulsive at higher densities. This is precisely what we
observe for the EFT interactions where the contribution
of the 3S1 partial wave eventually changes the sign.

On the other hand, when the ⇤N–⌃N coupling is fairly
weak (like for the Jülich ’04 interaction) or when simple
e↵ective ⇤N potentials fitted to ⇤N data are used, where
the coupling to the ⌃N -channel is completely ignored,
then one ends up with a rather attractive in-medium
⇤N -potential. Typically, such interactions lead to too
attractive results for U⇤(0, ⇢) in G-matrix calculations,

and also to overbinding when used in few- and many-
body calculations of hypernuclei [18, 40]. This deficiency
can then be only cured by introducting a (phenomenolog-
ical) strongly repulsive ⇤NN three-baryon force [40, 41].
Let us mention that contributions from higher partial

waves, specifically from the P waves, play a more impor-
tant role at higher density. Most of those are repulsive,
for the NLO chiral EFT interactions [19, 20] but also for
the Nijmegen NSC97f potential [30, 32].

Conclusions. The coupling between the ⇤N - and ⌃N -
channels plays a significant role in the hyperon-nucleon
interaction. Its strong influence on the properties of light
hypernuclei has been thoroughly examined and discussed
in the past [18, 36, 38]. The results of a G-matrix cal-
culation reported in the present work reveal that this
coupling has also a crucial impact on in-medium proper-
ties of ⇤-hyperons. This conclusion is based on hyperon-
nucleon inteactions derived recently within chiral EFT
up to NLO on the one hand side, and the Jülich ’04
interaction [29] which stands as representative for con-
ventional one-boson exchange Y N -models, on the other
hand side. The former interaction is characterized by a
weak diagonal ⇤N -interaction and a rather strong ⇤N–
⌃N coupling, whereas in the Jülich ’04 model the ⇤N -
interaction itself is fairly attractive and accordingly the
⇤N–⌃N coupling significantly weaker. While both inter-
actions yield a comparable and satisfactory description of
the available ⇤N and ⌃N scattering data [17, 29], their
predictions for the single-particle potential U⇤(0, ⇢) di↵er
significantly. Specifically, for the chiral EFT interaction
U⇤(0, ⇢) becomes increasingly repulsive for higher den-
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FIG. 2. ⇤N phase-shifts in the 1S0 and 3S1 partial waves. Full results including the coupling to ⌃N , taken from Ref. [17], are
shown in the left and middle panel, respectively. The red/dark band is the result for the chiral EFT interaction at NLO. The
dashed curve corresponds to the Jülich ’04 meson-exchange interaction [29], the dotted curve to that of the Nijmegen NSC97f
interaction [30]. In the right panel results for the 3S1 phase-shift are displayed (for cuto↵s ⇤=450MeV and 500MeV) where
the coupling to the ⌃N channel is switched o↵.
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attractive results for U⇤(0, ⇢) in G-matrix calculations,

and also to overbinding when used in few- and many-
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can then be only cured by introducting a (phenomenolog-
ical) strongly repulsive ⇤NN three-baryon force [40, 41].
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for the NLO chiral EFT interactions [19, 20] but also for
the Nijmegen NSC97f potential [30, 32].

Conclusions. The coupling between the ⇤N - and ⌃N -
channels plays a significant role in the hyperon-nucleon
interaction. Its strong influence on the properties of light
hypernuclei has been thoroughly examined and discussed
in the past [18, 36, 38]. The results of a G-matrix cal-
culation reported in the present work reveal that this
coupling has also a crucial impact on in-medium proper-
ties of ⇤-hyperons. This conclusion is based on hyperon-
nucleon inteactions derived recently within chiral EFT
up to NLO on the one hand side, and the Jülich ’04
interaction [29] which stands as representative for con-
ventional one-boson exchange Y N -models, on the other
hand side. The former interaction is characterized by a
weak diagonal ⇤N -interaction and a rather strong ⇤N–
⌃N coupling, whereas in the Jülich ’04 model the ⇤N -
interaction itself is fairly attractive and accordingly the
⇤N–⌃N coupling significantly weaker. While both inter-
actions yield a comparable and satisfactory description of
the available ⇤N and ⌃N scattering data [17, 29], their
predictions for the single-particle potential U⇤(0, ⇢) di↵er
significantly. Specifically, for the chiral EFT interaction
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Fig. 1. Relevant Feynman diagrams up-to-and-including next-to-leading order. Solid and dashed lines denote octet
baryons and pseudoscalar mesons, respectively. The square symbolizes a contact vertex with two derivatives. From left
to right: LO contact term, one-meson exchange, NLO contact term, planar box, crossed box, left triangle, right triangle,
football diagram.

2. Chiral potential at next-to-leading order

The derivation of chiral baryon–baryon potentials for the strangeness sector at LO using the
Weinberg power counting has been outlined in Refs. [21,44–46]. The NLO contributions for the
NN case are described in detail in Ref. [33], while the extension to baryon–baryon systems with
any combination of octet baryons has been worked out in Ref. [47]. The LO potential consists
of four-baryon contact terms without derivatives and of one-pseudoscalar-meson exchanges. At
NLO contact terms with two derivatives arise, together with loop contributions from (irreducible)
two-pseudoscalar-meson exchanges. The corresponding Feynman diagrams are shown in Fig. 1.

2.1. Contact terms

The spin dependence of the potentials due to leading order contact terms is given by [33]

V
(0)
BB→BB = CS + CT σ 1 · σ 2, (1)

where the parameters CS and CT are low-energy constants (LECs), depending on the considered
baryon–baryon channel, which need to be determined in a fit to data. At next-to-leading order
the spin and momentum dependence of the contact terms reads

V
(2)
BB→BB = C1q2 + C2k2 +

(
C3q2 + C4k2)σ 1 · σ 2 + i

2
C5(σ 1 + σ 2) · (q × k)

+ C6(q · σ 1)(q · σ 2) + C7(k · σ 1)(k · σ 2) + i
2
C8(σ 1 − σ 2) · (q × k), (2)

where Ci (i = 1, . . . ,8) are additional LECs. The transferred and average momenta, q and k,
are defined in terms of the final and initial center-of-mass momenta of the baryons, p′ and p, as
q = p′−p and k = (p′+p)/2. When performing a partial-wave projection, these terms contribute
to the two S-wave (1S0, 3S1) potentials, the four P -wave (1P1, 3P0, 3P1, 3P2) potentials, and
the 3S1–3D1 and 1P1–3P1 transition potentials in the following way [29]:

V
(1S0

)
= 4π(CS − 3CT ) + π(4C1 + C2 − 12C3 − 3C4 − 4C6 − C7)

(
p2 + p′ 2)

= C̃1S0
+ C1S0

(
p2 + p′ 2), (3)

V
(3S1

)
= 4π(CS + CT ) + π

3
(12C1 + 3C2 + 12C3 + 3C4 + 4C6 + C7)

(
p2 + p′ 2)

= C̃3S1
+ C3S1

(
p2 + p′ 2), (4)

V
(1P1

)
= 2π

3
(−4C1 + C2 + 12C3 − 3C4 + 4C6 − C7)pp′ = C1P1

pp′, (5)

V
(3P1

)
= 2π

3
(−4C1 + C2 − 4C3 + C4 + 2C5 − 8C6 + 2C7)pp′ = C3P1

pp′, (6)
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Figure 3: As in Fig. 2, but now the experimental cross sections are taken from Refs. [57] (Σ−p → Λn, Σ−p → Σ0n), [73] (Σ−p → Σ−p), and [74]
(Σ+p→ Σ+p).

well in line with the data even up to the ΣN threshold. Furthermore, one can see that the dependence on the cutoff
mass is strongly reduced in the NLO case.

A quantitative comparison with the experiments is provided in Tab. 5. There we list the obtained overall χ2 but
also separate values for each data set that was included in the fitting procedure. Obviously the best results are achieved
in the range Λ = 500 − 650 MeV. Here, in addition, the χ2 exhibits also a fairly weak cutoff dependence so that one
can really speak of a plateau region. For larger cutoff values the χ2 increases smoothly while it grows dramatically
when going to lower values. Therefore, in Fig. 2 and in the figures below we show only results based on variations of
the cutoff within this plateau region.

A total χ2 value of around 16 is quite good. Indeed, the best values achieved with phenomenological models,
say the Nijmegen NSC97 meson-exchange potentials [37], lie also in that region. We should add that our additional
requirements that we want to produce a correctly bound hypertriton and that we want a repulsive ΣN interaction in
the isospin I = 3/2 channel leads to a slightly increased χ2. Without those constraints we could achieve values which
are around 5 % smaller. In any case, one has to say that one should not overrate the χ2. Given that there are only 36
data points the χ2 per data point amounts to ≈ 0.5 only – which is somewhat low as compared to what one would
expect from a set of statistically sound data. As a matter of fact, the biggest single contribution to the χ2 comes from
the ΣN charge-exchange reaction, see Tab. 5, and specifically from a single data point near threshold that is far off all
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well in line with the data even up to the ΣN threshold. Furthermore, one can see that the dependence on the cutoff
mass is strongly reduced in the NLO case.

A quantitative comparison with the experiments is provided in Tab. 5. There we list the obtained overall χ2 but
also separate values for each data set that was included in the fitting procedure. Obviously the best results are achieved
in the range Λ = 500 − 650 MeV. Here, in addition, the χ2 exhibits also a fairly weak cutoff dependence so that one
can really speak of a plateau region. For larger cutoff values the χ2 increases smoothly while it grows dramatically
when going to lower values. Therefore, in Fig. 2 and in the figures below we show only results based on variations of
the cutoff within this plateau region.

A total χ2 value of around 16 is quite good. Indeed, the best values achieved with phenomenological models,
say the Nijmegen NSC97 meson-exchange potentials [37], lie also in that region. We should add that our additional
requirements that we want to produce a correctly bound hypertriton and that we want a repulsive ΣN interaction in
the isospin I = 3/2 channel leads to a slightly increased χ2. Without those constraints we could achieve values which
are around 5 % smaller. In any case, one has to say that one should not overrate the χ2. Given that there are only 36
data points the χ2 per data point amounts to ≈ 0.5 only – which is somewhat low as compared to what one would
expect from a set of statistically sound data. As a matter of fact, the biggest single contribution to the χ2 comes from
the ΣN charge-exchange reaction, see Tab. 5, and specifically from a single data point near threshold that is far off all

11

100 200 300 400 500 600 700 800 900
plab (MeV/c)

0

100

200

300

σ
 (m

b)
 

Sechi-Zorn et al.
Kadyk et al.
Alexander et al.

Λp -> Λp

500 600 700 800
plab (MeV/c)

0

10

20

30

40

50

60

70

σ
 (m

b)
 

Kadyk et al.
Hauptman

Λp -> Λp

Σ
+n -> <- Σ0p

100 120 140 160 180
plab (MeV/c)

0

50

100

150

200

250

300

σ
 (m

b)
 

Engelmann et al.

Σ
−p -> Λn

100 120 140 160 180
plab (MeV/c)

0

100

200

300

400

500

σ
 (m

b)
 

Engelmann et al.

Σ
−p -> Σ0n

100 120 140 160 180
plab (MeV/c)

0

50

100

150

200

250

300

σ
 (m

b)
 

Eisele et al.

Σ
−p -> Σ−p

100 120 140 160 180
plab (MeV/c)

0

50

100

150

200

250

σ
 (m

b)
 

Eisele et al.

Σ
+p -> Σ+p

Figure 2: ”Total” cross section σ (as defined in Eq. (24)) as a function of plab. The experimental cross sections are taken from Refs. [52] (filled
circles), [53] (open squares), [65] (open circles), and [66] (filled squares) (Λp → Λp), from [54] (Σ−p → Λn, Σ−p → Σ0n) and from [55]
(Σ−p→ Σ−p, Σ+p→ Σ+p). The red/dark band shows the chiral EFT results to NLO for variations of the cutoff in the range Λ = 500,. . .,650 MeV,
while the green/light band are results to LO for Λ = 550,. . .,700 MeV. The dashed curve is the result of the Jülich ’04 meson-exchange potential
[36].

observe the questionable tendency of the Λp amplitude in the 3S 1 partial wave to become rather large for momenta
above the ΣN threshold. Thus, we decided to determine all contact terms in the S -waves and the S -D transition from
a fit to the YN sector alone where it turns out that SU(3) symmetry for the LECs can be preserved.

The values of the contact terms obtained in the fitting procedure for the various cutoffs are listed in Tables 3 and
4.

4. Results and discussion

The results obtained at NLO are presented in Fig. 2 (red/dark bands), together with those at LO (green/light
bands). The bands represent the variation of the cross sections based on chiral EFT within the cutoff region of
Λ = 500 − 650 MeV. Note that in the LO case variations of Λ = 550 − 700 MeV were considered [20]. For
comparison also results for the Jülich ’04 [36] meson-exchange model are shown (dashed lines),

Obviously, and as expected, the energy dependence exhibited by the data can be significantly better reproduced
within our NLO calculation. This concerns in particular the Σ+p channel. But also for Λp the NLO results are now
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well in line with the data even up to the ΣN threshold. Furthermore, one can see that the dependence on the cutoff
mass is strongly reduced in the NLO case.

A quantitative comparison with the experiments is provided in Tab. 5. There we list the obtained overall χ2 but
also separate values for each data set that was included in the fitting procedure. Obviously the best results are achieved
in the range Λ = 500 − 650 MeV. Here, in addition, the χ2 exhibits also a fairly weak cutoff dependence so that one
can really speak of a plateau region. For larger cutoff values the χ2 increases smoothly while it grows dramatically
when going to lower values. Therefore, in Fig. 2 and in the figures below we show only results based on variations of
the cutoff within this plateau region.

A total χ2 value of around 16 is quite good. Indeed, the best values achieved with phenomenological models,
say the Nijmegen NSC97 meson-exchange potentials [37], lie also in that region. We should add that our additional
requirements that we want to produce a correctly bound hypertriton and that we want a repulsive ΣN interaction in
the isospin I = 3/2 channel leads to a slightly increased χ2. Without those constraints we could achieve values which
are around 5 % smaller. In any case, one has to say that one should not overrate the χ2. Given that there are only 36
data points the χ2 per data point amounts to ≈ 0.5 only – which is somewhat low as compared to what one would
expect from a set of statistically sound data. As a matter of fact, the biggest single contribution to the χ2 comes from
the ΣN charge-exchange reaction, see Tab. 5, and specifically from a single data point near threshold that is far off all
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(Σ−p→ Σ−p, Σ+p→ Σ+p). The red/dark band shows the chiral EFT results to NLO for variations of the cutoff in the range Λ = 500,. . .,650 MeV,
while the green/light band are results to LO for Λ = 550,. . .,700 MeV. The dashed curve is the result of the Jülich ’04 meson-exchange potential
[36].

observe the questionable tendency of the Λp amplitude in the 3S 1 partial wave to become rather large for momenta
above the ΣN threshold. Thus, we decided to determine all contact terms in the S -waves and the S -D transition from
a fit to the YN sector alone where it turns out that SU(3) symmetry for the LECs can be preserved.

The values of the contact terms obtained in the fitting procedure for the various cutoffs are listed in Tables 3 and
4.

4. Results and discussion

The results obtained at NLO are presented in Fig. 2 (red/dark bands), together with those at LO (green/light
bands). The bands represent the variation of the cross sections based on chiral EFT within the cutoff region of
Λ = 500 − 650 MeV. Note that in the LO case variations of Λ = 550 − 700 MeV were considered [20]. For
comparison also results for the Jülich ’04 [36] meson-exchange model are shown (dashed lines),

Obviously, and as expected, the energy dependence exhibited by the data can be significantly better reproduced
within our NLO calculation. This concerns in particular the Σ+p channel. But also for Λp the NLO results are now
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Figure 2. Three-baryon forces arising from virtual decuplet excitation (represented by double lines).

(1) (2a) (2b) (3) (4) (5a) (5b) (6)

Figure 3. Effective two-baryon interaction from genuine three-baryon forces. Contributions arise from two-pion exchange (1),
(2a), (2b), (3), one-pion exchange (4), (5a), (5b) and the contact interaction (6).

Indeed the decuplet-octet mass splittings are on average smaller than the delta-nucleon splitting. Also in SU(3)
�EFT the mass splitting (in the chiral limit) should be counted together with external momenta and meson masses as
O(q) and therefore parts of the NNLO three-baryon interaction are promoted to NLO by the explicit inclusion of the
baryon decuplet, as illustrated in Fig. 2 (see also Refs. [25, 31, 33]). One expects that these NLO contributions give
the dominant part of the 3BFs and thus should provide a reasonable basis for investigating the effects of the ⇤NN
interaction. Of particular interest is the long-range contribution arising from two-pion exchange.

In the present paper we exploit the mechanism of decuplet saturation to estimate the strengths of chiral 3BFs. By
including decuplet baryons not only parts of the two-pion exchange 3BF are promoted to NLO but also contributions
that involve contact vertices. This is illustrated in Fig. 2. In the purely nucleonic case such contributions do not
arise because a leading-order �NNN four-baryon contact vertex is forbidden by the Pauli principle. The decuplet
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3BF effects in the strangeness S = �1 sector is difficult to make at present. Contrary to the practice in the nucleonic
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the explicit results for the ⇤N interaction in symmetric and asymmetric nuclear matter. In Sec. III we introduce the
pertinent chiral Lagrangians including decuplet baryons and estimate the LECs of the 3BFs via decuplet saturation.
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In this work we consider only those medium corrections which arise from irreducible three-baryon forces. Further
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I. INTRODUCTION

Three-body forces (3BFs) are an indispensable ingredient of any modern calculation of few-nucleon systems. Specif-
ically, for the three- and four-nucleon systems where rigorous computations can be performed based on the Faddeev
or Faddeev-Yakubovsky equations there is clear evidence that agreement with experimental data cannot be achieved
if one resorts to nucleon-nucleon (NN) forces alone. Three-nucleon forces are required to reproduce correctly the
binding energies in the few-nucleon sector but also for scattering observables such as the proton-deuteron differential
cross section at incident proton energies around 100–200 MeV. For a recent review on these topics see, for example,
Ref. [1]. Accordingly, one expects that such three-body forces are also important for heavier nuclei as well as for
the properties of nuclear matter. Indeed, in the latter case standard calculations based on two-body interactions
and utilizing the Bethe-Goldstone equation are unable to describe the saturation point correctly, i.e., to obtain the
empirical energy per nucleon, of E/A = �16 MeV, at the saturation density, ⇢

0

= 0.17 fm�3. Three-nucleon forces
are considered as an essential mechanism that could resolve this problem [2–4].

Likewise, three-body forces are expected also to play an important role in strangeness nuclear physics [5], in
particular the Lambda-nucleon-nucleon (⇤NN) interaction. It has been argued in the context of (exotic) neutron star
matter that strongly repulsive 3BFs are needed in order to explain the recent observation of two-solar-mass neutron
stars, i.e., to resolve the so-called hyperon puzzle [6–10]. For example, a phenomenological ⇤NN three-body
force has been introduced in Ref. [10], with a repulsive coupling strength chosen large enough just so
that the ⇤ is prevented from appearing in dense matter and the equation-of-state remains sufficiently
stiff to support a 2M� neutron star. The situation is less clear when it comes to light hypernuclei such as the
hypertriton 3

⇤

H, or 4

⇤

H and 4

⇤

He, owing to the fact that the two-body interaction in the relevant ⇤N and ⌃N systems
is not well determined from the scarce experimental data presently available.

Utilizing realistic models of the three-baryon force directly in many-body calculations or in the Brueckner-Bethe-
Goldstone approach (e.g., via the Bethe-Faddeev equations [11]) is a very challenging technical task. Therefore, it
has become customary to follow an alternative and simpler approach that consists in employing a density-dependent
two-body interaction derived from the underlying three-body forces. For the nucleonic sector such a density-
dependent in-medium NN interaction, generated at one-loop order by the leading chiral three-nucleon force, has been
constructed in Ref. [12]. It has been shown in subsequent studies [13, 14] and by several other calculations in the
literature [15–20] that his approximate treatment of three-body forces works very well.

In the present work we investigate the effect of the ⇤NN three-body force on the ⇤N interaction in the presence of a
nuclear medium. We start from the leading (irreducible) 3BFs, cf. Fig. 1, which have been derived recently [21] within
SU(3) chiral effective field theory (�EFT), a systematic approach that exploits the symmetries of the underlying
QCD. Among other advantages, this approach ensures that the three-body forces are constructed consistently with
the corresponding two-baryon interactions (e.g. ⇤N , ⌃N) [22, 23]. In our derivation we follow closely the work of
Ref. [12] and extend those calculations to sectors with non-zero strangeness. As a result one obtains a density-
dependent effective baryon-baryon interaction which facilitates the inclusion of effects from 3BFs into many-body
calculations.

The irreducible chiral 3BFs appear formally at next-to-next-to-leading order (NNLO). However, in the nucleonic
sector one has observed that some of the corresponding low-energy constants (LECs) are much larger than expected
from the hierarchy of nuclear forces. This feature has its physical origin in the strong coupling of the ⇡N system to the
low-lying �(1232)-resonance. It is therefore natural to include the �(1232)-isobar as an explicit degree of freedom in
the chiral Lagrangian (cf. Refs. [24–28]). The small mass difference between nucleons and deltas (293 MeV) introduces
a small scale, which can be included consistently in the chiral power counting scheme and the hierarchy of nuclear
forces. The dominant part of the three-nucleon interaction mediated by two-pion exchange and virtual �(1232)
excitation is then promoted to next-to-leading order (NLO). The appearance of the inverse mass splitting explains
the large numerical values of the corresponding LECs [29–32].

In SU(3) �EFT the situation is similar. Specifically, in systems with strangeness S = �1, like ⇤NN , intermediate
baryons such as the spin-3/2 ⌃⇤(1385)-resonance could play an analogous role as the �(1232) in the NNN system.

NNLO:

Figure 1. Leading chiral three-baryon interactions: two-meson exchange, one-meson exchange and contact term.

[8]
[8]

[8] [8]

[8]

Chiral SU(3) Effective Field Theory:  
interacting pseudoscalar meson & baryon octets + contact terms

3-baryon
sector:

Chiral SU(3) Effective Field Theory with explicit decuplet baryons: 

explicit 
baryon decuplet :

promotion to NLO

[10]
[10]

[10]

[10]

PHYSIK
DEPARTMENT

S. Petschauer et al.    Phys. Rev. C93 (2016) 014001



SU(3) symmetry and contact terms
• poor database for YN interaction
• use SU(3) symmetric contact terms for reduction of LECs

( SU(3) breaking e�ects from mu,d ”= ms derived in [Petschauer, Kaiser, NPA916, 2013] )

• LO+NLO contact terms of NN interaction [Epelbaum, 2000]
generalized by SU(3) flavor symmetry
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[Polinder, Haidenbauer, Meißner, NPA779, 2006] [Petschauer, Kaiser, NPA916, 2013]

• C8s 8a can be fixed from considering ⇤-nuclear spin-orbit force in medium
[Haidenbauer, Meißner, NPA936, 2015]
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… much reduced set of parameters
     basic vertices :

Three-baryon forces

• construction of chiral Lagrangian in non-relativistic limit
with minimal number of terms for full SU(3) sector
[Petschauer, Kaiser, Haidenbauer, Meißner, Weise, PRC93 (2016)]

• necessary vertices:
18 low-energy constants

(SU(3) symmetric)

14 low-energy constants
[Petschauer, Kaiser, NPA916 (2013)]

10 low-energy constants
[Krause, Helv.Phys.Acta 63 (1990)]

¥

¥ +

¥ +

• vertices with decuplet baryons:

one constant (C = 3
4 gA ¥ 1 from � æ Nfi)

two constants (Pauli-forbidden in nucleonic sector)
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Possible decuplet contributions with strangeness S = 0, ≠1

transition type B

ú

NNN æ NNN fifi �

⇤NN æ ⇤NN fifi ⌃ú

⇤NN æ ⇤NN fiK ⌃ú

⇤NN æ ⇤NN KK ⌃ú

⇤NN æ ⇤NN fi ⌃ú

⇤NN æ ⇤NN K ⌃ú

⇤NN æ ⇤NN ct ⌃ú

⇤NN ¡ ⌃NN fifi �,⌃ú

⇤NN ¡ ⌃NN fiK �,⌃ú

⇤NN ¡ ⌃NN fi÷ ⌃ú

⇤NN ¡ ⌃NN KK ⌃ú

⇤NN ¡ ⌃NN K÷ ⌃ú

⇤NN ¡ ⌃NN fi �,⌃ú

⇤NN ¡ ⌃NN K ⌃ú

⇤NN ¡ ⌃NN ÷ ⌃ú

⇤NN ¡ ⌃NN ct ⌃ú

transition type B

ú

⌃NN æ ⌃NN fifi �,⌃ú

⌃NN æ ⌃NN fiK �,⌃ú

⌃NN æ ⌃NN fi÷ ⌃ú

⌃NN æ ⌃NN KK ⌃ú

⌃NN æ ⌃NN K÷ ⌃ú

⌃NN æ ⌃NN ÷÷ ⌃ú

⌃NN æ ⌃NN fi �,⌃ú

⌃NN æ ⌃NN K ⌃ú

⌃NN æ ⌃NN ÷ ⌃ú

⌃NN æ ⌃NN ct ⌃ú
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14

transition type B⇤

NNN ! NNN ⇡⇡ �

⇤NN ! ⇤NN ⇡⇡ ⌃⇤

⇤NN ! ⇤NN ⇡K ⌃⇤

⇤NN ! ⇤NN KK ⌃⇤

⇤NN ! ⇤NN ⇡ ⌃⇤

⇤NN ! ⇤NN K ⌃⇤

⇤NN ! ⇤NN ct ⌃⇤

⇤NN $ ⌃NN ⇡⇡ �,⌃⇤

⇤NN $ ⌃NN ⇡K �,⌃⇤

⇤NN $ ⌃NN ⇡⌘ ⌃⇤

⇤NN $ ⌃NN KK ⌃⇤

⇤NN $ ⌃NN K⌘ ⌃⇤

⇤NN $ ⌃NN ⇡ �,⌃⇤

⇤NN $ ⌃NN K ⌃⇤

⇤NN $ ⌃NN ⌘ ⌃⇤

⇤NN $ ⌃NN ct ⌃⇤

transition type B⇤

⌃NN ! ⌃NN ⇡⇡ �,⌃⇤

⌃NN ! ⌃NN ⇡K �,⌃⇤

⌃NN ! ⌃NN ⇡⌘ ⌃⇤

⌃NN ! ⌃NN KK ⌃⇤

⌃NN ! ⌃NN K⌘ ⌃⇤

⌃NN ! ⌃NN ⌘⌘ ⌃⇤

⌃NN ! ⌃NN ⇡ �,⌃⇤

⌃NN ! ⌃NN K ⌃⇤

⌃NN ! ⌃NN ⌘ ⌃⇤

⌃NN ! ⌃NN ct ⌃⇤

Table IV. Enhanced three-body interactions through decuplet saturation for strangeness 0 and �1 systems, with classes of
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by the ⌃⇤(1385) resonance alone. However, for some transitions involving pions also the �(1232) isobar contributes.
Resonances with higher strangeness can not be reached. Note that in contrast to the NNN interaction, for S = �1
the one-meson exchange and the contact 3BF also receive contributions from the excitation of decuplet baryons.
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Using the LECs derived from decuplet saturation, this fixes the constants of the ⇤NN (contact, one-pion and
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and they depend only on the combination H 0 = H
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a baryon propagator. All types of diagrams arising this way are shown in Fig. 3.
We restrict ourselves to the contact term and to the contributions from one- and two-pion exchange processes which

are expected to be dominant. Hence, the calculation is done for equal meson masses. In principle, within SU(3) �EFT
further contributions arise that involve the exchange of at least one heavier meson (kaon or eta meson). At moderate
densities these contributions of much shorter range can effectively be absorbed into a contact term representing the
short-range part of the three-baryon force. When evaluating diagrams the medium insertion provides the factor
�2⇡�(k
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)✓(k
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� |~k|). An additional minus sign comes from a closed fermion loop. Equivalently, the effective two-body
interaction can be constructed from the expressions for the three-baryon potentials in Ref. [22] via the relation
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and the full density is obtained by summing over all species in the (hyper)nuclear medium, ⇢ =
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As done in Ref. [13], we consider the scattering of two baryons within the medium in the center-of-mass frame
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for on-shell kinematics: p2 = p02. For direct diagrams the relevant momentum transfer is ~q = ~p 0�~p, for the exchange-
type diagrams the relevant momentum transfer is ~k = ~p 0 + ~p.

In the course of the calculation one encounters integrals of one pion propagator or the product of two pion propa-
gators over a Fermi sphere. The loop functions �
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The explicit formulas for the loop functions can be found in Section III.A. of Ref. [13]. Note that in some cases the
expression on the left-hand side of Eq. (5) (with two pion propagators) appears with the substitution ~p 0 ! �~p 0.
Consequently, this substitution has also to be done on the right-hand side and the arguments of G
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are changed to
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(p, k, kB
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).

A. Contributions from two-pion exchange

Let us start with the two-pion exchange contribution to the in-medium baryon-baryon interaction. The corre-
sponding three-baryon potential for a prototype two-meson exchange diagram is given in Eq. (34) in Ref. [22] and it
reads
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Possible decuplet contributions with strangeness S = 0, ≠1

transition type B

ú

NNN æ NNN fifi �

⇤NN æ ⇤NN fifi ⌃ú

⇤NN æ ⇤NN fiK ⌃ú

⇤NN æ ⇤NN KK ⌃ú

⇤NN æ ⇤NN fi ⌃ú

⇤NN æ ⇤NN K ⌃ú

⇤NN æ ⇤NN ct ⌃ú

⇤NN ¡ ⌃NN fifi �,⌃ú

⇤NN ¡ ⌃NN fiK �,⌃ú

⇤NN ¡ ⌃NN fi÷ ⌃ú

⇤NN ¡ ⌃NN KK ⌃ú

⇤NN ¡ ⌃NN K÷ ⌃ú

⇤NN ¡ ⌃NN fi �,⌃ú
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transition type B

ú

⌃NN æ ⌃NN fifi �,⌃ú

⌃NN æ ⌃NN fiK �,⌃ú

⌃NN æ ⌃NN fi÷ ⌃ú

⌃NN æ ⌃NN KK ⌃ú

⌃NN æ ⌃NN K÷ ⌃ú

⌃NN æ ⌃NN ÷÷ ⌃ú

⌃NN æ ⌃NN fi �,⌃ú

⌃NN æ ⌃NN K ⌃ú

⌃NN æ ⌃NN ÷ ⌃ú
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transition type B⇤

NNN ! NNN ⇡⇡ �
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⇤NN ! ⇤NN K ⌃⇤

⇤NN ! ⇤NN ct ⌃⇤
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Table IV. Enhanced three-body interactions through decuplet saturation for strangeness 0 and �1 systems, with classes of
diagrams as specified: two-meson exchange, one-meson exchange and contact interaction (ct).

by the ⌃⇤(1385) resonance alone. However, for some transitions involving pions also the �(1232) isobar contributes.
Resonances with higher strangeness can not be reached. Note that in contrast to the NNN interaction, for S = �1
the one-meson exchange and the contact 3BF also receive contributions from the excitation of decuplet baryons.

C. Lambda-nucleon-nucleon in decuplet approximation

Using the LECs derived from decuplet saturation, this fixes the constants of the ⇤NN (contact, one-pion and
two-pion exchange) three-body interaction introduced in Ref. [22]. These particular linear combinations of coefficients
read
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and they depend only on the combination H 0 = H
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of the B⇤BBB contact couplings. Notably, the constants
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a baryon propagator. All types of diagrams arising this way are shown in Fig. 3.
We restrict ourselves to the contact term and to the contributions from one- and two-pion exchange processes which

are expected to be dominant. Hence, the calculation is done for equal meson masses. In principle, within SU(3) �EFT
further contributions arise that involve the exchange of at least one heavier meson (kaon or eta meson). At moderate
densities these contributions of much shorter range can effectively be absorbed into a contact term representing the
short-range part of the three-baryon force. When evaluating diagrams the medium insertion provides the factor
�2⇡�(k
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� |~k|). An additional minus sign comes from a closed fermion loop. Equivalently, the effective two-body
interaction can be constructed from the expressions for the three-baryon potentials in Ref. [22] via the relation
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�3 denotes the spin trace over the third particle and the sum goes over all baryon species B in the Fermi sea
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and the full density is obtained by summing over all species in the (hyper)nuclear medium, ⇢ =
P

B

⇢
B

.
As done in Ref. [13], we consider the scattering of two baryons within the medium in the center-of-mass frame
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for on-shell kinematics: p2 = p02. For direct diagrams the relevant momentum transfer is ~q = ~p 0�~p, for the exchange-
type diagrams the relevant momentum transfer is ~k = ~p 0 + ~p.

In the course of the calculation one encounters integrals of one pion propagator or the product of two pion propa-
gators over a Fermi sphere. The loop functions �
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The explicit formulas for the loop functions can be found in Section III.A. of Ref. [13]. Note that in some cases the
expression on the left-hand side of Eq. (5) (with two pion propagators) appears with the substitution ~p 0 ! �~p 0.
Consequently, this substitution has also to be done on the right-hand side and the arguments of G

i

are changed to
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(p, k, kB
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).

A. Contributions from two-pion exchange

Let us start with the two-pion exchange contribution to the in-medium baryon-baryon interaction. The corre-
sponding three-baryon potential for a prototype two-meson exchange diagram is given in Eq. (34) in Ref. [22] and it
reads
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Possible decuplet contributions with strangeness S = 0, ≠1

transition type B

ú

NNN æ NNN fifi �

⇤NN æ ⇤NN fifi ⌃ú

⇤NN æ ⇤NN fiK ⌃ú

⇤NN æ ⇤NN KK ⌃ú

⇤NN æ ⇤NN fi ⌃ú

⇤NN æ ⇤NN K ⌃ú

⇤NN æ ⇤NN ct ⌃ú

⇤NN ¡ ⌃NN fifi �,⌃ú

⇤NN ¡ ⌃NN fiK �,⌃ú

⇤NN ¡ ⌃NN fi÷ ⌃ú

⇤NN ¡ ⌃NN KK ⌃ú

⇤NN ¡ ⌃NN K÷ ⌃ú

⇤NN ¡ ⌃NN fi �,⌃ú

⇤NN ¡ ⌃NN K ⌃ú

⇤NN ¡ ⌃NN ÷ ⌃ú

⇤NN ¡ ⌃NN ct ⌃ú

transition type B

ú

⌃NN æ ⌃NN fifi �,⌃ú

⌃NN æ ⌃NN fiK �,⌃ú

⌃NN æ ⌃NN fi÷ ⌃ú

⌃NN æ ⌃NN KK ⌃ú

⌃NN æ ⌃NN K÷ ⌃ú

⌃NN æ ⌃NN ÷÷ ⌃ú

⌃NN æ ⌃NN fi �,⌃ú

⌃NN æ ⌃NN K ⌃ú

⌃NN æ ⌃NN ÷ ⌃ú

⌃NN æ ⌃NN ct ⌃ú
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transition type B⇤

NNN ! NNN ⇡⇡ �

⇤NN ! ⇤NN ⇡⇡ ⌃⇤

⇤NN ! ⇤NN ⇡K ⌃⇤

⇤NN ! ⇤NN KK ⌃⇤

⇤NN ! ⇤NN ⇡ ⌃⇤

⇤NN ! ⇤NN K ⌃⇤

⇤NN ! ⇤NN ct ⌃⇤

⇤NN $ ⌃NN ⇡⇡ �,⌃⇤

⇤NN $ ⌃NN ⇡K �,⌃⇤

⇤NN $ ⌃NN ⇡⌘ ⌃⇤

⇤NN $ ⌃NN KK ⌃⇤

⇤NN $ ⌃NN K⌘ ⌃⇤

⇤NN $ ⌃NN ⇡ �,⌃⇤

⇤NN $ ⌃NN K ⌃⇤

⇤NN $ ⌃NN ⌘ ⌃⇤

⇤NN $ ⌃NN ct ⌃⇤

transition type B⇤

⌃NN ! ⌃NN ⇡⇡ �,⌃⇤

⌃NN ! ⌃NN ⇡K �,⌃⇤

⌃NN ! ⌃NN ⇡⌘ ⌃⇤

⌃NN ! ⌃NN KK ⌃⇤

⌃NN ! ⌃NN K⌘ ⌃⇤

⌃NN ! ⌃NN ⌘⌘ ⌃⇤

⌃NN ! ⌃NN ⇡ �,⌃⇤

⌃NN ! ⌃NN K ⌃⇤

⌃NN ! ⌃NN ⌘ ⌃⇤

⌃NN ! ⌃NN ct ⌃⇤

Table IV. Enhanced three-body interactions through decuplet saturation for strangeness 0 and �1 systems, with classes of
diagrams as specified: two-meson exchange, one-meson exchange and contact interaction (ct).

by the ⌃⇤(1385) resonance alone. However, for some transitions involving pions also the �(1232) isobar contributes.
Resonances with higher strangeness can not be reached. Note that in contrast to the NNN interaction, for S = �1
the one-meson exchange and the contact 3BF also receive contributions from the excitation of decuplet baryons.

C. Lambda-nucleon-nucleon in decuplet approximation

Using the LECs derived from decuplet saturation, this fixes the constants of the ⇤NN (contact, one-pion and
two-pion exchange) three-body interaction introduced in Ref. [22]. These particular linear combinations of coefficients
read

C 0
1

= C 0
3

=
H 02

72�
, C 0

2

= 0 ,

D0
1

= 0 , D0
2

=
2CH 0

9�
,

3b
0

+ b
D

= 0 , 2b
2

+ 3b
4

= � C2

�
, (45)

and they depend only on the combination H 0 = H
1

+ 3H
2

of the B⇤BBB contact couplings. Notably, the constants
C 0

i

of the ⇤NN contact interaction are positive independently of the values H
1

and H
2

.
With the above values estimated via decuplet saturation, the three components of the density-dependent ⇤n po-

tential in a nuclear medium with densities ⇢
p

and ⇢
n

take the following simple forms

V med,⇡⇡

⇤n

=
C2g2

A

12⇡2f4

0

�

(
1

4

⇥8
3
(kn

f

3 + 2kp
f

3

)� 4(q2 + 2m2)�̃
0

(p)� 2q2�̃
1

(p) + (q2 + 2m2)2G̃
0

(p, q)
⇤

+
i

2
(~q ⇥ ~p ) · ~�

2

�
2�̃

0

(p) + 2�̃
1

(p)� (q2 + 2m2)(G̃
0

(p, q) + 2G̃
1

(p, q))
�
)
, (46)

V med,⇡

⇤n

=
g
A

CH 0

54⇡2f2

0

�

�
2(kn

f

3 + 2kp
f

3

)� 3m2�̃
0

(p)
�
, (47)

V med,ct

⇤n

=
H 02

18�
(⇢

n

+ 2⇢
p

) , (48)

4

a baryon propagator. All types of diagrams arising this way are shown in Fig. 3.
We restrict ourselves to the contact term and to the contributions from one- and two-pion exchange processes which

are expected to be dominant. Hence, the calculation is done for equal meson masses. In principle, within SU(3) �EFT
further contributions arise that involve the exchange of at least one heavier meson (kaon or eta meson). At moderate
densities these contributions of much shorter range can effectively be absorbed into a contact term representing the
short-range part of the three-baryon force. When evaluating diagrams the medium insertion provides the factor
�2⇡�(k

0

)✓(k
f

� |~k|). An additional minus sign comes from a closed fermion loop. Equivalently, the effective two-body
interaction can be constructed from the expressions for the three-baryon potentials in Ref. [22] via the relation

V
12

=
X

B

tr
�3

Z

|~k|k

B

f

d3k

(2⇡)3
V
123

, (1)

where tr
�3 denotes the spin trace over the third particle and the sum goes over all baryon species B in the Fermi sea

(with Fermi momentum kB
f

). In the following, we derive the general expressions of the effective potentials for a single
baryon species B. The full potential is given by a sum over all species. The density of the baryon species B is given
by

⇢
B

= 2

Z

|~k|k

B

f

d3k

(2⇡)3
=

(kB
f

)
3

3⇡2

, (2)

and the full density is obtained by summing over all species in the (hyper)nuclear medium, ⇢ =
P

B

⇢
B

.
As done in Ref. [13], we consider the scattering of two baryons within the medium in the center-of-mass frame

B
1

(~p ) +B
2

(�~p ) ! B
3

(~p 0) +B
4

(�~p 0) , (3)

for on-shell kinematics: p2 = p02. For direct diagrams the relevant momentum transfer is ~q = ~p 0�~p, for the exchange-
type diagrams the relevant momentum transfer is ~k = ~p 0 + ~p.

In the course of the calculation one encounters integrals of one pion propagator or the product of two pion propa-
gators over a Fermi sphere. The loop functions �

i

involving a single pion propagator are defined by

Z

|~l|k

B

f

d3l

2⇡

1

m2

⇡

+ (~l + ~p )2

0

@
1
~l

~l ⌦~l

1

A =

0

@
�
0

(p, kB
f

)

~p �
1

(p, kB
f

)

�
2

(p, kB
f

) + ~p⌦ ~p�
3

(p, kB
f

)

1

A . (4)

The loop functions G
i

involving two different pion propagators are given by

Z

|~l|k

B

f

d3l

2⇡

1

[m2

⇡

+ (~l + ~p )2][m2

⇡

+ (~l + ~p 0)2]

0

BBBBBBBB@

1
~l

~l ⌦~l

l2

l2~l
l4

1

CCCCCCCCA

=

0

BBBBBBBB@

G
0

(p, q, kB
f

)

(~p 0 + ~p )G
1

(p, q, kB
f

)

G
2

(p, q, kB
f

) + (~p 0 + ~p )⌦ (~p 0 + ~p )G
3

(p, q, kB
f

)

+(~p 0 � ~p )⌦ (~p 0 � ~p )G
4

(p, q, kB
f

)

G⇤(p, q, k
B

f

)

(~p 0 + ~p )G
1⇤(p, q, k

B

f

)

G⇤⇤(p, q, k
B

f

)

1

CCCCCCCCA

. (5)

The explicit formulas for the loop functions can be found in Section III.A. of Ref. [13]. Note that in some cases the
expression on the left-hand side of Eq. (5) (with two pion propagators) appears with the substitution ~p 0 ! �~p 0.
Consequently, this substitution has also to be done on the right-hand side and the arguments of G

i

are changed to
G

i

(p, k, kB
f

).

A. Contributions from two-pion exchange

Let us start with the two-pion exchange contribution to the in-medium baryon-baryon interaction. The corre-
sponding three-baryon potential for a prototype two-meson exchange diagram is given in Eq. (34) in Ref. [22] and it
reads

V = � 1

4f4

0

~�
A

· ~q
li

~�
C

· ~q
nk

(~q 2

li

+m2

�1
)(~q 2

nk

+m2

�2
)

⇣
N1

lmn

ijk

+N2

lmn

ijk

~q
li

· ~q
nk

+N3

lmn

ijk

i (~q
li

⇥ ~q
nk

) · ~�
B

⌘
, (6)
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a baryon propagator. All types of diagrams arising this way are shown in Fig. 3.
We restrict ourselves to the contact term and to the contributions from one- and two-pion exchange processes which

are expected to be dominant. Hence, the calculation is done for equal meson masses. In principle, within SU(3) �EFT
further contributions arise that involve the exchange of at least one heavier meson (kaon or eta meson). At moderate
densities these contributions of much shorter range can effectively be absorbed into a contact term representing the
short-range part of the three-baryon force. When evaluating diagrams the medium insertion provides the factor
�2⇡�(k

0

)✓(k
f

� |~k|). An additional minus sign comes from a closed fermion loop. Equivalently, the effective two-body
interaction can be constructed from the expressions for the three-baryon potentials in Ref. [22] via the relation

V
12

=
X

B

tr
�3

Z

|~k|k

B

f

d3k

(2⇡)3
V
123

, (1)

where tr
�3 denotes the spin trace over the third particle and the sum goes over all baryon species B in the Fermi sea

(with Fermi momentum kB
f

). In the following, we derive the general expressions of the effective potentials for a single
baryon species B. The full potential is given by a sum over all species. The density of the baryon species B is given
by

⇢
B

= 2

Z

|~k|k

B

f

d3k

(2⇡)3
=

(kB
f

)
3

3⇡2

, (2)

and the full density is obtained by summing over all species in the (hyper)nuclear medium, ⇢ =
P

B

⇢
B

.
As done in Ref. [13], we consider the scattering of two baryons within the medium in the center-of-mass frame

B
1

(~p ) +B
2

(�~p ) ! B
3

(~p 0) +B
4

(�~p 0) , (3)

for on-shell kinematics: p2 = p02. For direct diagrams the relevant momentum transfer is ~q = ~p 0�~p, for the exchange-
type diagrams the relevant momentum transfer is ~k = ~p 0 + ~p.

In the course of the calculation one encounters integrals of one pion propagator or the product of two pion propa-
gators over a Fermi sphere. The loop functions �

i

involving a single pion propagator are defined by
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The loop functions G
i

involving two different pion propagators are given by
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The explicit formulas for the loop functions can be found in Section III.A. of Ref. [13]. Note that in some cases the
expression on the left-hand side of Eq. (5) (with two pion propagators) appears with the substitution ~p 0 ! �~p 0.
Consequently, this substitution has also to be done on the right-hand side and the arguments of G

i

are changed to
G

i

(p, k, kB
f

).

A. Contributions from two-pion exchange

Let us start with the two-pion exchange contribution to the in-medium baryon-baryon interaction. The corre-
sponding three-baryon potential for a prototype two-meson exchange diagram is given in Eq. (34) in Ref. [22] and it
reads
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4f4
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⇤N N

⇤N N

⌃⇤

density-dependent effective interaction⇤n

V e↵ ,⇡⇡
⇤n =

C2g2A
2f4 �

[⇢n + 2⇢p] + F(kpF , k
n
F ; p, q)

V e↵ ,⇡
⇤n =

CH gA
9f2 �

[⇢n + 2⇢p] + G(kpF , k
n
F ; p, q)

V e↵ ,ct
⇤n =

H2

18�
[⇢n + 2⇢p]

Decuplet-octet mass difference � = M[10] �M[8] = 270MeV

repulsive

repulsive

+/-

Coupling parameters : C =
3

4
gA ' 1 � 1

f2
. H . +

1

f2

(dim. arguments
natural size)
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⇤NN three-body force transformed into 
density-dependent effective two-body interaction

Momentum-space  
potentials     

increasing repulsion  
~ proportional to 
density

0.0 0.5 1.0 1.5 2.0
-2

-1.5

-1

-0.5

0

0.5

1

V
(p

,p
) [

fm
]

V
Λn

VΛn+V
med(ρ0)

V
Λn+V

med(2ρ0)

VΛn+V
med(3ρ0)

0.0 0.5 1.0 1.5 2.0
-2

-1.5

-1

-0.5

0

0.5

1

0.0 0.5 1.0 1.5 2.0
p [fm-1]

0.5
1

1.5
2

2.5
3

3.5
4

V
(p

,p
) [

fm
]

0.0 0.5 1.0 1.5 2.0
p [fm-1]

0.5
1

1.5
2

2.5
3

3.5
4

1S0
1S0

3S1
3S1

⇤n
⇢ = ⇢0 2 ⇢0

3 ⇢0 Y N ⇤ = 450
H 0 = +1/f2

⇡ H 0 = �1/f2
⇡

0.0 0.5 1.0 1.5 2.0

0

0.2

0.4

V
(p

,p
) [

fm
]

V
Λn

VΛn+V
med(ρ0)

V
Λn+V

med(2ρ0)

VΛn+V
med(3ρ0)

0.0 0.5 1.0 1.5 2.0
-0.1

0

0.1

0.2

0.0 0.5 1.0 1.5 2.0
p [fm-1]

-0.1

0

0.1

0.2

V
(p

,p
) [

fm
]

0.0 0.5 1.0 1.5 2.0
p [fm-1]

-0.1

0

0.1

0.2

3P0
1P1

3P1
1P1-

3P1

⇤n
P

effective interaction 
in neutron matter

PHYSIK
DEPARTMENT

 S. Petschauer,  J. Haidenbauer,  N. Kaiser,  U.-G. Meißner,  W. W. 
NP A957 (2017) 347  

Density-dependent  EFFECTIVE HYPERON - NUCLEON  
INTERACTION from CHIRAL THREE-BARYON FORCES

⇤n

0.0 0.5 1.0 1.5 2.0
-2

-1.5

-1

-0.5

0

0.5

1

V
(p

,p
) [

fm
]

V
Λn

VΛn+V
med(ρ0)

V
Λn+V

med(2ρ0)

VΛn+V
med(3ρ0)

0.0 0.5 1.0 1.5 2.0
-2

-1.5

-1

-0.5

0

0.5

1

0.0 0.5 1.0 1.5 2.0
p [fm-1]

0.5
1

1.5
2

2.5
3

3.5
4

V
(p

,p
) [

fm
]

0.0 0.5 1.0 1.5 2.0
p [fm-1]

0.5
1

1.5
2

2.5
3

3.5
4

1S0
1S0

3S1
3S1

⇤n
⇢ = ⇢0 2 ⇢0

3 ⇢0 Y N ⇤ = 450
H 0 = +1/f2

⇡ H 0 = �1/f2
⇡

0.0 0.5 1.0 1.5 2.0

0

0.2

0.4

V
(p

,p
) [

fm
]

V
Λn

VΛn+V
med(ρ0)

V
Λn+V

med(2ρ0)

VΛn+V
med(3ρ0)

0.0 0.5 1.0 1.5 2.0
-0.1

0

0.1

0.2

0.0 0.5 1.0 1.5 2.0
p [fm-1]

-0.1

0

0.1

0.2

V
(p

,p
) [

fm
]

0.0 0.5 1.0 1.5 2.0
p [fm-1]

-0.1

0

0.1

0.2

3P0
1P1

3P1
1P1-

3P1

⇤n
P

Ṽ
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� single-particle potential with gap choice

• density dependence in symmetric nuclear matter with k
�

= 0
• phenomenological nucleon single-particle potential (from Yamamoto)
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Density dependence of     single particle potentialΛ
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hypernuclei

Brueckner calculations 
using chiral SU(3) interaction

Auxiliary potential U

• choose single particle potential U in a way, that
diagrams with crosses cancel diagrams from interaction

• good choice for k Æ kF :

U(km) = Re
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G(!) = V +V
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e(!) + i✏
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(“continuous choice”)

in symmetric nuclear matter - YN two-body interactions onlyΛ
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Density dependence of     single particle potentialΛ

Brueckner calculations 
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… towards a possible solution of the “hyperon puzzle”

 J. Haidenbauer,   
U.-G. Meißner,  

N. Kaiser,
W. W. 

arXiv:1612.03758
EPJA (2017)
to appear 
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towards a possible  
solution of the  

“hyperon puzzle” 
in neutron stars

E = (En + E⇤)⇢

µn =
@E
@⇢n

E⇤ ' 3 (k⇤F )
2

10M⇤
⇤

+ U⇤(⇢)

grows as fast as E⇤

with increasing density: 
no hyperons 

in n-star matter

Chiral SU(3) 
2- and 3-body  

forces

If

Hyperons in the core of neutron stars ?
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Quick estimate



SUMMARY

Constraints on dense baryon matter equation-of-state 
from neutron stars :

Single particle potential of a     in nuclear and neutron matter
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Progress in constructing hyperon-nuclear interactions from 
Chiral SU(3) Effective Field Theory

 very stiff EoS required ! 

“non-exotic” EoS (nuclear chiral dynamics) seems to work 

hyperon puzzle:  
naively adding hyperons implies far too soft EoS

YN two-body interactions at NLO 

YNN three-body forces

⇤N $ ⌃Nimportance of (2nd order pion exchange tensor force)

⇤

moderately attractive at low density (hypernuclei)
strongly repulsive at high density
. . . towards solution of “hyperon problem” in neutron stars 


