GCOEシンポジウム:新量子凝縮相の物理

最近の実験研究の話題: 非従来型超伝導における様々な対称性

京大院理 固体電子物性研究室 芝内 孝禎

- Introduction
 非従来型超伝導における対称性の破れ
- 2. 重い電子系超伝導体URu₂Si₂におけるカイラルd波超伝導
- 3. 鉄ヒ素系新高温超伝導体における拡張s波超伝導

共同研究者

京大院理	Ecole Polytechnique		
笠原 裕一 岡崎 竜二 橋本顕一郎	Marcin Konczykowski Kees van der Beek	原子力機構 芳賀 芳範 松田 達磨	京大低セ 笠原 成 寺嶋孝仁
加藤智成 井加田洸輔 宍戸 寛明	ESPCI Kamran Behnia	大貫 惇睦 石角元志	産総研
山下穣 松田 祐司	ETH Zurich Manfred Sigrist	社本真一	永崎 洋 鬼頭 聖 伊豫 彰

超伝導: 巨視的量子現象

位相が確定

<u>超伝導: 相転移「自発的ゲージ対称性」の破れ</u> ゲージ変換(波動関数の位相を一様に変化させる) 電子の消滅演算子 a_k → a_k' = a_k e^{i θ}

高温(常伝導状態)秩序変数 $\Psi = \langle a_{k\uparrow} a_{-k\downarrow} \rangle = 0 \rightarrow \Psi' = 0$

T=T_。で相転移

低温(超伝導状態) 電子対(Cooper対)を組む

秩序変数 $\Psi = \langle a_{k\uparrow} | a_{k\downarrow} \rangle \neq 0 \rightarrow \Psi' = e^{i2\theta} \Psi$

ゲージ変換対称性U(1)が破られている

回転対称性がない

<u>超伝導に関する対称性の破れ</u>

異方的超伝導 Unconventional superconductivity

Full symmetry group $\mathscr{G} = U(1) \otimes G \otimes SU(2) \otimes T$

U(1)gauge symmetryGsymmetry group of crystal latticeSU(2)symmetry group of spin rotationTtime reversal symmetry operation

One or more symmetries in addition to U(1) are broken at T_c

<u>超伝導に関する対称性の破れ</u>

異方的超伝導 Unconventional superconductivity

Full symmetry group $\mathscr{G} = U(1) \otimes G \otimes SU(2) \otimes T$

U(1)gauge symmetryGsymmetry group of crystal latticeSU(2)symmetry group of spin rotationTtime reversal symmetry operation

One or more symmetries in addition to U(1) are broken at T_c

<u>超伝導に関する対称性の破れ</u>

異方的超伝導 Unconventional superconductivity

Full symmetry group $\mathscr{G} = U(1) \otimes G \otimes SU(2) \otimes T$

U(1)gauge symmetryGsymmetry group of crystal latticeSU(2)symmetry group of spin rotationTtime reversal symmetry operation

One or more symmetries in addition to U(1) are broken at T_c

(例2) 粒子の交換に対して反対称(フェルミオン)

軌道部分 スピン部分 スピン1重項超伝導 対称 (s,d,…) 反対称 (↑↓−↓↑) スピン3重項超伝導 反対称(p,f,…) 対称 (↑↑,↓↓,↑↓+↓↑) ³He, Su₂RuO₄, etc...

Pairing mechanism $\leftarrow \rightarrow$ nodes in the gap

 $H_{\text{int}} = V_{k,k'} c_{k'\uparrow}^{+} c_{k'\uparrow}^{+} c_{k'\uparrow}^{+} c_{k'\downarrow}^{+} V_{k,k'}^{+}$ may be anisotropic in unconventional SCs

ex) Superconductivity mediated by **antiferromagnetic fluctuaions** with $q=(\pi,\pi)$

$V(\mathbf{q}) = - P(\mathbf{q})\chi_0(\mathbf{q}) / [1 - P(\mathbf{q})\chi_0^2(\mathbf{q})]$

Favors opposite order parameters on the two points connecting by q vector

<u>Breaking time reversal symmetry</u> $\mathcal{G} = U(1) \otimes G \otimes SU(2) \otimes T$

$$i\hbar\frac{\partial}{\partial t}\psi(x,t) = H\psi(x,t) \qquad \xrightarrow{t \to -t} \qquad i\hbar\frac{\partial}{\partial(-t)}\psi'(x,-t) = H\psi'(x,-t)$$
$$H = -\frac{\hbar^2\nabla^2}{2m} + V(x) \qquad \qquad -i\hbar\frac{\partial}{\partial t}\psi^*(x,t) = H\psi^*(x,t)$$
$$\psi'(x,-t) = \psi^*(x,t)$$

If the order parameter has imaginary part

$$\Psi(x,k) = \psi_1(k) + i\psi_2(k)$$

then its time reversal state becomes different $\Psi^*(x,k) = \psi_1(k) - i\psi_2(k)$

Time reversal symmetry is broken

How to determine symmetry of unconventional superconductors

Superconducting state of URu₂Si₂ studied by the thermal transport measurements

Cu thermal bath

Y. Kasahara et al. Phys. Rev. Lett. 99, 116402 (2007).

Multiband superconductivity (consistent with the compensation)

 $\xi \propto v_F \propto 1/m^*$ Low-H behavior of κ Light hole band with small "H_{c2}" High-H behavior of κ Heavy electron band with large "H_{c2}" Low field behavior of the thermal conductivity, which is governed by the light sperical hole band URu₂Si₂

Horizontal

Vertical

Low field behavior of the thermal conductivity, which is governed by the light sperical hole band URu₂Si₂

 $H < 0.4 {
m T}$:

Vertical

.4 <u>-</u> -90

-45

0

0

(deg.)

45

90

Horizontal

High field behavior of the thermal conductivity, which is governed by the elliptical heavy electron band URu₂Si₂

High field behavior of the thermal conductivity, which is governed by the elliptical heavy electron band URu₂Si₂

Superconducting gap function of URu₂Si₂

(1) Spin-singlet

(2) Horizontal line node (light hole band)

(3) Point node along the c-axis (heavy electron band)

A simple classification by group theory

Even-parity (spin-singlet) pair states in a tetragonal crystal with point group D_{4h}

symmetry	basis function	nodal structure
A_{1g}	1, $k_x^2 + k_y^2$, k_z^2	Full gap
A_{2g}	$k_x k_y (k_x^2 - k_y^2)$	Vertical line node
$B_{1g} (d_x^2 y^2)$	$k_x^2 - k_y^2$	Vertical line node
$B_{2g}\left(d_{xy}\right)$	$k_x k_y$	Vertical line node
$E_{g}(1,0)$	$k_x k_z$	Vertical line node + Horizontal line node
$E_{g}(1,1)$	$k_z(k_x+k_y)$	Vertical line node + Horizontal line node
$E_g(1,i)$	$k_z(k_x+ik_y)$	Horizontal line node + Point node

Superconducting gap function of URu₂Si₂

(1) Spin-singlet

(2) Horizontal line node (light hole band)

(3) Point node along the *c*-axis (heavy electron band)

Y. Kasahara et al. Phys. Rev. Lett.99, 116402 (2007).

Microwave penetration depth measurements in the new Fe-based high-T_c superconductors

K. Hashimoto et al., Phys. Rev. Lett. 102, 017002 (2009).

Probing low-energy quasiparticle excitations

•Penetration depth $\lambda(T)$ Surface impedance measurements a direct probe for superfluid density $Z_s = R_s + iX_s = \left(\frac{i\mu_0\omega}{\sigma_1 - i\sigma_2}\right)^{-1/2}$ $n_s = \frac{\lambda^2(0)}{\lambda^2(T)}$ $X_s = \mu_0\omega\lambda(T)$

full gap superconductors

$$\frac{\delta\lambda_{ab}(T)}{\lambda_{ab}(T)} \approx \sqrt{\frac{\pi\Delta}{2k_BT}} \exp\left(-\frac{\Delta}{k_BT}\right)$$

• superconductors with line nodes $\frac{\delta \lambda_{ab}(T)}{\lambda_{ab}(T)} \approx \frac{\ln 2}{\Lambda} k_B T$

$\lambda > 10^3$ A: reasonably representative of the bulk

line node

$$\frac{\delta\lambda_{ab}(T)}{\lambda_{ab}(T)} \approx \frac{\ln 2}{\Delta} k_B T$$
$$(2\Delta/k_B T_c = 4)$$

Inconsistent with the data

• full gap

 $\frac{\delta\lambda_{ab}(T)}{\lambda_{ab}(0)} \approx \sqrt{\frac{\pi\Delta}{2k_{\rm B}T}} \exp\left(-\frac{\Delta}{k_{\rm B}T}\right)$

 $\Delta_{\min}/k_{\rm B}T_{\rm c}$ ~1.5 ±0.2

Summary various symmetries in unconventional superconductors

異方的な対形成機構から発現する 様々な新しい対称性を持つ

Nodes

(sign changes)

Full gap

非従来型超伝導が発現