Hydrodynamics and phase transitions Akira Onuki Kyoto University

気体の状態方程式(Equation of State)

k: Boltzmann 理想気体(Ideal Gas)の状態方程式

$$p = nkT$$

van der Waalsの状態方程式

$$\left(p+\frac{a}{v^2}\right)(v-b)=RT$$

Van der Waals 1837-1923

1873 thesis T

a/v²: 分子間ポテンシャルによる圧力減少 b: 気体分子体積総和による自由空間体積減少

$$p = \frac{nk_BT}{1 - v_0 n} - \epsilon v_0 n^2$$

$$s/k_B = -\ln(n/T^{3/2}) + \ln(1 - v_0 n) + \text{const}$$

Dutch school

1908年にヘリウムの 液化に成功し1913年にノーベル賞を受けた カメリング・オンネス(Kamerlingh Onnes)

But no fundamental understanding of nonequilibrium phase transition: T(r,t) 液化、蒸発、沸騰、濡れ、 HEAT PiPE(aircon) 気象現象

Exp and theory of boiling in g in two phase T<Tc

Boiling occurs at extremely weak heating near criticality

熱膨張係 $(\partial \rho / \partial T)_p$ $\sim (T_c - T)^{-1}$

CO2: Tc-T =1 K, bottom heating 0.1 K under 1 g, Yoshihara et al (JAXA)

New experiment Kawanami et al (Japan) Heating from below with liquid and gas Gas temperature is homogeneous. T-Tc=0.1 K

1 2 : セル内部温度の時間履歴とそのときの流体挙動(T-Tc=500mK, heat flux: 8kW/m²)

Ginzburg-Landau scheme is not appropriate for inhomogeneous $T(\mathbf{r}, t)$

Start with entropy functional of order parametrer ψ and energy density e (micro-canonical)

$$S = \int d\mathbf{r} [S(\psi, e) - C |\nabla \psi|^2 / 2]$$
gradient entropy
Definition of T: $\frac{1}{T} = \frac{\delta S}{\delta e}$ at fixed ψ

One-component fluids: n: number density, e: internal energy density Entropy $S = \int d\mathbf{r} [ns(n,e) - C|\nabla n|^2/2]$ regular (bulk) gradient Internal energy $\mathcal{E} = \int d\mathbf{r}\hat{e}$ internal energy $\hat{e} = \frac{e + K |\nabla n|^2 / 2}{regular (bulk) gradient}$ density **Definition of T:** $1/T = \delta S/\delta e$ at fixed n

Equilibrium:maximize S at fixed $\mathcal{N} = \int d\mathbf{r} n$ and \mathcal{E} Then T=const. and $-T\left(\frac{\delta S}{\delta n}\right)_{\hat{e}} = \mu - T\nabla \cdot \frac{M}{T}\nabla n = \text{const}$ M = CT + K

interface : $\mu(n,T) - M\nabla^2 n = \mu_{cx}$

This was first derived by van der Waals.

van der Waals $(v_0, \epsilon = \text{const})$

 $s = k_{\mathsf{B}} \ln[(e/n + \epsilon v_0 n)^{d/2} (1/v_0 n - 1)] + const.$

$$e = dnk_{\mathsf{B}}T/2 - \epsilon v_0 n^2$$
$$p = nk_{\mathsf{B}}T/(1 - v_0 n) - \epsilon v_0 n^2$$

Stress tensor for K=0 $\Pi_{ij} = p\delta_{ij} - CT[n\nabla^2 n + (\nabla n)^2/2]\delta_{ij}$ $+ CT\nabla_i n\nabla_j n - \sigma_{ij}$

reversible stress + *viscous stress* (η , ζ)

$$\frac{\partial}{\partial t}\rho = -\nabla(\rho \mathbf{v}), \ (\rho = mn)$$
$$\rho(\frac{\partial}{\partial t} + \mathbf{v} \cdot \nabla)\mathbf{v} = -\nabla \cdot \Pi - \rho g \mathbf{e}_z$$
$$\frac{\partial}{\partial t} e_T = -\nabla \cdot (e_T + \Pi \cdot)\mathbf{v}$$
$$+\nabla \lambda \nabla T - \rho g v_z, \ (e_T = \hat{e} + \rho v^2/2)$$

Stress Π contains gradient terms

Entropy production >0 if no heat from outside

$$\frac{\partial}{\partial t} \mathcal{S} = \int d\mathbf{r} \frac{1}{T} [\nabla \cdot \lambda \nabla T + \sum_{ij} \sigma_{ij} \nabla_i v_j]$$

Gradient terms are included

Adiabatic cooling from boundary $T=1.1T_c$ to $T_{wall}=0.9T_c$ at $<n>=n_c$

1-1

150020003200Liquid wettinglayer is a piston expanding interior

Early stage adiabatic expansion by sounds

Changes at cell center. Still no domains in interior

1-2

2 Sounds to a bubble

$T_{\rm bot}/T_c$ is changed from 0.875 to 0.895

 $(\frac{\partial T}{\partial p})_s$ is 9 times larger in gas than in liquid *warmer in gas than in liquid*

Bubble oscillates!

2-1. Bubble in heat flow t<0: gas droplet at center, T=0.875T_c in equilibrium t>0: T_{bot}= $0.875T_c + \Delta T$ (heated), T_{top} is fixed

No gravity

t=2100

t=68000

2-3. Bubble is attracted to heated wall. Apparent partial wetting T_{bot}/T_c is changed from 0.875 to 0.945 $T_{top}/T_c = 0.875$

T is flat within bubble = Tcx(p)

2-2. Apparent wetting in heat flow (continued) $T_t/T_c = 0.875$

 $T_{b}/T_{c} = 0.895$

1.1

 $\Delta T/Tc=0.225$

Steady convection with no gravity

Diffuse profile

2-4. Latent heat transport is suppressed Large gradient in gas film

2.5 Efficient heat transport by flow along wetting layer, no gravity

> $\lambda_{\text{liq}} = 5\lambda_{\text{gas}}$ $Nu = \frac{\lambda_{\text{eff}}}{\lambda_{\text{liq}}} = 5$ $T_{\text{bot}}/T_c = 0.895$

 $T_{top}/T_c = 0.875$

Steady flow, but drying for larger Tbot

In boiling ∇T is small even in bulk liquid and is localized at boundary walls **Fully developed:** t=70000

8-1. Boiling: g applied, *Tt/Tc=0.77*, *Tb/Tc* is changed from 0.94 to 1 at t=34000

t=34600

t=35230

t=66300

t=71000

t=74100

PART 3 Wetting dynamics: evaporation, spreading,....

2D simulations but 3D axisymmetric droplets

M2勅使河原

3a) Precursor film formation in complete wetting Plate temperature Tw was not higher than initial liquid temperature

Complete wetting case

Fast growth of precurserfilm due to evaporation and condensationLarge1Precursor film extension

Nonequilibrium spreading: complete wetting : $\Phi_1 > 0.14$

Precursor film formed ahead of droplet

3b) Droplet evaporation in partial wetting

$$[\boldsymbol{\sigma} \cdot \mathbf{n}]_{\mathsf{jump}} = \nabla \gamma$$

Fig. 13. Nondeformable isolated vapour bubble with steady-state mass flow.

PART4 Marangoni effect in mixtures surface tension change: $\delta \gamma = \left(\frac{\partial \gamma}{\partial T}\right)_{\zeta} \delta T + \left(\frac{\partial \gamma}{\partial \zeta}\right)_T \delta \zeta$ Solute fugacity: $\zeta = e^{\mu_2/kT}$

Surface tension is defined on the coexistence surface $P=Pcx(T,\zeta)$. At constant P, $\delta T = (\partial T / \partial \zeta)_{\mathsf{CX},p} \delta \zeta$ CRITICAL LINE CRIT PT. COEX. SURFACE $\gamma = \gamma_0 - k_B T \Gamma$ (Gibbs)

No Marangoni for pure fluids P=Pcx(T) or T=Tcx(P)

solvent (C02 or H20)+solute

$$\gamma' = (\frac{\partial \gamma}{\partial T})_{\mathrm{cx},p} = \frac{d\gamma_0}{dT} \times$$

positive for ethanol..... negative for argon....

TABLE I: T'_c/T_{c0} , $p'_c/n_{c0}T_{c0}$, $K_{\rm Kr}/n_{c0}T_{c0}$, and $p'_c/K_{\rm Kr}$ for $\rm CO_2+$ solute and for $\rm H_2O+$ solute near the solvent critical point, where $T'_c = dT_c/dX$ and $p'_c = dp_c/dX$. The last quantity is related to the temperature-derivative of the surface tension in Eq.(2.66). Data are taken from Refs.²⁵⁻²⁷.

Solvent	Solute	T_c^\prime/T_{c0}	$p_c/n_{c0}T_{c0}$	$K_{\rm Kr}/n_{c0}T_{c0}$
$\rm CO_2$	Neon	-0.0517	0.919	1.02
CO_2	Argon	-0.192	0.553	0.936
CO_2	Ethanol	0.539	0.694	-0.380
CO_2	Pentanol	2.20	1.96	-2.42
CO_2	Ethane	-0.182	-0.187	0.175
H_2O	Toluene	-1.32	-0.948	1.434
H_2O	D_2O	-0.0050	-0.0041	0.0050

The Journal of Supercritical Fluids, Vol. 4, No. 4, 1991

TEMPERATURE

(Onuki 2008)

Bubble velocity in mixture $v_g + v_M + v_c$

 $v_g \sim \frac{\rho - \rho'}{\eta} R^2 g$ gravity $v_{\rm M} \sim \frac{c\gamma'}{n\lambda} RQ$ (c:mass fraction) Marangoni **Evaporation** $v_c \sim \frac{Q}{\rho' T \Delta s}$ condensation $v_c/v_M \sim
ho a/
ho' cR$ (a : micro length)

Q:heat flux, ρ ':gas density, Δ s:entropy difference η :liquid viscosity, λ :liquid thermal conductivity

$$v_M = \frac{2}{2\eta + 3\eta'} \frac{\gamma'}{3} R \mathcal{T}'$$

$$\mathcal{T}' \cong \frac{c}{\lambda_{\text{eff}}} (\mathcal{Q} - T \frac{[s]}{[c]} \mathcal{I}).$$

 \mathcal{T}' : temperature gradient within bubble \mathcal{Q} : heat flux far from bubble

- \mathcal{I} : diffusion flux far from bubble
- γ ' depends on solute species evenn at low densities

Summary

2. Two-phase dynamics with evaporation

and condensation

3 Wetting dynamics: evaporation, spreading,....

4 Marangoni effect in mixtures