

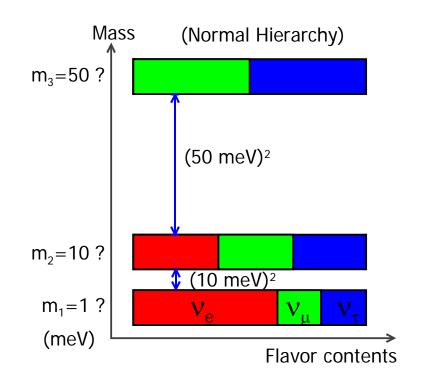
SPAN group (吉村、中野、南條、福見、中嶋)

内容

- 物理の目的・意義
- マクロ・コヒーランス増幅機構とは?
 - 超放射現象の理論と現状
- 二光子および一光子+ニュートリノ対超放射
 - 新しい原理・手法によるニュートリノ分光の提案
- 具体的準備状況
 - Rb よりのカスケード超放射
 - Xe in Ne マトリック
- まとめと展望

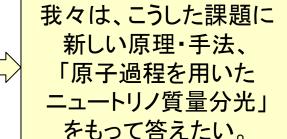
物理の目的・意義

- ニュートリノ物理の現状・課題
- 原子を利用したニュートリノ質量分光へ (SPAN=Spectroscopy by Atomic Neutrino)



■ 振動実験

- 有限の質量を持つ。
- Flavor 固有状態と質量固有状態 は異なり、互いに混合している。
- 質量(二乗差)は、他の荷電レプトン(の二乗)に比較し、極端に小さい。
- 他の実験・宇宙論
 - 絶対質量も小さい。(m<1 eV)



如何なる実験がニュートリノ物理 が提起する課題に答えを提示しうるか?

ニュートリノ物理の課題

- Majorana vs Dirac?
 - 中性フェルミオンはディラック方程式 に従うか、マヨラナ方程式に従うか?
- 質量絶対値とヒエラルキー
 - シーソー機構により小さな質量値を 理解できるか?
- 混合角と位相
 - 大統一理論構築に向けた大きなステップになりうるか?
 - レプトン数保存を破り、宇宙の物質・ 反物質不均衡に関わるか?

原子を利用したニュートリノ質量分光 一その長所と短所一

長所

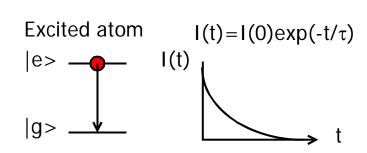
- 原子状態エネルギー準位が多様 (μeV—eV)である。
 - 目標とするエネルギースケールに一致
- ニュートリノ対は電子と結合
 - 全ての質量(m₁,m₂,m₃)及び混合角が関与
 - マヨナラ vs ディラックの区別
 - 同種粒子効果によるスペクトルの変形

短所

- 弱い相互作用は△5に比例する
 - 相互作用頻度が極端に小さい
- 相互作用頻度の増幅機構が必要
 - マクロコヒーレンス増幅機構
 - 準位間共鳴

$$\Delta E = 13.6 \left(\frac{1}{n_1^2} - \frac{1}{n_2^2} \right) \text{ eV}$$

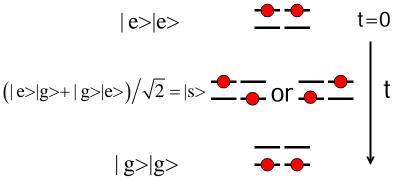
時間が許せば説明する

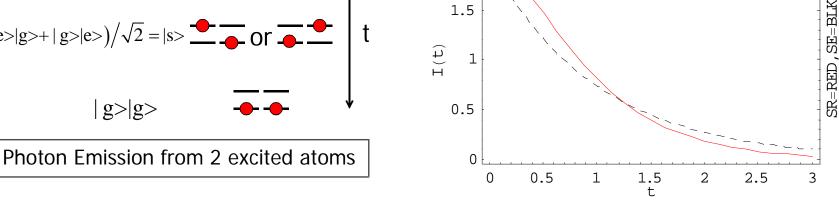

Yoshimura hep-ph/0611362 PRD75, 113007(2007)

$$\frac{G_F^2 \Delta^5}{15\pi^3} \approx 3.3 \times 10^{-34} \left(\frac{\Delta}{\text{eV}}\right)^5 \text{sec}^{-1}$$

■ 超放射現象の理論と実験

励起された原子(分子)があり、光放射などで基底状態に戻るとき、放射強度の時間依存性は指数関数により表される。 だが、原子集団が多数の場合は、これとは異なる現象が起こりうる。


超放射とは?

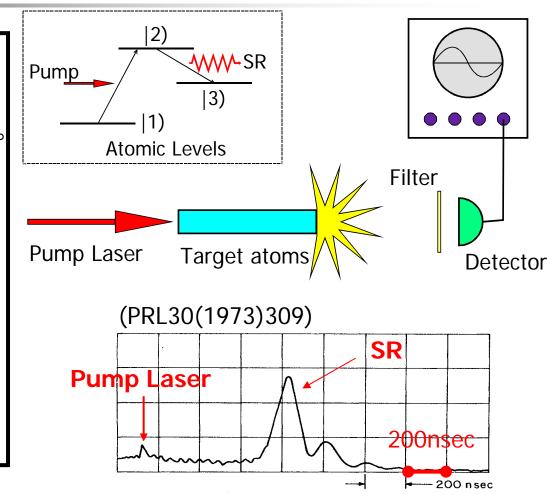

- 理論的予言
 - R.H.Dicke (PR93,99(1954))
- 特徴
 - 放射強度
 - N² に比例(Nは励起原子数)
 - もし自然放射ならばNに比例
 - 量子コヒーランス状態の実現。
 - 誘導放出とは異なる非線形現象。
- 実験的検証
 - Skiribanowitz et.al. (PRL30,309(1973))
 - 以後多数

Brb Diche 1916—1997

1.5

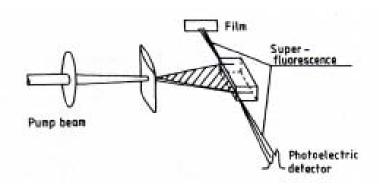
- 同一の2準位原子が2個存在。
- 1個の光子を放射するとき、どちらの 原子から放射したか不明の場合、コ ヒーラントな状態が実現する。

この場合、崩壊の行列要素は <s $|H_2|$ ee $>=2^{1/2}<$ g $|H_1|$ e>

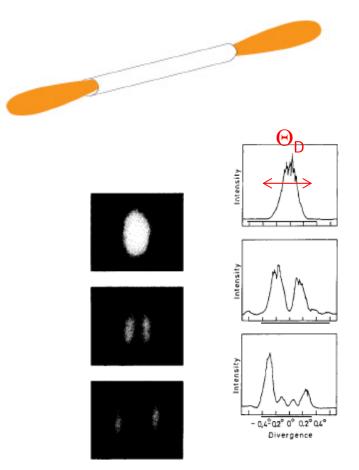

SR vs Spontaneous

Emission

放射強度を計算すると単純な 指数関数の崩壊とは異なり、強 度は初期により集中する。


超放射の実験的特長(強度)

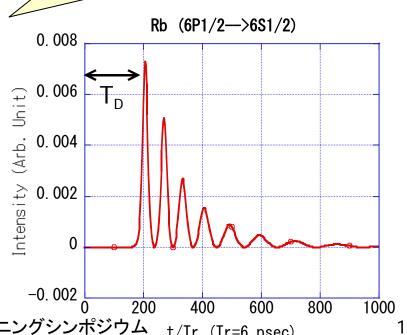
- 装置(典型例)
 - Laserにより標的原子を 基底状態より励起状態に。
- 放射強度
 - N²に比例
 - 右図の例(フッ化水 素分子利用)
 - 10¹⁰倍の強度 (自然寿命=1-10秒)
 - Ringingの存在 (理論的に予想)



超放射の実験的特長(角分布)

- 超前(後)方への集中
 - 回折角内: Θ_D=λ/D
 - 実際にはフレネル数 (F=A/λD)にも依存
 - 実験的にも確認されている。

Exp't: JL40(1988)541 KCI(O_2^-) w/ λ_{pump} =266nm 2009/2/16-18


超放射の実験的特長(遅延時間)

- 超放射の生成は入力より遅れる (遅延時間)
 - T_R(超放射の特徴的時間)
 - 回折角内に、一個の光子が自 然放射されるに必要な時間。
 - $T_D = T_R [Log(\theta_0/2\pi)]^2/4$
 - Initial tipping angle:θ₀
 - 量子揺らぎに起因:1/N^{1/2}
 - レーザーパワーに逆比例
- 適当な波長のレーザーを「呼び水」 として入力し、SRをTriggerすること も可能。

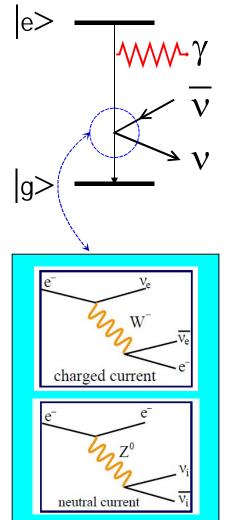
$$\left(\frac{N}{\tau_n}\right)\left(\frac{\lambda^2/A}{4\pi}\right)T_R \Box 1 \rightarrow T_R = \frac{8\pi}{3} \frac{\tau_n}{n_0 \lambda^2 L}$$

$$\tau_n : \text{(natural) life time}$$

$$N = n_0 AL \quad \lambda : \text{wavelength}$$

二光子及び一光子ニュートリノ対超放射

ニュートリノ質量分光実験の基本原理 質量分光の測定量(目標) 鍵を握る課題

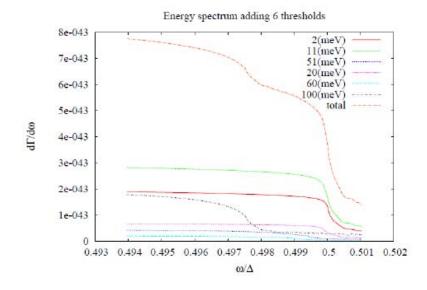

ニュートリノ質量分光実験の基本原理

■ 基本実験原理

- 励起した原子からの、一光子とニュートリノ対を伴う 過程に注目。
- このとき標的原子について巨視的量子コヒーラント 状態を実現し、反応を促進する。
- ニュートリノに関する情報は、付随して放射される 光子のスペクトルに含まれる。

■ 鍵を握る課題

- 巨視的量子コヒーラント状態を実現できるか?
- BGとなる二光子(一光子)超放射を制御できるか?

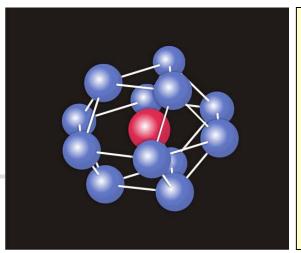


■ 質量及び混合角

- 放射光子のエネルギースペクトルに閾値 が存在する。これより質量を
- スペクトルの相対的大きさは混合角に依存。

■ マヨナラ vs ディラック

■ 同種粒子効果によりスペクトルが変形。



$$\sum_{h_1h_2} |j_M \cdot j^e|^2 = \sum_{h_1h_2} |j_D \cdot j^e|^2 + \frac{m_1m_2}{2E_1E_2} \left(j_0^e (j_0^e)^\dagger - \vec{j}^e \cdot (\vec{j}^e)^\dagger \right)$$

M. Yoshimura; PRD75(2007)113007

マクロ・コヒーラント標的

- ■要求
 - 標的数 N=10¹⁸
 - コヒーランス・タイムが十分長い
- 候補
 - 希ガス(水素)マトリックス
 - 具体的進展については後述。
 - (原子・分子内包)C₆₀ fullerene
 - 水素分子や窒素原子、希ガスなど は内包され、孤立状態を保つこと が、実験的に確立されている。
- 新しい挑戦的課題
 - 過去にマクロ・コヒーランスを証明する 実験例なし!

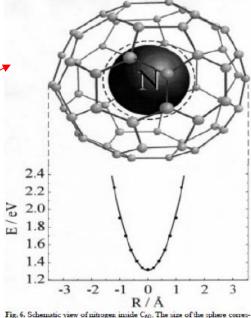
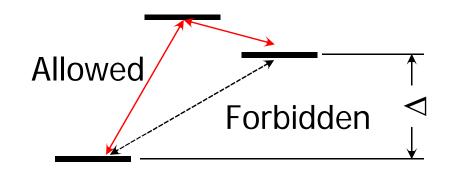
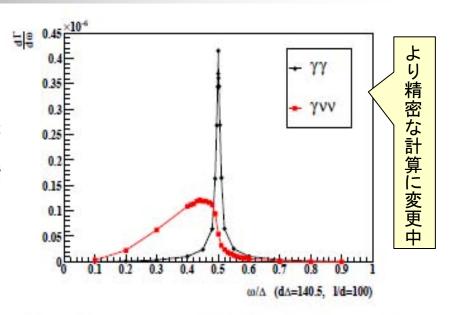



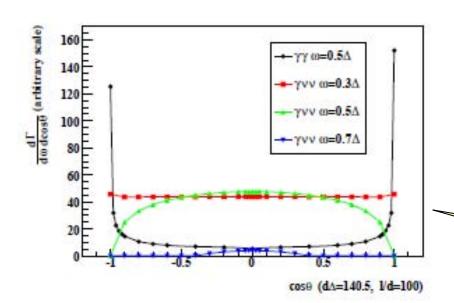
Fig. 6. Schematic view of nitrogen inside C_{60} . The size of the sphere corresponds to the van der Walls radius of nitrogen [12]. The dashed line marks the border of the inner cavity of the C_{60} shell if van der Walls radiu assumed for the carbon atoms [12]. In the lower part of the figure the calculated potential energy of ritrogen in C_{60} is shown as a function of the displacement from the center [4]. In the calculation, no relaxation of the cage atoms is assumed. The energy scale is relative to the energy of nitrogen st infinity



- 二光子超放射
 - 二光子超放射とは?
 - 目的・意義
 - マクロコヒーランス増幅機構 のProof of Principle 実験
 - 一光子+ニュートリノ対放射 に対するBG過程。

その特徴

- エネルギーと角度相関
 - △/2に鋭いピーク
 - 互いに反対方向
- 直感的理解は、
- 新しい挑戦的課題
 - 過去に二光子超放射を観測した 実験例なし!


$$\left| \sum_{i=1}^{N} \exp \left\{ i \left(\overrightarrow{k_1} + \overrightarrow{k_2} \right) \overrightarrow{\Gamma_i} \right\} \right|^2 \Rightarrow N^2 \text{ if } \overrightarrow{k_1} + \overrightarrow{k_2} = 0$$

厶

M. Yoshimura et.al.; arXiv:0805.1970

一光子十二ュートリノ対超放射

- 二光子超放射との分離
 - 二光子過程も禁止
 - エネルギースペクトルの差を利用
 - 角度分布
 - Triggerにより積極的に信号を誘発

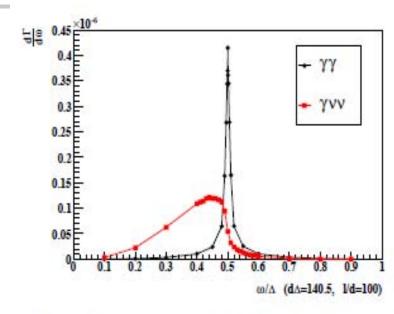


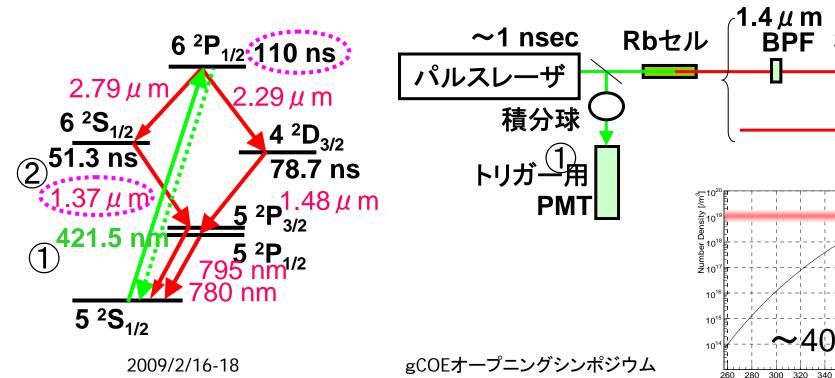
FIG. 2: Energy spectrum of MCTPE and radiative neutrino pair emission. The rate of radiative neutrino pair emission is rescaled up with a factor 1.0×10^{41} . The size factors assumed are $d=100 {\rm eV}^{-1} \sim 20 \mu {\rm m}$ and l/d=100. A single neutrino species of mass 50 meV is assumed for $\gamma \nu \nu$.

より精密な計算に変更中!

ングシンポジウム

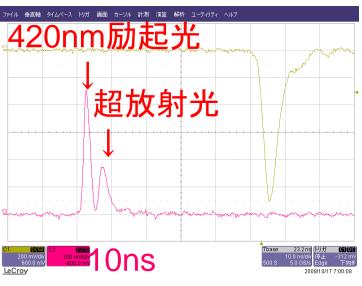
具体的準備の状況

- (1) Rbよりのカスケード超放射
- (2) Baよりのラマン超放射
- (3) Baよりの二光子超放射
- (4) 希ガスマトリックの作成と巨大量子状態の確認 (近畿大学、若林氏との共同研究)
- (5) パラ水素マトリックの作成と巨大量子状態の確認 (UBC、Prof.Momose との共同研究)

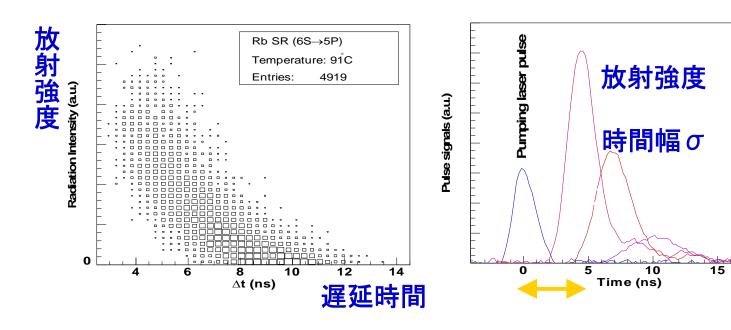


Rb 原子を用いたカスケード超放射測定

InGaAs

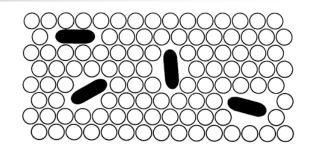

380 400

- 目的:超放射の理解と関連技術習得、カスケード超放射の理論構築とその実験的検証
 - Level Diagrams

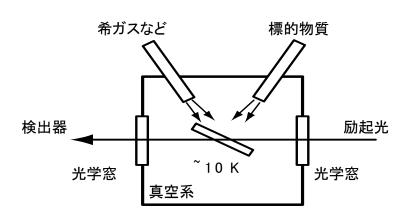

Rb超放射測定セットアップ

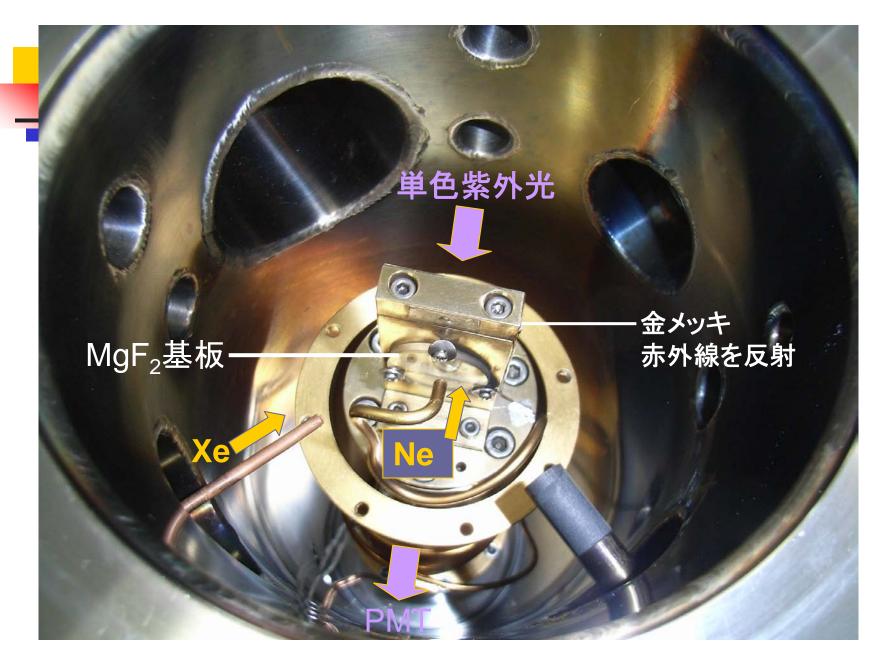
 (上図) 励起レーザ光と 超放射光を共に検出した場合。 (自然寿命は110+51 nsec。)

超放射の波形パラメータ相関



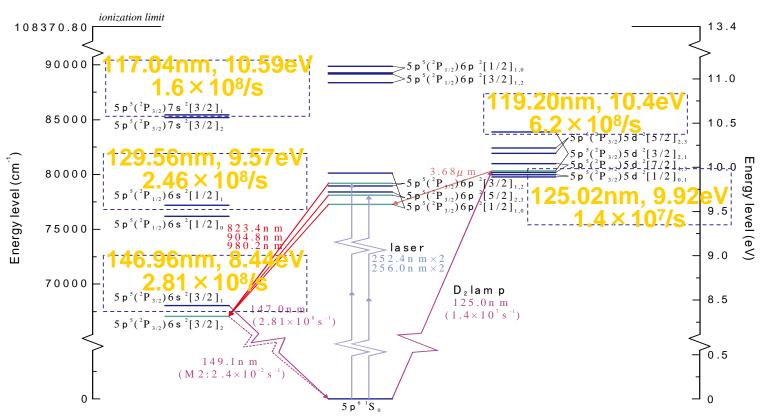
超放射の特性と一致 放射強度が大きいほど遅延時間が短い 20

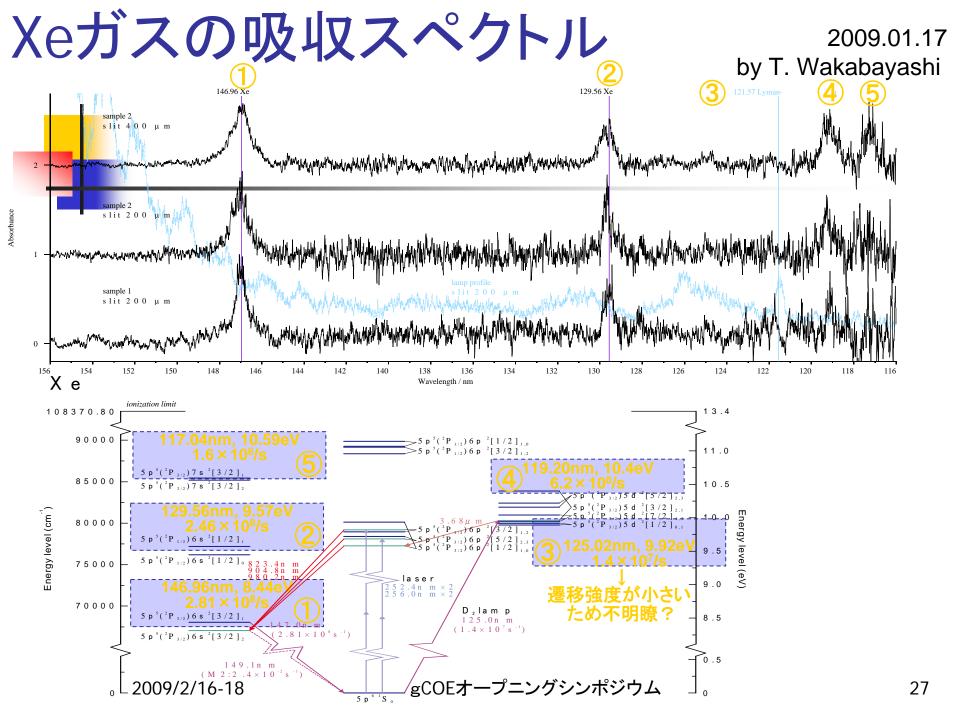

マトリックスとは?

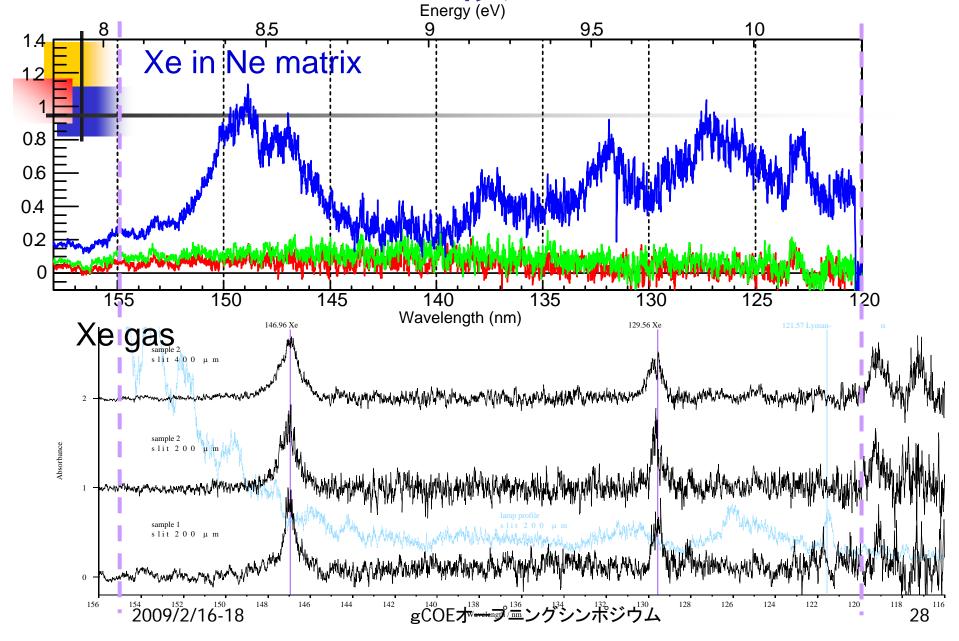

- 希ガスなどの低温(~10K)に凍結した媒体中にゲスト原子・分子を封じ込めたもの。
 - 原子分子の回転を抑制できる。
 - 相互作用が弱く気体ガスの 状態に近い。
 - 貯蔵数は水素でのマトリックスの場合10¹⁸/cm³...

コヒーレンス状態の利用に適した条件。

IAN R. DUNKIN
Matrix-Isolation Techniques






Xe in Ne Matrix 実験状況

Matrix-Gasの比較

まとめと展望

- 新しい原理・手法によるニュートリノ分光を提案
 - 原子過程からの光子+ニュートリノ対を検出。
 - Majonara—Diracの区別
 - 質量絶対値の測定
 - 混合角の測定
 - マクロ・コーヒーラント状態を創出し、反応を促進。
- 展望
 - 二光子超放射は起こるのか?
 - マクロ・コヒーラント標的は実現できるか?
 - 理論の整備とそれに基づく数値計算。
 - 上記2つの実験は進行中。
 - これらを実現し、ニュートリノ質量分光や宇宙背景ニュートリノの観測に繋げたい。